
BLESER: Bug Localization Based on Enhanced
Semantic Retrieval

Weiqin Zou 1,2, Enming Li3, Chunrong Fang3
1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China

2 Key Laboratory of Safety-Critical Software (NUAA), Ministry of Industry and Information Technology, China
3 State Key Laboratory for Novel Software Technology, Nanjing University, China
Email: weiqin@nuaa.edu.cn mf1932088@smail.nju.edu.cn fangchunrong@nju.edu.cn

Abstract—Bug localization techniques play an important role
in software quality assurance, among which, static bug local-
ization techniques that locate bugs at method granularity have
gained much attention from both researchers and practitioners.
For a static method-level bug localization technique, a key but
challenging step is to fully retrieve the semantics of methods and
bug reports. Currently, existing studies mainly use the same bag-
of-word space to represent the semantics of methods and bug
reports without considering structure information of methods
and textual contexts of bug reports, which largely and negatively
affects bug localization performance.

To address this problem, we develop BLESER, a new bug
localization technique based on enhanced semantic retrieval.
Specifically, we use an AST-based code embedding model (cap-
turing code structure better) to retrieve the semantics of methods,
and word embedding models (capturing textual contexts better)
to represent the semantics of bug reports. Then, a deep learning
model is built on the enhanced semantic representations. During
model building, we compare five typical word embedding models
in representing bug reports and try to explore the usefulness of
re-sampling strategies and cost-sensitive strategies in handling
class imbalance problem. We evaluate our BLESER on five
Java projects from the Defects4J dataset. We find that: (1) On
the whole, the word embedding model ELMo outperformed the
other four models (including word2vec, BERT, etc.) in facilitating
bug localization techniques. (2) Among four strategies aiming at
solving class imbalance problems, the strategy ROS (random
over-sampling) performed much better than the other three
strategies (including random under-sampling, Focal Loss, etc.).
(3) By integrating ELMo and ROS into BLESER, at method-level
bug localization, we could achieve MAP of 0.108-0.504, MRR
of 0.134-0.510, and Accuracy@1 of 0.125-0.5 on five Defects4J
projects.

Index Terms—Bug Localization, Word Embedding, Semantic
Representation, Class Imbalance

I. INTRODUCTION

Bug localization techniques play an important role in en-
suring the quality of software products and have always
been attracting much attention from both the industry and
research community [1], [2]. Existing studies could be broadly
divided into two categories, namely dynamic and static bug
localization techniques [3]. Dynamic techniques mainly aim
to collect execution profiles of programs under test to locate
buggy code, while static techniques mainly aim to retrieve
some static features from bug reports, source code, and other
artifacts (e.g., commit logs) generated within the process of

Chunrong Fang is the corresponding author.

software development, to locate buggy code. Different bug
localization techniques locate bugs at different source code
granularity levels (including file, method, statement, etc.).
In this paper, we mainly focus on static method-level bug
localization techniques. More specifically, we aim to develop
a technique that recommends buggy methods for a given
bug report, as the method granularity is found to be mostly
preferred by software practitioners [1].

For static method-level bug localization techniques, a key
challenge is to fully retrieve the functional semantics of a
method (i.e., the functionality of a method) and problem
semantics of a bug report (i.e., the exact software problem
a bug report describes). Currently, existing studies mainly
used traditional information retrieval techniques to retrieve the
semantics of method code and bug reports in the same bag-of-
words feature space, i.e., both method code and bug reports
are taken as textual content in natural language [3]–[5]. This
is problematic in two aspects. On the one hand, taking method
code as pure text would miss the structure information of a
method beyond its lexical terms. Since statements organized
in different ways (e.g., from A->B->C to B->A->C) are
very likely to reveal different functional semantics, ignoring
the code structure would lead to insufficient semantic retrieval
of a method. On the other hand, the information retrieval
techniques (such as LDA (Latent Dirichlet Allocation), VSM
(Vector Space Model)) used by previous studies usually
fail to deal with the context of lexical terms, which also
leads to insufficient semantic representations of bug reports
and methods in terms of their textual content. The above-
mentioned problems in semantic retrieval of methods and bug
reports largely and negatively affect the performance of bug
localization techniques.

In this paper, we proposed a technique called BLESER
(Bug Localization based on Enhanced SEmantic Retrieval),
to recommend buggy methods for a given bug report. Unlike
previous research, BLESER took full consideration of code
structure and textual context while retrieving the semantics of
methods and bug reports. Specifically, we used an abstract
syntax tree (AST) based model to retrieve the functional
semantics of methods. The semantics of bug reports were re-
trieved by state-of-the-art word embedding models which have
been proved to be effective in representing textual semantics
in various natural language tasks [3], [6], [7]. Then, we used

ar
X

iv
:2

10
9.

03
55

5v
1

 [
cs

.S
E

]
 8

 S
ep

 2
02

1

a deep learning model that leverages two kinds of semantic
features of methods and bug reports, to learn unified features
from methods and bug reports to automatically locate buggy
methods for a given bug report.

Furthermore, although word embedding models are widely
used in natural language tasks, they are rarely well studied
under the context of bug localization. Hence, we do not have
a good reference in deciding which word embedding model
to use in BLESER. To help understand how effective typical
word embedding models are in representing textual semantics
of bug reports, we did a comprehensive comparison of five
classical and state-of-the-art word embedding models in this
study, namely word2vec, GloVe, fastText, ELMo, and Bert1.
What is more, during model building, we found that the
training dataset is extremely imbalanced; that is, the number
of buggy instances (methods) are much smaller than the
number of non-buggy instances for a given bug report. To
avoid the potential threats of imbalanced datasets upon model
building, we checked the effectiveness of four imbalanced-
class-handling strategies in our experiments, and integrated the
most effective strategy into BLESER to fix the imbalanced-
class problem.

Our experiments are conducted on the benchmark dataset
called Defects4J2, which consists of five Java projects. De-
fects4J is often used as the dataset to evaluate various bug
localization and repair tasks [8]–[10]. Through experiments,
we find that ELMo performed best among five word embed-
ding models in facilitating the performance of bug localization
techniques, which means ELMo is a more suitable choice in
representing the semantics of bug reports than other models.
Meanwhile, we find that the resampling strategy ROS (random
over-sampling) could always help achieve the best localization
performance, which means ROS is mostly suitable in handling
the class imbalance problem of bug localization. Our BLESER
which integrates ELMo and ROS could achieve MAP of 0.108-
0.504, MRR of 0.134-0.510, and Accuracy@1 of 0.125-0.5 on
five Defects4J projects. Our major contributions are as follows.

• We proposed a technique called BLESER which takes
code structure of methods and textual context of bug
reports into account in representing the semantics of
methods and bug reports, to locate buggy methods for
given bug reports. Experimental results demonstrate the
effectiveness of our approach.

• We studied the potential of five typical word embedding
models in retrieving the semantics of bug reports. We
found that ELMo could help obtain the best performance
in bug localization.

• We explored the effectiveness of four strategies in han-
dling imbalanced-class problems within bug localization
prediction models. We found that the strategy random
over-sampling was found to be most helpful in locating
bugs.

1https://github.com/flairNLP/flair
2https://github.com/rjust/Defects4J

The remaining parts are organized as follows. Section 2
introduces the background. Section 3 describes the framework
of our technique. Section 4 and 5 present the experiment setup
and results. Section 6 shows threats to the validity of our
study. Section 7 introduces related work. Finally, Section 8
summarizes our findings and presents future work.

II. BACKGROUND

In this section, we mainly introduce two kinds of techniques,
namely word embedding and AST-based code embedding, that
we used to enhance the semantic retrieval of bug reports and
method code, respectively.

A. Word Embedding

In 1954, Harris proposed a distributed hypothesis that words
appearing in the same or similar contexts usually have similar
meanings [11]. Since then, various distributed semantic models
(DSMs) are proposed. In a DSM, each word is represented
by an N-dimensional numeric vector. Words that appear in
similar or the same context have similar vector representations.
Most traditional DSMs are mainly based on counting statistics.
In recent years, a series of DSMs based on neural networks
are proposed [12], [13]. A neural-network-based DSM mainly
applies a deep-learning neural network to learn the contexts of
textual words and convert each word into a low-dimensional
numeric vector. Such a DSM is called a word embedding
model. A word embedding model could better capture the
semantics of word context than those DSMs based on counting
statistics; and therefore is more effective in various natural
language tasks [6], [7], [14].

In the area of natural language processing, researchers and
practitioners have proposed a series of word embedding mod-
els. Some representative models are word2vec [13], ELMo,
GloVe3, BERT and fastText4. Google developed word2vec in
2013. This tool implements two different word embedding
algorithms, including CBOW and Skip-gram. The CBOW
model aims to predict the center word by proving its contextual
words; while the Skip-gram model aims to predict the contex-
tual words of a given center word. Both models use gradient
descent to adjust the weights of individual network nodes
during model training. Then for each word, we could obtain
its word embedding numeric vector from the built models.
As a traditional word embedding technique, word2vec has
been used to help solve some software engineering tasks [7],
[14]. One major disadvantage of word2vec is that it cannot
distinguish words that may show different meanings under
different contexts, as each word only has one corresponding
numeric vector.

GloVe makes use of some global statistical information and
solves some problems of word co-occurrence models. ELMo
uses bidirectional LSTM to extract semantic features. It first
adopts a language model to obtain the numeric vector of each
word, and then dynamically adjusts the word vector by using
the word contexts of downstream tasks. The adjusted word

3https://nlp.stanford.edu/projects/glove/
4https://fasttext.cc/

vector can better represent the concrete meaning of a word
under a certain context, which further solves the polysemous
problem of word2vec. One major difference between BERT
and ELMo is that BERT adopts Transformer rather than LSTM
to extract semantic features of the text.

Unlike above-mentioned word embedding techniques, fast-
Text (proposed by Facebook) is trained on N-gram word-bag-
level data rather than on word-level data. Specifically, fastText
represents words as N-gram word bags, and then uses Skip-
gram to train a model on these word bags. Each N-gram
subword corresponds to a numeric vector, and a word could
be represented as the aggregation of the N-gram vectors of its
subwords. By training on N-gram-based subwords, fastText
could capture the semantics of shorter words, rare words and
even prefixes and suffixes.

Currently, embedding techniques such as ELMo have not
been adopted in the task of method-level bug localization. To
understand how useful these embedding models are in helping
bug localization, we conduct a comparative analysis of the
above-mentioned five typical/state-of-the-art word embedding
methods and try to find the most suitable word embedding
model for representing the semantics of bug reports.

B. AST-based Code Embedding

Similar to word embedding models, code embedding models
aim to learn the semantics of code snippets and represent
them as continuously distributed numeric vectors [15], [16].
These code vectors could be used to facilitate software tasks
such as code clone detection or code naming [15], [17]. In
recent years, with the rapid development of deep learning
algorithms, researchers proposed a diverse code embedding
models based on deep learning methods; and a typical category
of such models is AST-based code embedding models, i.e.,
applying deep learning methods to abstract syntax trees of
source code. An AST is a tree designed to characterize the
abstract syntax structure of source code. Each node of an AST
corresponds to a construct in the source code. Since an AST
could fully represent the lexical and grammatical structure of
the source code without recording all details of the code (such
as punctuation marks), it is widely used in many software
engineering techniques/tools. Some AST-based deep learning
code embedding techniques include RvNN, TBCNN, Tree-
LSTM, ASTNN and code2vec [15], [16], [18]–[20]. In this
paper, we mainly use code2vec to represent the semantics of
method code.

code2vec was proposed by Alon et al. in their POPL 2019
paper. code2vec is a code embedding model that adopts an
attention neural network to learn a matching relationship
between a bag of path-contexts and a label (i.e., method
name). Within code2vec, a code snippet is first converted into
an AST. Then from the AST, all paths from a leaf node to
another leaf node are extracted. After that, an attention neural
network is applied to these paths to obtain their weights and
embedding vectors. Finally, those embedding vectors of all
paths are aggregated as a final embedding vector to represent
the semantics of a code snippet. To demonstrate the correctness

of code embedding vectors, the authors used the generated
code vectors by code2vec to predict method names for given
code snippets and achieved impressive results. This means the
code vectors generated by code2vec could well represent the
semantics of method code. Hence, in this paper, we decided to
use code2vec to obtain code embedding vectors to represent
the semantics of methods while building our method-level bug
localization technique.

III. METHODOLOGY

Fig. 1 shows the overall framework of BLESER. As a
method-level bug localization technique, BLESER mainly
includes two parts, namely semantic retrieval and model
building. In the semantic retrieval part, we mainly use word
embedding models and code embedding models to retrieve the
semantic features (i.e., numeric embedding vectors) of bug
reports and method code, respectively. Particularly, we use
pre-trained embedding models to perform semantic retrieval.
After we obtain the semantic features of bug reports and
methods, we use a neural network to unify the two kinds of
semantic feature vectors. Last, we use logistic regression as the
output layer of the neural network, to train a model based on
training instances (with unified features as instance features).
The model then could be used to predict potential buggy
methods for a new coming bug report. During model training,
we found that the training dataset is extremely imbalanced
(i.e., the number of instances from one class is much larger
(smaller) than that from another class). To alleviate the poten-
tial problems brought by imbalanced classes, we incorporated
relevant strategies handling imbalanced classes into BLESER.
The details of our method are as follows.

A. Semantic Retrieval

Pre-trained Embedding Models. Inspired by the effective-
ness of word embedding and code embedding techniques in
natural language tasks and other software engineering tasks,
we proposed to use these embedding models to improve the
semantic retrieval of bug reports and method code. Generally
speaking, a large-scale training dataset is always a prerequisite
for building a deep-learning-based word embedding model or
code embedding model of good-performance. Whereas, many
software projects (so do our experimental projects) do not have
massive bug reports or method code for us to build such an
embedding model. To solve this problem, we decided to use
pre-trained models to retrieve the semantics of bug reports and
methods in this study.

A pre-trained model is one solution proposed by researchers
to the problem that a certain task does not have sufficient
data to build its own effective model from the scratch [21].
In other words, rather than build a new model, we could use
an available model built upon publicly massive benchmark
datasets from the same or relevant domains to resolve our
problems. Currently, pre-trained models have been widely used
in image processing and natural language processing tasks
[22], [23]. For example, some image segmentation tasks used
pre-trained models built on the public ImageNet dataset to

 CNN	Hidden	Layers

A	New	Bug

Logistic	Layer	

Class	Imbalance	
						Handling

Instance	Features

					Potential		
Buggy	Methods	

Class	Label

 Model

CNN	Hidden	Layers

(2)	Model	Construction

Bug	Reports

Method	ASTs Project	Code Code	Embedding Semantic	Vectors

Preprocessing Word	Embedding Semantic	Vectors

(1)	Semantic	Retrieval

Fig. 1. The Framework of BLESER.

facilitate their performance [24]. In this paper, we would
explore the potential of pre-trained embedding models (i.e.,
embedding models built on other sources of textual corpus or
source code) in retrieving the semantics of bug reports and
method code. The details are as follows.

Semantic Retrieval of Bug Reports. In the file-level bug
localization study by Ye et al. [7], the authors find that there
is no big difference in the effectiveness of word embedding
models (i.e., word2vec in their paper) trained on Wikipedia
corpus or software artifacts such as API documents. Hence
we decided to directly use those well-performed pre-trained
word embedding models in natural language processing area
to retrieve the semantics of bug reports. More specifically,
we compared five typical/state-of-the-art pre-trained word em-
bedding models, namely ELMo, BERT, GloVe, fastText and
word2vec, in representing bug reports. These five pre-trained
word embedding models are mainly trained on Wikipedia or
Google News corpus. The dimensions of the generated word
embedding vectors by five pre-trained models are different;
some pre-trained word embedding models (e.g., BERT) sup-
port outputting semantic vectors of different dimensions. In
this paper, the exported dimensions of five pre-trained models
are set to be 768, 768, 100, 300, and 300 for ELMo, BERT,
GloVe, fastText, and word2vec, respectively. In other words,
each word of a bug report would be represented as a vector
of N (i.e., the mentioned-before dimension) numeric elements.
Take ELMo for example, each word of a bug report would be
represented as a vector with 768 numeric values. A bug report
would be represented as a semantic matrix whose row number
is its word count, and column number is the word vector
dimension. Then, we perform the max-pooling operation on
each column of the matrix (i.e., selecting the maximum value
of each column), to obtain the final numeric vector to represent
the semantics of the whole bug report.

Before applying a pre-trained word embedding, we also do
some preprocessing work on a bug report. Specifically, we
first remove stop words, symbols and numbers from each bug
report. Then we decompose each compound word into single
words (e.g. “WindowsSize” -> “Windows” + “Size”), with

the original compound word also kept. Last, we use Porter5

to stem each word and further convert each word to its lower
case. The preprocessed bug report would be taken as the input
of each pre-trained word embedding model.

Semantic Retrieval of Method Code. Existing studies
rarely considered the structure information of method code
in retrieving function semantics of methods, which negatively
affects the performance of method-level bug localization tech-
niques. In this study, we adopt a code embedding technique
called code2vec to represent the functionality of a method.
code2vec is a deep learning-based model that is built on
extracted paths from the AST of methods. By fully mining the
structure information embedded in the AST paths, code2vec
is able to recommend method names by given method bodies
with high accuracy. This, to a large extent, indicates that the
code vectors generated by code2vec could well represent the
semantics of a method. Hence, we use code2vec to retrieve
the semantics of method code in our study.

Similar to bug reports, we also used a pre-trained code2vec
model in BLESER. The pre-trained code2vec model is built on
more than 14 million methods from the most popular 10,000
Java projects on GitHub. The scale of the training dataset to-
gether with the diversity and popularity of Java projects makes
us believe that the pre-trained model could reasonably retrieve
the function semantics of methods in our experimental Java
projects. With code2vec, each method would be represented
as a semantic vector of 384 numeric elements.

B. Model Construction

In this paper, we take bug localization as a learning task.
That is, we try to learn a model to predict whether a method is
related to a given bug report. We instantiate the learning task
by building a convolutional neural network (CNN) model that
takes the raw semantic features of bug reports and methods
as instance features, with the instance label being whether
a method is buggy or not for a given bug report. During
model building, we found that the training dataset is quite
imbalanced, i.e., the number of buggy methods for a given

5https://lucene.apache.org/

bug report is generally much smaller than that of non-buggy
methods. To avoid that the model was biased by the major
class, we also try to fix the imbalanced classes problem while
building the CNN prediction model. Details are as follows.

Model Training. After applying pre-trained embedding
models, we could obtain the semantic vectors of bug reports
and method code, respectively. These vectors are of different
dimensions (e.g., a vector for a method is of 384 dimen-
sions while a vector for a bug report with word2vec is of
300 dimensions). In order to improve the model’s learning
ability and nonlinear expression ability, we use multiple fully
connected layers in CNN to further extract semantic features
of bug reports and code vectors. Specifically, for a 384-
dimension vector of a method, four fully connected layers
are applied, i.e., 384->256->128->64->32, where values
such as 256 represent the number of nodes in each fully
connected layer. For semantic vectors of bug reports, a 768-
dimension vector would be processed through 5 fully con-
nected layers, i.e., 768->512->256->128->64->32; a
100-dimension and 300-dimension vector would be processed
through 2 and 4 fully connected layers respectively, i.e.,
100->64->32 and 300->256->128->64->32. Follow-
ing fully connected layers is the output layer. We use the
logistic regression classifier as the output layer of CNN to
predict the relevance between each method and a given bug
report.

The whole dataset is divided into three parts, i.e., the
training set, validation set, and testing set. The training set
is used to build a model, the validation set is to fine-tune the
model, and the testing set is to evaluate the performance of the
final model built by training and validation sets. The features
of each instance are the combination of the semantic features
(i.e., embedding vectors) of a method and a bug report; and
the label of each instance is either 0 or 1, with 1 representing
that the method is relevant to the bug report while 0 indicating
non-relevant. All instances are ordered by the reporting time of
bug reports and would be equally partitioned into 10 parts. The
first 8 parts constitute the training set, and the 9th part and last
part are taken as the validation set and testing set separately.
Three typical performance metrics are used to evaluate the
effectiveness of our BLESER, including Accuracy@K, MAP
and MRR (more details in Sect. IV-B).

Imbalanced Classes Handling. One significant problem in
model training is the imbalance of class instances. That is, for
a given bug report, the number of buggy methods is much
smaller than the number of non-buggy methods. As can be
seen from Table I, the average number of buggy methods
for a bug is about 1-2; while the total number of methods
in a project is always in thousands-scale on average. If we
directly use the unbalanced dataset to train the model, the
resulted model may be biased by the major class (i.e., non-
buggy methods in the paper). For example, a model may tend
to predict all methods as non-relevant to achieve the best
accuracy. This is undesired in the bug localization problem
as the goal of bug localization technique is to predict the truly
buggy methods (i.e., the minor class) as precisely as possible.

Thus, it is essential to handle the imbalanced classes problem.
In this paper, we tested two categories of typical strategies
targeting at solving the imbalanced classes problem, i.e.,
sampling-based strategies and cost-sensitive based strategies.

For sampling-based strategies, we tested two widely used
sampling approaches, namely random under-sampling (RUS)
and random over-sampling (ROS) [25]. Random under-
sampling tries to reduce the instance number of the major
class to balance the classes while random over-sampling tries
to enlarge the instance number of the minor class to achieve
balanced classes. More specifically, random under-sampling
would eliminate the oversized major class by randomly select-
ing a subset of instances from the major class, with the size
of the subset being equal to that of the minor class. Random
over-sampling would expand the minor class by randomly
duplicating its instances until its size is the same as that of
the major class.

Unlike sampling-based strategies which try to solve the
class imbalance problem by changing the distribution of class
instances, cost-sensitive based strategies would not change the
dataset distribution; instead, they try to balance the classes
by increasing the cost of misclassified minor class instances
or reducing the cost of misclassified major class instances.
In this paper, we also tested two typical cost-sensitive based
strategies, namely weight-based binary-cross-entropy [26] and
Focal loss [27]. The weight-based binary-cross-entropy is
a weighted version of traditional binary-cross-entropy. We
use the Keras6 package (a mainstream Python package that
supports multiple deep learning frameworks) to implement
this strategy, with the “binary crossentropy” function whose
“class weight” is set to be “auto”. For the Focal loss strategy,
we refer to its definition by checking the original paper that
proposed it [27], and implement it for binary classification
problem in Python. The hyper parameters α and γ are set to
0.25 and 2 respectively. Both two strategies are chosen as the
loss functions a model used during its training phase.

IV. EXPERIMENT SETUP

A. Experiment Dataset

In this paper, we used the Defects4J 7 dataset to evalu-
ate our technique. Defects4J is a publicly available dataset
which is often used to evaluate bug localization and bug
repair techniques [8]–[10]. For each bug within the Defects4J
dataset, the maintainers of Defects4J manually removed all
code modifications that are not relevant to fixing the bug.
This guarantees that methods with modifications from De-
fects4J are truly buggy methods related to a bug. The authors
maintained several versions of Defects4J since its release, we
used the latest version (1.5.0) by the time we conduct our
experiments in our study. The latest Defects4J dataset contains
6 software projects with 438 bugs, including JFreeChart (26
bugs), Closure compiler (176 bugs), Apache commonsmath
(106 bugs), Apache commons-lang (65 bugs), Joda-Time (27

6https://github.com/keras-team/keras
7https://github.com/rjust/Defects4J

TABLE I
STATISTICS OF 5 EXPERIMENTAL JAVA PROJECTS IN DEFECTS4J

Project Name Bug Number Average File Number Average Method Number Average Buggy Method Number
Closure compiler (Closure) 156 387.69 5,662.25 1.64

Apache commons-math (Math) 85 497.79 3,326.40 1.38
Apache commons-lang (Lang) 56 89.34 1,868.96 1.23

Mockito (Mockito) 22 278.36 992.05 2.55
Joda-Time (Time) 23 156.35 3,099.52 1.96

bugs) and Mockito (38 bugs). Note that since only few bugs
in JFreeChart have corresponding bug reports, we exclude
JFreeChart from the experimental dataset as we are not able
to obtain the semantics for those bugs whose bug reports do
not exist.

Despite Defects4J provides the buggy code version and
fixed code version for each bug, it does not explicitly mark
the exact methods that are changed to fix a bug. Hence, to
evaluate our method-level bug localization technique, we need
first to construct a dataset where each bug report is linked to
its corresponding buggy methods. We take a two-step way
to help us obtain such a dataset. Specifically, for each bug,
we first use git difftool and MELD 8 to graphically present
the difference between its fixed code version and buggy code
version. Then we manually checked the code modifications,
and take all methods involved in code modifications as buggy
methods. Other unchanged methods in the buggy version are
regarded as non-buggy methods.

During manual check, we found that 11 bugs have no
corresponding modifications to methods (i.e., these bugs reside
outside of methods, e.g., in global assignment statements).
These bugs were excluded from the dataset as they are
not suitable for evaluating the method-level bug localization
techniques. 12 bugs residing in constructor methods, for which
code2vec cannot analyze, were also excluded from the dataset.
Meanwhile, if a bug was found to link to multiple fixed
commits, or share the same fixed commit with other bugs, it
would also be removed; 45 bugs belonged to this category. 1
bug was found to have no corresponding deleted or modified
methods but only newly added methods was also removed
from the datasets as it was not applicable to predict buggy
methods which did not exist yet in the buggy version of project
code. There was 1 bug from Closure compiler occurring in
an inner class of an inner class in a class (i.e. multinesting).
Since the Eclipse AST parser we used in our study was not
able to correctly extract the buggy methods for this bug, we
removed the bug in our study. Finally, 342 bugs were left for
experiments.

In this paper, we used the remained 342 bugs of 5 Java
projects from the Defects4J to evaluate our BLESER. Table
I shows the basic statistics of the 5 software projects in the
dataset. We count the total number and the average number of
files and methods in the buggy version of project code for all
defects, by using the main directory of source code provided
by Defects4J.

8https://meldmerge.org/

B. Evaluation metrics

Following previous studies [3], [28], We used three
commonly-used metrics to evaluate our BLESER. They are
Accuracy@K, Mean Average Precision (MAP), and Mean
Reciprocal Rank (MRR).

• Accuracy@K measures the ratio of bug reports for which
at least one truly buggy method is within the top K
method recommendations.

• MAP is often used to measure an IR technology based
on the mean of average precision (AvgPre) of each query
in a query set [29]. It is defined as follows:

MAP (Q) = 1
|Q|

∑
q∈QAvgPre(q)

AvgPre(q) = 1
K

∑
k∈K Precision@k

where Q is the query set (i.e., bug reports in this study),
and Precision@k represents the precision over the top k
recommendations (i.e., buggy method candidates).

• MRR mainly measures the quality of the ranking results
of a retrieval technology in a search task, by showing how
early a relevant document (i.e., a truly buggy method)
to a query (i.e., a given bug report) is retrieved [30]. It
is defined as the mean of reciprocal rank (RR) as follows:

MRR(Q) = 1
|Q|

∑
q∈QRR(q)

RR(q) = 1
firstRelevantPosition

V. EXPERIMENTAL RESULTS

In this section, we first present our analysis results of
the effectiveness of five word embedding models and four
strategies aiming at solving class imbalance problem. Our
goal is to find the most suitable word embedding model
(for representing the semantics of bug reports) and the class-
imbalance-problem handling strategy in the method-level bug
localization task. The most effective word embedding model
and the strategy of handling class-imbalance problem would be
integrated into our BLESER. Then we would present how well
our BLESER perform on five Java projects from the Defects4J
dataset.
RQ1: Does there exist a word embedding model generally
outperform other models?

TABLE II
COUNT OF BEST MAP FROM 5 WORD EMBEDDING MODELS

Word Embedding MAP on projects TotalTime Mockito Lang Math Closure
word2vec 0 0 0 2 0 2

GloVe 2 0 2 1 0 5
fastText 2 0 1 0 2 5
ELMo 0 4 1 0 2 7
BERT 1 1 1 2 1 6

Despite that a series of word embedding models have been
studied much in the natural language processing field, we yet
do not have a clear clue at which model we generally should
refer to in retrieving the semantics of bug reports, so that we
are most likely to obtain the best performance in locating bugs.
Hence, we first studied the potential of five typical word em-
bedding models in method-level bug localization techniques,
including word2vec, GloVe, fastText, ELMo, and BERT. As
shown in Fig.1, within our bug localization framework, we
used a word embedding to retrieve the semantics of bug
reports, the code2vec model to retrieve method semantics, and
built a CNN prediction model to locate bugs; during the CNN
training process, we adopted relevant strategy to handle the
class imbalance problem.

To align with the framework, we checked the potential
of each word embedding model as follows: We first tested
each combination of word embedding model (5 models),
code embedding model (only code2vec), and each class-
imbalance handling strategy (5 strategies = 2 re-sampling
strategies + 2 cost-sensitive strategies + the using-the-original-
dataset strategy). In other words, we would get 5*1*5=25
combinations on each experimental project (5 projects from
Defects4J). Then, for each project by applying a given class-
imbalance handling strategy, we selected the best locating
results among five word embedding models in terms of MAP,
MRR, and Accuracy@K. This helps us understand the perfor-
mance of each word embedding model under different class-
imbalance handling strategies, and make our evaluation more
general/reasonable on the whole. After we obtained the best
five results (corresponding to five class-imbalance handling
strategies) for each project, we further counted the times each
word embedding model occurred in the best five results. The
larger the value was, the better the word embedding was on
the whole. Table II to Table IV show the statistic results in
terms of three performance metrics, namely MAP, MRR and
Accuracy@K.

From Tab. II, we could find that among 25 best results (each
project had 5 best results), ELMo is the one that occurred most
frequently than other models, with 7 out of 25 best results from
three projects (Mockito, Lang and Closure). The second one
is BERT, with occurring in 6 best results from four projects.
word2vec had the smallest number (i.e., 2) of best results.
This indicates that by using ELMo and BERT to retrieve the
semantics of bug reports, is mostly likely to help us obtain the
best MAP on the whole.

TABLE III
COUNT OF BEST MRR FROM 5 WORD EMBEDDING MODELS

Word Embedding MRR on projects TotalTime Mockito Lang Math Closure
word2vec 0 0 0 2 0 2

GloVe 2 0 2 1 2 7
fastText 1 0 1 0 0 2
ELMo 1 4 1 0 3 9
BERT 1 1 1 2 0 5

As related to MRR shown in Tab.III, we could also find that
ELMo outperformed other models in helping achieving the
best MRR, with occurring in 9 out of 25 best results from five
projects. Following ELMo is GloVe with occurring in 7 best
results. word2vec and fastText occurred least in best results
(2). This means that by using ELMo to retrieve the semantics
of bug reports is mostly likely to help obtain the best MRR
in locating bugs.

For the metric Accuracy@K shown in Tab. IV, we could
observe that ELMo occurred most frequently in the best
results of all five Java projects, with obtaining 11, 15, and
16 best results in terms of Accuracy@1, Accuracy@5, and
Accuracy@10 respectively. This also means that ELMo could
most likely help obtain the best Accuracy@K if used to
retrieve the semantics of bug reports compared to other word
embedding models.

Conclusion 1: Among five typical word embedding models,
using ELMo to retrieve the semantics of bug reports could
generally outperform other models in facilitating the bug
localization performance.
RQ2: Which strategy is most suitable in handling the class
imbalance problem?

To understand which strategy is most useful in helping
obtain the best performance in locating bugs, we evaluated
four typical class-imbalance handling strategies, including two
re-sampling strategies (i.e., random over-sampling (ROS) and
random under-sampling (RUS)), two cost-sensitive strategies
(i.e., weight-based binary-cross entropy (WBE) and Focal Loss
(Focal)). We also tested the strategy that use the original
dataset to conduct the experiments, so as to better evaluate the
before-mentioned four class-imbalance handling strategies.

Specifically, similar to RQ1, after we obtained the 25
locating results (i.e., from 25 combinations of word embedding
models and class-imbalance handing strategies mentioned in
RQ1) for each project, we selected the best strategy among
all class-imbalance handling strategies for each project under a
given word embedding model in terms of MAP, MRR, and Ac-
curacy@K. Then we counted the times each class-imbalance
handling strategy appearing in the best selected results for
each project. This helped us understand the performance of
each class-imbalance handling strategy over various word
embedding models, and provide a more general evaluation for
each strategy. Table V to Table VII show our statistics for each
class-imbalance handling strategy.

From Tab.V, we could observe that the random over-

TABLE IV
COUNT OF BEST ACCURACY@1,5,10 FROM 5 WORD EMBEDDING MODELS

Word Embedding Accuracy@1 on projects Total Accuracy@5 on projects Total Accuracy@10 on projects TotalTime Mockito Lang Math Closure Time Mockito Lang Math Closure Time Mockito Lang Math Closure
word2vec 1 1 1 5 1 9 2 1 1 5 2 11 2 1 1 5 4 13

GloVe 1 1 1 3 2 8 2 1 2 4 3 12 3 1 2 4 2 12
fastText 2 1 1 3 1 8 2 1 1 5 3 12 2 1 1 5 2 11
ELMo 1 3 1 3 3 11 1 4 2 5 3 15 3 4 1 5 3 16
BERT 1 0 1 4 2 8 2 1 2 4 3 12 2 1 2 5 2 12

TABLE V
COUNT OF BEST MAP UNDER 5 CLASS-IMBALANCE HANDLING

STRATEGIES

class-imbalance
handling strategy

MAP on projects TotalTime Mockito Lang Math Closure
Original 1 0 1 0 0 2

ROS 3 5 4 2 5 19
RUS 0 0 0 0 0 0
WBE 1 0 0 2 0 3
Focal 0 0 0 1 0 1

TABLE VI
COUNT OF BEST MRR UNDER 5 CLASS-IMBALANCE HANDLING

STRATEGIES

class-imbalance
handling strategy

MRR on projects TotalTime Mockito Lang Math Closure
Original 1 0 1 0 1 3

ROS 4 4 4 0 4 16
RUS 0 0 0 0 0 0
WBE 0 0 0 3 0 3
Focal 0 1 0 2 0 3

sampling (ROS) strategy outperformed far better than other
strategies. Among five best combinations for each project,
ROS occurred in 3, 5, 4, 2, 5 best combinations from Time
to Closure project, respectively. This means that ROS is most
likely to help obtain the best MAP on the whole.

From Tab.VI and Tab.VII, we could observe the similar
phenomenon that ROS outperformed much better than other
class-imbalance handling strategies related to the MRR and
Accuracy@K metrics. Among the 25 combinations with the
best MRR for five projects, the ROS occurred in 16 combina-
tions. Related to the Accuracy@K, ROS appeared in 23, 25, 24
out of 25 best combinations in Accuracy@1, Accuracy@5, and
Accuracy@10, respectively. This revealed that by using ROS,
we are most likely to obtain the best MRR and Accuracy@K.

Conclusion 2: Among four typical class-imbalance han-
dling strategies, the strategy random over-sampling could most
likely help to obtain the best performance in terms of MAP,
MRR and Accuracy@K on the whole.
RQ3: How effective BLESER is in locating bugs at method
level?

Our previous two RQs has showed that ELMo outperformed
other word embedding models and ROS performed much
better than other class-imbalance handling strategies. Hence,
we decided to integrate ELMo and ROS, together with the

code2vec code embedding model, to build our final method-
level bug localization technique BLESER. That is, ELMo was
used to retrieve the semantics of bug reports, code2vec was
to retrieve the semantics of method code, and the ROS was
to handle the class-imbalance problem in BLESER. Table
VIII shows the locating results of BLESER on five Defects4J
Java projects in terms of MAP, MRR, and Accuracy@1,
Accuracy@5, and Accuracy@10.

From the table, we can find that BLESER can achieve
MAP of 0.108, 0.133,0.226, 0.504, and 0.501 on Closure,
Math, Lang, Mockito, and Time respectively. The best MAP
were obtained on Mockito and Time with MAP larger than
0.5. While for MRR, BLESER achieved MRR from 0.134 to
0.510 on five projects, with the worst performance 0.134 on
Math and the best performance 0.510 on Time project. As
for the Accuracy@K performance, we can observe that when
K=1, BLESER could recommend buggy methods correctly for
13.3%, 12.5%, 20%, 50%, and 50% bug reports on Closure,
Math, Lang, Mockito, and Time, respectively. Meanwhile,
when K increase (e.g., to 5 or 10), except the project Lang
with accuracy increasing from 20% to 40%, the accuracy@K
values remain the same as Accuracy@1. This indicates that
BLESER could on one hand relatively easily help developers
find the first buggy method for a given bug report, on the hand
may still have some limitations in finding the other buggy
methods. However, considering that each bug report generally
have less than two buggy methods (as statistics in Table I),
BLESER is still promising in the task of method-level bug
localization. It would be valuable to explore the way to better
retrieve other remaining buggy methods after we retrieve the
first buggy method with BLESER for a new coming bug report
with multiple buggy methods.

Conclusion 3: BLESER could achieve MAP of 0.108-
0.504, MRR of 0.134-0.510, and Accuracy@1 of 0.125-0.5
on five Defects4J projects.

VI. THREATS TO VALIDITY

Internal Validity. In this paper, we directly used the default
parameter settings of pre-trained embedding models during
semantic retrieving for bug localization task. We have to
admit that the difference in domains (i.e., bug localization
vs. other natural language processing or software engineering
tasks) theoretically require customized parameter settings so
as to obtain the best performance. However, given that de-
fault settings generally reflect the best practice or valuable
experience of researchers and tool developers, we believe

TABLE VII
COUNT OF BEST ACCURACY@1,5,10 UNDER 5 CLASS-IMBALANCE HANDLING STRATEGIES

class-imbalance
handling strategy

Accuracy@1 on projects Total Accuracy@5 on projects Total Accuracy@10 on projects TotalTime Mockito Lang Math Closure Time Mockito Lang Math Closure Time Mockito Lang Math Closure
Original 1 1 1 3 3 9 2 1 2 5 1 11 4 1 3 5 1 14

ROS 5 4 4 5 5 23 5 5 5 5 5 25 5 5 4 5 5 24
RUS 0 0 0 1 0 1 0 1 0 3 0 4 0 1 0 4 0 5
WBE 0 1 0 4 3 8 2 1 2 5 0 10 3 1 2 5 0 11
Focal 0 0 0 5 0 5 0 0 0 5 0 5 0 0 0 5 0 5

TABLE VIII
THE MAP, MRR, AND ACCURACY@K OF BLESER ON FIVE DEFECTS4J

JAVA PROJECTS.

Closure Math Lang Mockito Time
MAP 0.108 0.133 0.226 0.504 0.501
MRR 0.155 0.134 0.250 0.507 0.510
Accuracy@1 0.133 0.125 0.2 0.5 0.5
Accuracy@5 0.133 0.125 0.4 0.5 0.5
Accuracy@10 0.133 0.125 0.4 0.5 0.5

that it is still reasonable and acceptable to adopt the default
parameter settings of pre-trained models. We would try to
explore how different parameter settings affect method-level
bug localization performance in the future.

External Validity. Currently, we only demonstrated the
effectiveness of our approach on 5 Java projects from the
Defects4J dataset. We cannot guarantee that our arrived con-
clusions are applicable to other industrial or open source
projects. Nevertheless, the adoption of (pre-trained) word em-
bedding and code embedding techniques within our approach
still shed some light on the resolution of e.g., cross-project
bug localization problems. In the future, we would try to
evaluate our approach on more and larger projects to improve
the generalization of the conclusions in this paper.

VII. RELATED WORK

Researchers have done a series of work to automatically
locate bugs at method granularity. These studies could be
roughly divided into three categories: static bug localization
techniques, dynamic bug localization techniques and hybrid
bug localization techniques which combine both static and
dynamic techniques.

A. static method-level bug localization techniques

Static techniques mainly make use of bug reports, source
code and other static artifacts (e.g., commit logs) generated
in the development process to locate bugs [3]. The basic idea
of static method-level bug localization techniques is to find
suspicious methods related to a bug report by extracting some
semantic features from bug reports and methods (sometimes
also include other static artifacts), and matching them by e.g.,
calculating their textual similarities. A main-stream category
of such techniques are those based on information retrieval
technologies (such as vector space model (VSM), latent se-
mantic indexing (LSI), latent dirichlet allocation (LDA), etc.)
[5], [31]–[35].

Poshyvanyk et al. first explored the potential of LSI model
for bug localization, and then proposed a bug localization
approach that combined formal concept analysis and LSI
[36]. Dit et al. found that more accurate word segmentation
preprocessing technologies could facilitate LSI-based bug lo-
calization techniques [37]. Gay et al. proposed to use relevance
feedback to reconstruct the bug report query to improve a
VSM-based bug localization technique [38]. Scanniello et al.
proposed to use PageRank algorithm to extract the dependen-
cies of methods to also facilitate a VSM-based bug localization
model [31]. Davies et al. proposed to use historically similar
bug reports to improve the TF-IDF bug localization approach
[39]. Lukins et al. proposed to use the LDA topic model to
predict suspicious methods for a given bug report [4], [40].
Biggers et al. studied the effects of different confituration
settings on the performance of LDA-based bug localization
techniques [41]. To avoid repeated training, Corley et al.
proposed a LDA-based bug localization technique for code
modification increment [32]. Sun et al. proposed to use LDA
to retrieve relevant information from data sources such as
version control systems, bug report repositories and email
archives to improve existing bug localization techniques [33].
In order to solve the problem that a single topic model may
fail to extract higher-level semantics, Zhang et al. proposed a
bug localization technique with multi-abstraction vector space
model which uses the LDA model to represent bug reports and
methods into several abstraction levels of topics [5], [34]. Eddy
et al. analyzed the effect of using different weighting strategies
on elements such as function annotations and local variables
on the performance of LDA-based bug localization techniques
[35]. Dit et al. did a literature review on existing feature (bug)
localization techniques [42]. Razzaq et al. compared eight
bug localization techniques based on VSM, LSI and LDA,
and found that the effectiveness of these techniques would be
affected by the characteristics of the datasets and the applied
techniques [43].

The above research mainly explored the potential of tra-
ditional information retrieval techniques in bug localization.
There also exist some studies that try to improve existing
bug localization techniques from other perspectives (such as
using method call dependency, etc.). Youm et al. tried to locate
suspicious source code files at first and then locate suspicious
methods in the top-10 suspicious files. They make use of vari-
ous data sources including bug reports, code change histories,
stacktraces from bug reports [44]. Zhang et al. proposed to
use the semantic similarity, the recency of modification time

and the call dependency between methods to augment the
vector representations of methods to improve method-level bug
localization [3]. Chochlov et al. added relevant commit logs to
method bodies and take the expand methods as to-be-queried
document corpus for a bug report [45]. Shu et al. developed
a causal inference based bug localization technique to reduce
confounding bias [46].

Our BLESER was also a static method-level bug local-
ization technique. Unlike above static techniques, we took
full consideration of code structure information of methods
in retrieving semantic features of method code. We further
investigated how typical/state-of-the-art word embedding tech-
niques could help in representing bug reports and facilitate bug
localization techniques.

B. Dynamic method-level bug localization techniques

Dynamic bug localization techniques usually need to run
the to-be-located software. They mainly rely on analyzing
program running information collected through code instru-
mentation, execution monitoring and formal analysis to locate
suspicious methods. Spectrum-based fault localization (SBFL)
techniques are representatives of dynamic bug localization
techniques [8], [47]–[53].

A SBFL technique generally use the coverage information
of program entities (methods in this study) executed in failed
and passed test suites to measure the suspiciousness of each
program entity [47]. The basic idea of SBFL techniques is
that program entities executed by failed test cases are more
suspicious than those primarily executed by passed test cases.
Till now, researchers have designed various suspiciousness for-
mula based on coverage information to locate bugs, including
Tarantula, Wong1, etc. [54]. Xuan et al. proposed a learning-
to-rank method to combine multiple suspiciousness formulas
to obtain better localization performance than single formula
alone [47]. Le et al. also used a learning-to-rank method
to combine suspiciousness formulas and invariants inferred
from executions of failed/passed test cases to locate most
suspicious methods [8]. Sohn et al. proposed to take SBFL
suspiciousness formulas and the characteristics of source code
and code churns as features and applied genetic programming
(GP) to these features to locate bugs [48]. Unlike existing
studies always choosing the model with best performance
from a series of training models, Sohn et al. designed an
integration strategy to combine all training models to achieve
better localization performance by exploiting the advantages
of individual models [49]. Zhang et al. used the PageRank
algorithm to differentiate test cases to recalculate the spectrum
information, and then used this information to calculate the
suspiciousness of methods [50]. Laghari et al. proposed to
use frequency itemset mining to obtain the internal method
invocation pattern of each method to improve the effective-
ness of SBFL techniques [51], [52]. Lou et al. explored the
possibility of using bug repair techniques to facilitate SBFL
techniques [53].

In addition to the above (improved) SBFL techniques,
some researchers also developed some mutation-based bug

localization techniques [55], [56]. Musco et al. proposed
a mutation-based graph inference approach to locate bugs
[55]. They first performed a series of tests on a bunch of
program mutants to build a method call graph. then, the
Killed mutants and relevant failed test cases were used to
construct a causal diagram. When a program failed a test
case, they used the constructed causal graph and traditional
SBFL techniques to find the suspicious methods. De-Freitas
et al. used a GP technology to evolve mutation formulas to
obtain better mutation formulas in locating bugs [56]. In this
study, we mainly focus on developing a static method-level
bug localization in attempting to fully extract semantic features
of bug reports and method code without running software
programs.

C. Hybrid method-level bug localization techniques

In order to make full use of the advantages of dynamic
and static techniques, some researchers developed hybrid tech-
niques which combined both dynamic and static techniques in
locating bugs [9], [57]–[60]. Poshyvanyk et al. combined a
probabilistic ranking model of methods based on execution
scenarios and a LSI-based model to perform bug localization
[57]. Le et al. proposed the AML framework that combined an
information retrieval based technique and a SBFL technique
to predict suspicious methods for a given bug [58]. Dao
et al. used dynamic execution information to improve the
effectiveness of information retrieval based bug localization
techniques [59]. Hoang et al. proposed a network-clustered
multi-modal bug localization technique [60]. This technique
tried to locate bugs by integrating static information contained
in a bug report and dynamic information from program spec-
trums. Li et al. used deep learning models to combine various
kinds of information to locate bugs, including code complexity,
suspicious scores calculated from spectrum information and
program mutation information [9]. Unlike above studies, we
mainly focus on exploiting static information embedded in bug
reports and method code to locate bugs.

CONCLUSION

In this paper, we proposed a static bug localization technique
called BLESER to locate bugs at method granularity. Within
BLESER, the semantics of methods and bug reports were
retrieved by an AST-based code embedding model and a
word embedding model, respectively; and a CNN was built
to leverage these two kinds of semantic features to predict
whether a method is buggy or not for a given bug report.
To understand the potential of word embedding models in
facilitating method-level bug localization, We compared five
traditional/state-of-the-art embedding techniques, including
word2vec, fastText, GloVe, ELMo, and BERT. We found that
ELMo could help obtain the best performance than other four
models on the whole. We also attempted to address the class
imbalance problem while constructing the CNN model. We
found that the random over-sampling strategy outperformed
the other three strategies in handling class imbalance problem

in the bug localization task. By evaluating BLESER (integrat-
ing ELMo, code2vec, and ROS) on the 5 Java projects from
the Defects4J dataset, we found that BLESER could achieve
MAP of 0.108-0.504, MRR of 0.134-0.510, and Accuracy@1
of 0.125-0.5 on five Defects4J projects.

Future Work. Currently, we mainly made use of two
data sources, i.e., bug reports and method code, to do bug
localization. In the future, we plan to study how to effectively
integrate other (possibly) useful data sources such as identifiers
and commit logs to improve BLESER. Besides, we also plan
to do an empirical study on those bugs for which our BLESER
failed to recommend truly buggy methods, in the hope that we
could find more useful hints in improving our method-level
bug localization technique.

REFERENCES

[1] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 165–176.

[2] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How practi-
tioners perceive automated bug report management techniques,” IEEE
Transactions on Software Engineering, 2018.

[3] W. Zhang, Z. Li, Q. Wang, and J. Li, “Finelocator: A novel approach
to method-level fine-grained bug localization by query expansion,”
Information and Software Technology, vol. 110, pp. 121–135, 2019.

[4] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, 2010.

[5] Y. Zhang, D. Lo, X. Xia, T.-D. B. Le, G. Scanniello, and J. Sun,
“Inferring links between concerns and methods with multi-abstraction
vector space model,” in Proceedings of the International Conference on
Software Maintenance and Evolution, 2016, pp. 110–121.

[6] X. Li, H. Jiang, Y. Kamei, and X. Chen, “Bridging semantic gaps
between natural languages and apis with word embedding,” IEEE
Transactions on Software Engineering, 2018.

[7] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th international conference on
software engineering, 2016, pp. 404–415.

[8] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 177–188.

[9] X. Li, W. Li, Y. Zhang, and L. Zhang, “Deepfl: Integrating multiple fault
diagnosis dimensions for deep fault localization,” in Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2019, pp. 169–180.

[10] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, 2016, pp. 441–444.

[11] Z. Harris, “Distributional structure. word, 10 (2-3): 146–162. reprinted
in fodor, j. a and katz, jj (eds.), readings in the philosophy of language,”
1954.

[12] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th International Conference on Machine Learning, 2008,
pp. 160–167.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Proceedings of the Advances in neural information processing
systems, 2013, pp. 3111–3119.

[14] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in q&a
discussions–incorporating relational and categorical knowledge into
word embedding,” in Proceedings of the 23rd International Conference
on Software Analysis, evolution, and reengineering, vol. 1, 2016, pp.
338–348.

[15] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[16] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A
novel neural source code representation based on abstract syntax tree,”
in Proceedings of the IEEE/ACM 41st International Conference on
Software Engineering, 2019, pp. 783–794.

[17] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
International Conference on Automated Software Engineering, 2016, pp.
87–98.

[18] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,”
in Proceedings of the 30th AAAI Conference on Artificial Intelligence,
2016.

[19] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural scenes
and natural language with recursive neural networks,” in Proceedings of
the 28th International Conference on Machine Learning, 2011, pp. 129–
136.

[20] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[21] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv
preprint arXiv:1802.05365, 2018.

[22] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-rnn: A
unified framework for multi-label image classification,” in Proceedings
of the 29th IEEE conference on computer vision and pattern recognition,
2016, pp. 2285–2294.

[23] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Ad-
vances in pre-training distributed word representations,” arXiv preprint
arXiv:1712.09405, 2017.

[24] V. Iglovikov and A. Shvets, “Ternausnet: U-net with vgg11 en-
coder pre-trained on imagenet for image segmentation,” arXiv preprint
arXiv:1801.05746, 2018.

[25] Z. Zhou and X. Liu, “Training cost-sensitive neural networks with
methods addressing the class imbalance problem,” IEEE Transactions
on knowledge and data engineering, vol. 18, no. 1, pp. 63–77, 2005.

[26] Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss func-
tion: Modeling the costs of mislabeling,” IEEE Access, vol. 8, pp. 4806–
4813, 2019.

[27] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[28] K. C. Youm, J. Ahn, and E. Lee, “Improved bug localization based
on code change histories and bug reports,” Information and Software
Technology, vol. 82, pp. 177–192, 2017.

[29] C. Manning, P. Raghavan, and H. Schütze, “Introduction to information
retrieval,” Natural Language Engineering, vol. 16, no. 1, pp. 100–103,
2010.

[30] E. M. Voorhees et al., “The trec-8 question answering track report,”
vol. 99, pp. 77–82, 1999.

[31] G. Scanniello, A. Marcus, and D. Pascale, “Link analysis algorithms for
static concept location: an empirical assessment,” Empirical Software
Engineering, vol. 20, no. 6, pp. 1666–1720, 2015.

[32] C. S. Corley, K. L. Kashuda, and N. A. Kraft, “Modeling changeset top-
ics for feature location,” in Proceedings of the International Conference
on Software Maintenance and Evolution, 2015, pp. 71–80.

[33] X. Sun, B. Li, H. Leung, B. Li, and Y. Li, “Msr4sm: Using topic models
to effectively mining software repositories for software maintenance
tasks,” Information and Software Technology, vol. 66, pp. 1–12, 2015.

[34] Y. Zhang, D. Lo, X. Xia, G. Scanniello, T.-D. B. Le, and J. Sun,
“Fusing multi-abstraction vector space models for concern localization,”
Empirical Software Engineering, vol. 23, no. 4, pp. 2279–2322, 2018.

[35] B. P. Eddy, N. A. Kraft, and J. Gray, “Impact of structural weighting on
a latent dirichlet allocation–based feature location technique,” Journal
of Software: Evolution and Process, vol. 30, no. 1, p. e1892, 2018.

[36] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in
Proceedings of the 15th International Conference on Program Com-
prehension, 2007, pp. 37–48.

[37] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can better
identifier splitting techniques help feature location?” in Proceedings of
the 19th International Conference on Program Comprehension, 2011,
pp. 11–20.

[38] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of
relevance feedback in ir-based concept location,” in Proceedings of the
International Conference on Software Maintenance, 2009, pp. 351–360.

[39] S. Davies, M. Roper, and M. Wood, “Using bug report similarity
to enhance bug localisation,” in Proceedings of the 19th Working
Conference on Reverse Engineering, 2012, pp. 125–134.

[40] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Source code retrieval for
bug localization using latent dirichlet allocation,” in Proceedings of the
15th Working Conference on Reverse Engineering, 2008, pp. 155–164.

[41] L. R. Biggers, C. Bocovich, R. Capshaw, B. P. Eddy, L. H. Etzkorn,
and N. A. Kraft, “Configuring latent dirichlet allocation based feature
location,” Empirical Software Engineering, vol. 19, no. 3, pp. 465–500,
2014.

[42] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[43] A. Razzaq, A. Le Gear, C. Exton, and J. Buckley, “An empirical
assessment of baseline feature location techniques,” Empirical Software
Engineering, vol. 25, no. 1, pp. 266–321, 2020.

[44] K. C. Youm, J. Ahn, and E. Lee, “Improved bug localization based
on code change histories and bug reports,” Information and Software
Technology, vol. 82, pp. 177–192, 2017.

[45] M. Chochlov, M. English, and J. Buckley, “A historical, textual analysis
approach to feature location,” Information and Software Technology,
vol. 88, pp. 110–126, 2017.

[46] G. Shu, B. Sun, A. Podgurski, and F. Cao, “Mfl: Method-level fault lo-
calization with causal inference,” in Proceedings of the 6th International
Conference on Software Testing, Verification and Validation, 2013, pp.
124–133.

[47] J. Xuan and M. Monperrus, “Learning to combine multiple ranking
metrics for fault localization,” in Proceedings of the International
Conference on Software Maintenance and Evolution, 2014, pp. 191–
200.

[48] J. Sohn and S. Yoo, “Empirical evaluation of fault localisation using
code and change metrics,” IEEE Transactions on Software Engineering,
2019.

[49] ——, “Why train-and-select when you can use them all? ensemble
model for fault localisation,” in Proceedings of the Genetic and Evo-
lutionary Computation Conference, 2019, pp. 1408–1416.

[50] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2017, pp. 261–272.

[51] G. Laghari, A. Murgia, and S. Demeyer, “Fine-tuning spectrum based
fault localisation with frequent method item sets,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 274–285.

[52] G. Laghari and S. Demeyer, “On the use of sequence mining within
spectrum based fault localisation,” in Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, 2018, pp. 1916–1924.

[53] Y. Lou, A. Ghanbari, X. Li, L. Zhang, D. Hao, and L. Zhang, “Can
automated program repair refine fault localization?” arXiv preprint
arXiv:1910.01270, 2019.

[54] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “Human compet-
itiveness of genetic programming in spectrum-based fault localisation:
Theoretical and empirical analysis,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 26, no. 1, pp. 1–30, 2017.

[55] V. Musco, M. Monperrus, and P. Preux, “Mutation-based graph inference
for fault localization,” in Proceedings of the 16th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2016,
pp. 97–106.

[56] D. M. De-Freitas, P. S. Leitao-Junior, C. G. Camilo-Junior, and R. Har-
rison, “Mutation-based evolutionary fault localisation,” in Proceedings
of the Congress on Evolutionary Computation, 2018, pp. 1–8.

[57] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich, “Feature location using probabilistic ranking of methods based on
execution scenarios and information retrieval,” Transactions on Software
Engineering, vol. 33, no. 6, pp. 420–432, 2007.

[58] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: better together,” in Proceedings of the
10th Joint Meeting on Foundations of Software Engineering, 2015, pp.
579–590.

[59] T. Dao, L. Zhang, and N. Meng, “How does execution information help
with information-retrieval based bug localization?” in Proceedings of the

IEEE/ACM 25th International Conference on Program Comprehension
(ICPC), 2017, pp. 241–250.

[60] T. Hoang, R. J. Oentaryo, T.-D. B. Le, and D. Lo, “Network-clustered
multi-modal bug localization,” IEEE Transactions on Software Engineer-
ing, vol. 45, no. 10, pp. 1002–1023, 2018.

	I Introduction
	II Background
	II-A Word Embedding
	II-B AST-based Code Embedding

	III Methodology
	III-A Semantic Retrieval
	III-B Model Construction

	IV Experiment setup
	IV-A Experiment Dataset
	IV-B Evaluation metrics

	V Experimental results
	VI Threats to validity
	VII Related Work
	VII-A static method-level bug localization techniques
	VII-B Dynamic method-level bug localization techniques
	VII-C Hybrid method-level bug localization techniques

	References

