
Towards the Analysis and Completion of
Syntactic Structure Ellipsis for Inline Comments

Xiaowei Zhang , Weiqin Zou , Lin Chen , Yanhui Li ,Member, IEEE, and Yuming Zhou

Abstract—The ellipsis of the syntactic structure is a common phenomenon in ordinary textual documents. Existing studies have found

that despite syntactic ellipsis could help avoid repetition of normative documents, it could also, for example, lead to ambiguity and

hamper the understandability of document contents. As a fundamental component of software, code comments are generally written by

developers in a non-structured way just like normative documents. This naturally inspires us to explore whether syntactic ellipsis is also

a common phenomenon in code comments and what potential negative effects would such ellipsis have on software tasks such as

code/comments comprehension activities. Such explorations, in our opinion, are expected to facilitate the research on code comments

and comments-related software tasks. To this end, we conduct the first large-scale study to explore the syntactic structure ellipsis

problem of code comments, with a focus on Java inline comments. Specifically, we construct a data set of 1,000 Java projects with

1,307,457 inline comments and associated codes. Based on this data set, we first study the prevalence of syntactic structure ellipsis in

inline comments. We find that syntactic structure ellipsis is quite common in inline comments where 83.6% comments have structure

ellipsis (such as subject/predicate omissions). Then, we investigate the effects of syntactic structure ellipsis on code/comment

understanding activities. As a result, we find that there indeed exists a negative relationship between them, with a medium effect size.

Based on these findings, we further propose neural network based approaches to complete the ellipsis parts for the inline comments.

With our approach, we could achieve: 1) a medium improvement in assisting code/comment understanding activities, and 2) a

substantial improvement of 11.3% in comment-assisted code abbreviation extension task.

Index Terms—Inline comments, syntactic structure, ellipsis analysis, ellipsis completion

Ç

1 INTRODUCTION

THE ellipsis of syntactic structure (such as noun/verb
phase ellipsis) is a common phenomenon in linguistics

and natural language processing textual documents [1].
Although such ellipsis could help avoid repetition and high-
light important information, it could also lead to textual
ambiguity and greatly hamper the understandability of the
document contents [2], [3], [4], [5], [6], [7]. In the natural lan-
guage processing area, the documents (or some parts of
them) are written in a more colloquial, unstructured, and
casualway, hencewithmore syntactic structure ellipsis being
observed. A large amount of syntactic structure ellipsis not
only brings great challenges to syntactic analysis tasks [8],
[9], [10], but also brings potential threats to the tasks that rely

on text comprehension (such as information retrieval tasks
and translation tasks) [9]. To alleviate the potential problems
brought by syntactic structure ellipsis, researchers have done
much work around ellipsis analysis (mainly on noun/verb
phrase ellipsis) and recovery [8], [9], [11], [12], [13], [14], [15].

As a fundamental component of software documentation
[16], code comments are always essential for software compre-
hension and maintenance [17], [18], [19]. Unfortunately, com-
ments are generally written by developers in a non-structured
way just like the ordinary documents in nature language proc-
essing area. This indicates it is very likely that code comments
may also have similar syntactic structure ellipsis problems as
that of ordinal textual documents. However, despite previous
studies have performed some analyses on syntax of comments,
almost none of them, precisely targets the syntactic structure
ellipsis problem and its potential effects on code/comment
related software tasks. This naturally inspires us to explore: 1)
whether syntactic structure ellipsis is also a commonphenome-
non in code comments and what types of syntactic structure
ellipsis might be found in code comments; 2) what potential
impactswould this ellipsis has on code/comment-related tasks
such as code/comments comprehension activities; and (3) how
to avoid relevant potential negative impacts. Such explorations,
in our opinion, are expected to facilitate the research on code/
comments related software tasks such as code understanding/
maintenance [17], [20], [21], [22], [23], [24], [25], code abbrevia-
tion extension [26], [27], [28], [29], [30], bug detection [31], [32],
[33], and comments transfer [34].

To this end, in this paper we take the first step to conduct a
large-scale study to explore the syntactic structure ellipsis prob-
lems of Java inline comments. Unlike Javadoc comments

� Xiaowei Zhang, Lin Chen, Yanhui Li, and Yuming Zhou are with the State
Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China. E-mail: xiaoweizhang@smail.nju.edu.cn, {lchen,
yanhuili, zhouyuming}@nju.edu.cn.

� Weiqin Zou is with the College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China. E-mail: weiqin@nuaa.edu.cn.

Manuscript received 4 December 2021; revised 30 September 2022; accepted
17 October 2022. Date of publication 21 October 2022; date of current version
18 April 2023.
This work was supported in part by the National Natural Science Foundation
of China under Grants 61872177, 62172202, 62172205, and 62002161, and
in part by the Cooperation Fund of Huawei-Nanjing University Next Genera-
tion Programming Innovation Lab under Grant YBN2019105178SW35.
(Corresponding authors: Weiqin Zou and Lin Chen.)
Recommended for acceptance by Z. Jin.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TSE.2022.3216279, provided by the authors.
Digital Object Identifier no. 10.1109/TSE.2022.3216279

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023 2285

0098-5589 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1481-5158
https://orcid.org/0000-0003-1481-5158
https://orcid.org/0000-0003-1481-5158
https://orcid.org/0000-0003-1481-5158
https://orcid.org/0000-0003-1481-5158
https://orcid.org/0000-0002-0913-1539
https://orcid.org/0000-0002-0913-1539
https://orcid.org/0000-0002-0913-1539
https://orcid.org/0000-0002-0913-1539
https://orcid.org/0000-0002-0913-1539
https://orcid.org/0000-0003-2352-2226
https://orcid.org/0000-0003-2352-2226
https://orcid.org/0000-0003-2352-2226
https://orcid.org/0000-0003-2352-2226
https://orcid.org/0000-0003-2352-2226
https://orcid.org/0000-0003-2282-7175
https://orcid.org/0000-0003-2282-7175
https://orcid.org/0000-0003-2282-7175
https://orcid.org/0000-0003-2282-7175
https://orcid.org/0000-0003-2282-7175
https://orcid.org/0000-0002-4645-2526
https://orcid.org/0000-0002-4645-2526
https://orcid.org/0000-0002-4645-2526
https://orcid.org/0000-0002-4645-2526
https://orcid.org/0000-0002-4645-2526
mailto:xiaoweizhang@smail.nju.edu.cn
mailto:lchen@nju.edu.cn
mailto:yanhuili@nju.edu.cn
mailto:zhouyuming@nju.edu.cn
mailto:weiqin@nuaa.edu.cn
https://doi.org/10.1109/TSE.2022.3216279
https://doi.org/10.1109/TSE.2022.3216279


particularly written to describe the method on the whole and
generally follow a standard writing format, inline comments
usually focus on describing certain statementswithin amethod
(such as describe variables, explain statements, or debug) and
are written in a more casual way. In other words, developers
could write inline comments in any free style as they like [35].
Some may even not or just simply write very short or fragile
comments due to release pressure [36]. This would generate
many inline comments with syntactic structure ellipsis. How
would such ellipsis affect code/comment comprehension tasks
directly inspired us to do our investigations in our study.

Our mainly work is as follows.
First, we collect the 1,000 most popular Java projects on

GitHub. Then, we link inline comments with their associ-
ated code, so that it is possible to analyze how the syntactic
structure ellipsis of inline comments would affect the
understandability of inline comments and the correspond-
ing code. To this end, we propose heuristic rules to obtain
such a data set of 1,307,457 pairs of <Inline Comment,

Code>, together with manual check for guaranteeing the
linking quality. This is the first large-scale data set of inline
comments and their corresponding code. Based on this data
set, we analyze the syntactic ellipsis in inline comments and
mine the types of syntactic structures presented in inline
comments, which mainly include subject structure, predi-
cate structure, and object structure ellipsis in our classifica-
tion. Our statistical results show that syntactic structure
ellipsis is quite common in inline comments, and 83.6% of
inline comments do have syntactic structure ellipsis. Then,
we analyze the impact of syntactic ellipsis on comment-
assist code understanding activities. Our results show that
for comment-assist code understanding activities, inline
comments without syntactic ellipsis are superior (with a
medium effect size) to inline comments with syntactic ellip-
sis from the perspective of developers.

Based on the above-mentioned findings, we propose to
automatically complete the ellipsis of syntactic structure of
inline comments based on neural networks. For the comple-
tion of syntactic structure ellipsis task, our method could
achieve a precision of 65.3%. To better understand the poten-
tial of our approach, we further conduct two kinds of evalua-
tions: how helpful such completions are in facilitating code/
comment understanding task, and whether the completion of
structure ellipsis will improve the code abbreviation exten-
sion task. More specifically, for code/comment understand-
ing task, we conduct a user questionnaire experiment by
randomly sampling code-comment instances and ask partici-
pants to rate which code-comment (with or without syntactic
ellipsis completion) is more understandable. For code abbre-
viation expansion task, we investigate whether our approach
would enhance the performance of the common technique in
expanding code abbreviations. Our experimental results
show that after completion: 1) there is a medium improve-
ment for the work of assisting code/comment understanding
activities; and 2) there is a 11.3% improvement for the work of
comment-assisted code abbreviation extension.

Our major contributions are as follows:

1) We are the first to conduct a large-scale empirical
study on the syntactic structure ellipsis problems of
inline comments.

2) We analyze the prevalence, types, and potential
impacts on code-comment related software tasks of
syntactic structure ellipsis of more than one million
(1,307,457) inline comments.

3) We examine to what extent we can complete the syn-
tactic structure ellipsis of inline comments, and eval-
uate the applicability of our completion from the
understandability improvement of inline comments
and codes, and the usefulness in comment-based
code abbreviation expansion task.

4) We build and public the first large data set of inline
comments and their corresponding code. The data
set1 can be used for replication and further research.

The rest of this paper is organized as follows. Section 2
introduces concept of syntactic structure ellipsis and gives
several examples. Section 3 describes the experiment setup
of our work. Section 4 presents the details of the empirical
analysis results. Section 5 shows the results of the comple-
tion model and the corresponding evaluation work.
Section 6 discusses the implications and possible threats of
this work. Section 7 illustrates the related work on code
comments. Finally, Section 8 provides conclusions.

2 BACKGROUND

In this section, we introduce the concept of syntactic struc-
ture ellipsis and give several examples that illustrate the
absence or not of such ellipsis.

Ellipsis Definition. A complete English sentence generally
has a certain structure as shown in the following expres-
sions (1) and (2); and we call the absence of any part of the
syntactic structure Ellipsis. Specifically, for a given English
sentence St, the syntactic structure of St may consist of sub-
ject (Sub), predicate (Pre), object (Obj), and sentential com-
plements (Cl), with Obj being divided into direct object
(D-Obj) and indirect object (I-Obj). Sub is the person, place,
or thing that is performing the action. Pre expresses action
within the sentence. D-Obj receives the action, while I-Obj
indicates to whom or for whom the action is being done. Cl
either renames or describes the subject or object.

St ! Sub & Pre & Obj

Sub & Pre & Obj & Cl

�
(1)

Obj ! D-Obj

I-Obj:

�
(2)

In this paper, we mainly consider three types of ellipsis that
may appear in code comments, i.e., the ellipsis of subject,
predicate, and object structure. The reason for choosing these
three types of ellipsis is that subject, predicate, and object
structure are the basic and core components of a sentence [1],
[37]. Their ellipsis may directly affect the understandability of
sentence and pose potential threats to text-related tasks [8],
[10], [12], [14], [38]. Through our observation, we find that
syntactic structure ellipsis is not rare in code comments, and
such ellipsis to a certain extent hampers the readability and
understandability of those comments as well as related code.
The following examples illustrate the possible ellipsis of Sub,
Pre, and Obj within a comment. These examples are all from

1 https://github.com/Sherww/CC-SSE

2286 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/Sherww/CC-SSE


real-world software projects, which also help us understand
the possible negative effects of different ellipsis in software
development practice.

Fig. 1 is an example of subject ellipsis from the hbase
project. The inline comment in Fig. 1a on the first line lacks
the subject. By only reading the comment, developers may
encounter problems in finding the main object of the code.
As a result, they may have to read the code itself to find the
answer. If we can provide the comment (shown in Fig. 1b)
which contains the corresponding subject structure (i.e.,
“Authorization header”), developers may quickly grasp the
intent of the code.

Fig. 2 is an example of predicate ellipsis from the hiber-
nate-orm project. The inline comment in Fig. 2a lacks the
predicate, i.e., the action words (usually composed of verbs).
Since a predicate is a conjunction of subject and object, predi-
cate ellipsis would make it more difficult to understand the
comment and hence more time is required to understand the
code. If we can complete the predicate part (i.e., “can sub-
mit”) as shown in Fig. 2b, developers may easily understand
the codewithout even reading it.

Fig. 3 is an example of object ellipsis from the Hadoop
project. The inline comment in Fig. 3a lacks the object struc-
ture while the one in Fig. 3b completes the object (“a
warning”). It is not hard to figure out that the completed
comment in Fig. 3b has a better readability and better
describes the associated code.

We conclude from the examples that inline comments
with syntactic structure ellipsis may have potential negative
effect on code/comment-related tasks such as code/com-
ments comprehension activities. Consequently, it is impor-
tant to investigate whether syntactic structure ellipsis is a
common phenomenon in code comments, what potential
impacts would this ellipsis have, and how to avoid it.

3 EXPERIMENT SETUP

The goal of our study is to explore the ellipsis of syntactic
structure in code comments, and try to build models to
improve comments and facilitate code/comment-related
tasks (such as code/comment understanding and code
abbreviation extension). Thus, our study mainly includes
two parts, the empirical analysis of syntactic structure ellip-
sis and the automated completion of such ellipsis. Fig. 4
shows the framework of our work.

In the empirical analysis part, we mainly attempt to
explore the following questions:

� RQ1: What is the prevalence of syntactic structure
ellipsis in inline comments?

� RQ2: What potential impacts do syntactic structure
ellipsis have on code/comment-related software
tasks?

RQ1 investigates the prevalence of syntactic structure
ellipsis, i.e., whether (and the frequency of) syntactic struc-
ture ellipsis exists in inline comments. RQ2 investigates the
influence of syntactic structure ellipsis, i.e., may uncover
the potential impacts of syntactic structure ellipsis in soft-
ware tasks such as code understanding activities.

In the ellipsis completion & evaluation part, if we could
conclude from RQ1 that ellipsis is common in inline

Fig. 1. A piece of code and its inline comments from hbase2 project.

Fig. 2. A piece of code and its inline comments from hibernate-orm3

project.

Fig. 3. A piece of code and its inline comments from hadoop4 project.

2 https://github.com/apache/hbase
3 https://github.com/hibernate/hibernate-orm 4 https://github.com/apache/hadoop

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2287

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/apache/hbase
https://github.com/hibernate/hibernate-orm
https://github.com/apache/hadoop


comments, and RQ2 that the ellipsis of inline comments could
cause negative impacts on code/comment-related software
tasks, we further attempt to explore the following questions:

� RQ3: To what extent can we automatically complete
the ellipsis of syntactic structure?

� RQ4: How helpful such completions are in code/
comment understanding activities? How helpful
such completions are in the comment-assisted abbre-
viation extension task?

RQ3 investigates the performance (e.g., precision and
recall) of the proposed model to predict the ellipsis struc-
tures. RQ4 investigates the applicability of inline comments
after syntactic structure ellipsis completion.

3.1 Empirical Analysis of Syntactic Structure Ellipsis

To answer RQ1, we first construct a data set for experimen-
tal analysis, which is composed of inline comments and cor-
responding code. Then, with this data set, we analysis the
prevalence, types, and patterns of the syntactic structure
ellipsis of inline comments. To answer RQ2, we carry out a
manual inspection.

3.1.1 Data Set Construction

There is currently no data set of inline comments and their
corresponding code for empirical analysis of structure ellip-
sis yet. Hence, we construct such a data set for later analysis.
We select the most popular 1,000 Java projects on GitHub as
the experimental projects. For these projects, we first use the
Java development tools (JDT)5 and heuristic association
rules proposed in [39] to obtain the inline comments and

code pairs. Then, we apply data cleaning to these code-com-
ment pairs to get the final data set for analysis. The cleaning
includes two steps. At the first step, we adopt an existing
comment classification strategy [40] to obtain comments
that describe and interpret code. At the second step, we fur-
ther clean data based on the length distribution of inline
comments. The data set construction details are as follows.

Selection of Experimental Projects. In this study, we con-
sider Java projects meeting the following criteria from
GitHub as the potential experimental projects.

1) Projects with great popularity. Popular projects are
generally actively developed and are likely to con-
tain more inline comments. Following [19], [41],
[42], we use the Stars number to measure the pop-
ularity of a project on GitHub. We rank Java proj-
ects based on Star numbers, and select the top-
ranked 1,000 projects with most stars as experi-
mental projects.

2) English commented projects. We only consider proj-
ects with comments written in English. We first check
if the comment can be encoded by ASCII. Then we
calculate the percentage of comments that are all
ASCII encoded in a project. If the percentage exceeds
90%, it will be considered as an English-commented
project. Otherwise it will be considered as a non-
English project and hence is removed.

3) Non-toy typical software development projects.
These projects aremainly software development proj-
ects rather than for example documentation or experi-
mental/test projects. We take a two-step method to
filter out toy projects. First, we use heuristic patterns
to identify potential toy projects, by checkingwhether

Fig. 4. The framework of syntactic structure ellipsis analysis and completion on inline comments.

5. https://www.eclipse.org/jdt/

2288 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://www.eclipse.org/jdt/


their readme files contain keywords such as “toy”,
“test”, “experiment”, “ learn”, and “ exercises”. Then,
for each obtained project, we manually check its
readme file and code base, and determine whether it
is a toy project or not. The first three authors are
involved in the checking process.

Among the projects meeting above the criteria, we
choose 1,000 projects (i.e., with most stars) as our experi-
mental projects. The statistics for the data set are shown in
Table 1. The average star number is 4,115 and the average
commits number is 3,243, which indicates that projects are
being actively developed [43]. As can be seen, 10.5%
(599; 233=5; 702; 126) of methods contain inline comments.
In addition, there are only 2.3% (132; 896=5; 702; 126) meth-
ods that include both Javadoc and inline comments. That is,
in 8.2% of the methods, developers can only use inline com-
ments to conduct code understanding activities, thus it is
meaningful to explore the syntactic structure ellipsis of
inline comments in our opinion.

<InlineComment, Code> Pairs Retrieval. After obtain-
ing experimental projects, our next step is to retrieve inline
comments as well as their associated commented code, i.e.,
<Inline Comment, Code> pairs for analysis. Specifically,
for each ”. java ” file, we use the JDT tool to extract inline
comments, including line comments “//...” and block com-
ments “/ *...*/”. Then, we take two steps to extract the cor-
responding code blocks for these inline comments.

At the first step, we merge consecutive multi-line com-
ments into a single comment as they actually belong to the
same relatively-large comment. We will take the merge
actions under two situations: (1) the inline comment is com-
posed of consecutive line comments and there is no empty
line among them; (2) the inline comment is not composed of
consecutive line comments, but the corresponding code
consist of multiple lines of single line code. For example, in
Fig. 5, lines 36-37 would be merged into one comment
according to situation (1), since no empty line exists
between lines 36-37; and the obtained merged comment
would be further merged with lines 38-39 to form a final
comment according to situation (2), since line 38 is empty
and the corresponding code consists of multiple lines of sin-
gle line code (40-41).

Our second step is to determine the code associated with
the inline comments. Based on the work [39] that roughly
identify the related code for both inline comments and Java-
Doc, we propose the following heuristic rules that can help

us more accurately determine the scope of code correspond-
ing to inline comments:

1) If a comment is on the same line as the code (e.g., a sim-
ple variable declaration code statement), then the code
is selected as the corresponding code for the comment.

2) If a comment is written before a block of code, usu-
ally marked with a left parenthesis (e.g., the if {...}
statement block), then this block of code is consid-
ered as the code corresponding to the comment.

3) If comments are on different lines, then all code
statements (i.e., single line statements or code blocks
before reaching a blank line or a next comment) at
the same level with the comments are chosen as the
associated code.

4) If a comment matches none of the above three heu-
ristic rules (e.g., a comment is written on the last line
of a code block.), then this inline comment would be
ignored.

By applying the heuristic rules above, we get 1,307,457
pairs of <InlineComment, Code> from 1,000 projects.

To evaluate the accuracy of our heuristic rules, we conduct
a manual inspection of the data pairs of <InlineComment,

Code>. Specifically, following the sampling strategy in [40],
[44], [45], we first randomly select 385 methods containing
inline comments (646 inline comments in total) from 599,233
methods, with a confidence level of 95% and a sampling error
range of�5%.7 Then, for each inline comment, one Ph.D., one
Ph.D. candidate, and one graduate student (non-author pro-
grammer) manually mark the corresponding code indepen-
dently. They are of 2-3-year experience in developing Java
projects, and have no problem in reading English books
and even communicating with English native speakers. After
that, they check the results and solve inconsistency by discus-
sing until a consensus was achieved. The manual marked
<InlineComment, Code> pairs are then taken as the
ground truth to check the accuracy of our proposed heuristic
rules. We find that, among 646 inline comments, our rules
could retrieve the associated code for 611 inline comments.
Hence, the accuracy of our heuristic rules is about 95%
(ð611Þ=646), which to some extent verifies the effectiveness of
these rules.

TABLE 1
Basic Statistics of 1,000 Selected Java Projects

Attributes Total Number Mean Number

Java files 550,107 550
Methods 5,702,126 5,702
Methods (Javadoc) 1,437,221 1,437
Methods (inline) 599,233 599
Methods (both) 132,896 133
Stars 4,114,901 4,115

1Methods : total methods of all projects.
2Methods (Javadoc) :methods that contain Javadoc.
3Methods (inline) : methods that contain inline comments.
4Methods (both) : methods that both contain Javadoc and inline comments. Fig. 5. A piece of code and its inline comments from RGBLuminance-

Source.java of Zxing6 project.

6 https://github.com/zxing/zxing/
7 https://www.calculator.net/

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2289

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/zxing/zxing/
https://www.calculator.net/


<InlineComment, Code> Pairs Filtering. Since our
work is on the basis of comments that describe and interpret
the code, we further remove non-English inline comments
and noisy inline comments such as those that describe the
debugging procedures, or just express the current mood of
developers. To this end, we refer to the comments classifica-
tion work of Pascarella and Bacchelli [40]. As shown in
Table 2, in their work, comments are categorized into six
categories and sixteen subcategories.

In this study, we keep six subcategories of two categories,
i.e., Purpose and Notice, which describe and interpret the code
and are shown in rows 2-7 in Table 2.We remove the rest four
categories (as shown in rows 8-19 in Table 2) due to the fol-
lowing reasons: (1) the category of Under development has a
weak correlation with the current code, such as an empty
body of a comment; (2) the category ofDiscarded is difficult to
understand ormeaningless, such as commentswith poor con-
tent; and (3) the categories of Style & IDE andMetadata are not
helpful in assisting code understanding, such as comments
composed of repeated symbols. In addition, we also remove
non-English comments (this step was carried out before clas-
sification in thework of Pascarella and Bacchelli [40]).

In this study, we mainly use the following heuristics
to remove comments belonging to the above-mentioned
categories.

� Under Development. (1) Todo. Comments that contain
keywords such as ”Todo”, ”Fixme” are removed; (2)
Incomplete (aka. Empty). Comments without content
(e.g., // .) are removed; and (3) Commented code.
Comments that contain source code are removed.

� Discarded. Comments that contain keywords such as
”Nothing”, and ”Ignore” are removed.

� Style & IDE. Comments that contain keywords such
as ”NON-NLS”, and ”ASCII” are removed.

� Metadata. Comments that contain keywords such as
”https://”, and ”http://” are removed.

� Non-English. Comments that are written in non-
English are removed by checking if the comment can

only be encoded using ASCII characters. Comments
that cannot be encoded are removed because they
contain characters from other alphabet.

After filtering, the inline comments that describe and
interpret the code can be obtained. We further conduct a sta-
tistical analysis of the length (i.e., number of words) distri-
bution of those inline comments. We find that the 1st
quartile, median, and 3rd quartile values of the comment
lengths are 2, 7, and 10, respectively. In our study, we
remove inline comments which are too short (length <= 2)
for typical-inline-comment analysis; and obtain a data set
which includes 722,348 <InlineComment, Code> pairs.

Table 3 presents the basic statistics over the final data set.
In Table 3, the length statistics for the comments and corre-
sponding code (including minimum, 1st quartile, median,
3rd quartile, and maximum values) are calculated. We fur-
ther divide these inline comments into six types according
to Java documentation,8 namely LineComment, SameLine-
Comment, UnionLineComment, SameUnionLineComment,
BlockComment, and SameBlockComment; and calculate
these length statistics for each type of inline comments as
well as their corresponding code. From the table, we can
find that:

� Most inline comments are relatively short. Themedian
value of the length of comments is 7, and 75% of com-
ments have a length <¼ 12words.

� Developers tend write inline comments directly
above the corresponding code. This is indicated by
the result that LineComment accounts for the largest
amount (55,355/722,348 = 76.6%) among six different
inline comment types.

3.1.2 Ellipsis Analysis

After data collection, we first analyze the prevalence of
ellipsis to motivate our research, and then explore the
impacts of ellipsis on code understandability.

Prevalence Analysis of Syntactic Structure Ellipsis. To ana-
lyze the syntactic structural components of sentences in
inline comments, we use the Stanford Parser tool.9 Fig. 6
shows an example of individual components for an inline
comment sentence, including noun phrase (NP), verb
phrase (VP), and so on. Based on this, we analyze three
types of syntactic structure ellipsis in inline comments,
namely subject structure ellipsis, predicate structure ellip-
sis, and object structure ellipsis. Then, we explore how prev-
alent the three types of syntactic structure ellipsis are in
different code structures.

Since comments are closely related to the code they
describe or interpret, to have a better understanding of the
structural ellipsis of inline comments, we also take code
structures into account during type analysis to explore their
differences in ellipsis. Following [34], we consider four
kinds of code structures, including individual code state-
ment and three types of code blocks (namely, If-Else Branch,
For-While Loop, and Try-Throw Exception).

Impact of Syntactic Structure Ellipsis Code Understandability.
After analyzing the prevalence of different types of

TABLE 2
Six Categories and Sixteen Subcategories of

Comments Proposed in [40]

8. https://docs.oracle.com/javase/tutorial/java/annotations
9. https://nlp.stanford.edu/software/lex-parser.shtml

2290 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://docs.oracle.com/javase/tutorial/java/annotations
https://nlp.stanford.edu/software/lex-parser.shtml


syntactic structure ellipsis, we explore whether such ellipsis
would affect code understanding activities. We perform a
manual check to evaluate the impact of syntactic ellipsis of
inline comments on code understanding. As a supplement,
we also explore the impact of syntactic ellipsis on comment
readability based on several readability metrics10 in the
appendix part, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2022.3216279.

We perform impact analysis with the help of two statisti-
cal approaches, namely Mann-Whitney U test [46] and
Cliff’s delta [47]. Mann-Whitney U test [46] is used to deter-
mine whether there is a statistically significant difference. A
significance threshold is set at 0.05 (p-value < 0:05 indi-
cates a statistically significant difference). Following [44],
[48], [49], we use Cliff’s delta [47] to measure the effect
size d of the difference. jdj < 0:147 indicates a negligible dif-
ference, 0:147 � jdj < 0:330 indicates a small difference,
0:330 � jdj < 0:474 indicates a medium difference, and
0:474 � jdj indicates a large difference.

Impact Analysis by Manual Inspection. Given that the role
of comments studied in this paper is to describe/interpret
code, we want to know how syntactic structure ellipsis of
inline comments affects code understanding activities. To
this end, we conduct a manual inspection to explore the dif-
ferences in understanding activities when inline comments
are combined with code. Specifically, we manually review
the sampled <InlineComment, Code> pairs of the
above-mentioned code structures with/without syntactic
structure ellipsis. We only sample from those pairs with
code having 42-91 words (median and 3rd quartile values,
respectively) and comment having 7-12 words (median and
3rd quartile values) based on our observations of comment-

code data. The reasons why we adopt such a sampling strat-
egy are as follows: (1) too short code snippets may be easy
to understand even without comment, while too long code
snippets may be too difficult to understand; (2) too short
comments may be relatively easy to understand and may
not be precise enough to describe the code, while too long
comments may be more likely to have no ellipsis of syntac-
tic structure. The number of samples for each code structure
is proportional to their total numbers in all inline comments.

Followed the sampling strategy in [40], [44], [45], we ran-
domly select 384 <InlineComment, Code> pairs with
syntactic structure ellipsis and 384 pairs without syntactic
structure ellipsis, with a confidence level of 95% and a sam-
pling error range of �5%, respectively. The 768 (384+384)
pairs are randomly ordered (to avoid personal bias) for
manual inspection. One Ph.D., one Ph.D. candidate, and
one graduate student (non-author programmer) participate

TABLE 3
The Overall Length Distribution of Different Types of Inline Comments

Comment Types Min 1st Quartile Median 3rd Quartile Max Numbers

Length of words All Comments 3 5 7 12 402 722,348
Corresponding Code 1 18 42 91 31,721 722,348

Length of words

LineComment 3 5 7 11 402 550,355
Corresponding Code 1 20 45 93 31,721 550,355
SameLineComment 3 5 7 11 402 55,215
Corresponding Code 1 18 42 90 31,721 55,215
UnionLineComment 3 5 7 12 402 87,517
Corresponding Code 1 18 42 91 31,721 87,517
SameUnionLineComment 3 5 7 12 402 1,373
Corresponding Code 1 18 42 91 31,721 1,373
BlockComment 3 5 7 12 402 23,032
Corresponding Code 1 18 43 91 31,721 23,032
SameBlockComment 3 5 7 12 402 4,856
Corresponding Code 1 18 42 91 31,721 4,856
Total - - - - - 722,348

1Corresponding Code : code that corresponding to inline comment.
2LineComment : single line comment that is directly written above the code.
3SameLineComment : LineComment that is written with the code in same line.
4UnionLineComment : comment that consists of multiple lines of comments.
5SameUnionLineComment : UnionLineComment that is written in same line.
6BlockComment : comment that is written with the form of “/ *...*/”.
7SameBlockComment : BlockComment that is written in same line.

Fig. 6. The parser tree of an inline comment analyzed by using the Stan-
ford parser.10. https://en.wikipedia.org/wiki/Readability

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2291

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3216279
http://doi.ieeecomputersociety.org/10.1109/TSE.2022.3216279
https://en.wikipedia.org/wiki/Readability


in checking these pairs, with none knowing in advance
whether the comment contains a syntactic structure ellipsis
or not. These three participants are of 2-3-year experience in
developing Java projects, and they have no problem in read-
ing English books and even communicating with English
native speakers. This largely helps guarantee the quality of
our user evaluation.

We use a cross-validation method, and assign each
<InlineComment, Code> pair to these three people.
When divergence arises, they resolve it through open discus-
sion. If the discussion fails to reach an agreement, the pair
will be discarded, and a new pair will be re-selected to be
analyzed so that the number of samples remains the same. In
the review process, the five-point Likert scale [50] is used. 1,
2, 3, 4, and 5 represent the degree to which it helps under-
stand the code, i.e., completely unable (1), basically unable
(2), partially helpful (3), helpful (4), and very helpful (5).

Once 768 pairs of data have been scored. We re-separate
the data into two groups with and without syntactic struc-
ture ellipsis. Then, we perform a statistical analysis to calcu-
late the minimum, 1st quartile, median, 3rd quartile, and
maximum values of scores for these two groups, respec-
tively. After that, we use Mann-Whitney U test [46] and
Cliff’s delta [47] to check the difference between the two
groups in terms of the above-mentioned statistical values.
By analyzing the Likert options and statistical results could
help us gain a deeper understanding of how the structure
ellipsis of inline comments affects code understanding
activities.

3.2 Completion of Ellipsis

In order to minimize the negative effect caused by syntactic
structure ellipsis of inline comments on code/comment-
related software tasks, we develop a technique to help auto-
matically complete those inline comments with syntactic
structure ellipsis.

Specifically, to answer RQ3, we first create a data set for
model building. Then, we build three neural network model
on the data set to predict the syntactic structure ellipsis in
the word level, namely LSTM, Transformer, and Code-
BERT. To answer RQ4, we not only conduct a user study,
but also conduct an experiment to explore the impact of
inline comments that before and after ellipsis completion on
code abbreviation extension task.

3.2.1 Data Set Construction

In this study, we take the following steps to obtain such a
data set. First, we obtain all inline comments with no syntac-
tic structures ellipsis, the subject/predicate/object of them
is used as the ground truth for model training and predic-
tion; and remove comments whose subjects/objects are per-
sonal/demonstrative pronouns such as “We”, and “It”, as
personal/demonstrative pronouns have low relevance to
code and rarely provide information to describe the code.

After that, we create three data sets to build models that
aim to predict the exact missing subject/predicate/object
structure in inline comments. Finally, we randomly
divided the data set into training set, validation set, and
testing set according to 8:1:1. The subject/predicate/object
structure in the train set and the valid set is used as the

ground truth for model training. The subject/predicate/
object structure in the test set is masked to test the comple-
tion model. In addition, following [51], the duplicate data
are removed.

3.2.2 Model Training & Prediction

We train three models, namely LSTM, Transformer, and
CodeBERT: each of them contains three parts, one for Sub-
ject Ellipsis prediction, one for Predicate Ellipsis predication,
and another for Object Ellipsis prediction. The input of mod-
els is the inline comments with syntactic structure ellipsis
and its corresponding code. The output of models is the
inline comments after syntactic structure completion at the
word level. During model training and prediction, all
parameters use the default values by Transformers11 and
Keras12 (The following introduction of each model presents
the concrete parameter configurations).

LSTM. We use a five-layer sequential model combined
with LSTM (implemented by Keras). As a special recursive
neural network (RNN), LSTM [52] could well solve the gra-
dient vanish and gradient explosion problems, and could
better handle long-distance dependence. The five layers of
our model are the Embedding layer (to vectormize the input
code and comment), the Dropout layer (to prevent the prob-
lem of overfitting and improve the generalization ability of
the model), the Softmax layer (to define the activation func-
tion), and two LSTM layers (to retrieve higher-level seman-
tic features). The detailed parameters of LSTM are: number
of embedding layers = 10, hidden size = 128, batch size = 32,
dropout = 0.2, optimizer = Adam optimizer.

Transformer. A Transformer model [53] is based solely on
attention mechanisms, dispensing with recurrence and con-
volutions entirely. Unlike LSTM, transformers process the
entire input all at once which allows for more parallelization
and reduces training times. We use the following parameter
settings during model training: number of layers = 6, num-
ber of heads = 8, hidden size = 512, batch size = 64, beam
size = 3, initial learning rate = 0.0001, dropout = 0.1, max
length of input = 128, max length of ellipsis = 16, optimizer
= Adam optimizer.

CodeBERT. A CodeBERT model [54] is a bimodal pre-
trained model for programming language (such as Java and
Python) and natural language, which is with transformer-
based neural architecture. The detailed parameter settings
for training a CodeBERT model are: batch size = 64, beam
size = 5, learning rate = 5e-5, max length of input = 128, max
length of ellipsis = 16, optimizer = Adam optimizer.

The model training and prediction were conducted on a
machine with Nvidia GTX 1080 GPU, Intel(R) Core(TM) i7-
6700 CPU, and 16 GB RAM. The operating system is Ubuntu.

3.2.3 Evaluation on Models

After we obtain the ellipsis completion models, we use three
traditional metrics to evaluate the performance of the
model, namely Precision, Recall, and F1-score. We regard
ellipsis completion as a multiple classification task and use

11. https://github.com/huggingface/transformers
12. https://keras.io/guides/

2292 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/huggingface/transformers
https://keras.io/guides/


sklearn13 to calculate these metrics (with macro-average).
Specifically, for a pair of <InlineComment, Code>, the
masked subjects/predicates/objects from comment without
ellipsis in the test set are truly class labels (ground truth);
while the subjects/predicates/objects generated by our
models are predicted class labels. We first calculate the
precisioni and recalli for each class following (3) and (4).
Then, we calculate the average of the sum of Precisionma

and Recallma following (5) and (6). The final formula for
macro-F1 is following (7). TP represents that the class labels
are correctly predicted, FP/FN means a negative/positive
class instance is predicted as a positive/negative one.

precisioni ¼ TPi

TPi þ FPi
(3)

recalli ¼ TPi

TPi þ FNi
(4)

Precisionma ¼
Pn

i¼1precisioni

n
(5)

Recallma ¼
Pn

i¼1recalli
n

(6)

F1ma ¼ 2� Precisionma �Recallma

Precisionma þRecallma
: (7)

3.2.4 Evaluation on Facilitating Code Understandability

In this section, we aim to explore whether ellipsis comple-
tion would help facilitate code understanding activities.
Considering that the goal of comments is mainly to help
developers understand code, hence, we design a user study
to check whether ellipsis completion of inline comments
would facilitate code understanding tasks. The details are
as follows.

Considering that it is impossible for us to manually check
all inline comments (due to its large number) after ellipsis
completion, we decide to analyze a sample set of them. By
following the sampling strategy in [40], [44], [45], we ran-
domly select 384 pairs of <InlineComment, Code> with
syntactic structure ellipsis. Such a sampling could let us
achieve a confidence level of 95%, with sampling error
within the range of � 5%.

Then, we conduct a user questionnaire experiment
(based on 384 pairs of data). Our potential experiment par-
ticipants are program developers. We send our question-
naire invitations to students (in the field of software
engineering) by email, we also asked our friends in the
industry to help broadcast our questionnaire to their friends
and colleagues who may be interested to participate in our
study. In the end, we have 32 responses from students (7)
and industry developers (25), all of whom have no problem
in reading English books and even communicating with
English native speakers. Our questionnaire includes both
demographic questions and ellipsis-related questions. The
demographic questions are mainly designed to understand
the background and experience of participants. Specifically,
we create 5 demographic questions that ask about partic-
ipants’ educational qualifications, experience with software
engineering and work, roles (e.g., development and testing),

and kinds of projects they work on (e.g., open-source and
closed-source projects). The ellipsis-related questions are
designed to validate the usefulness of comments before and
after ellipsis completion in code understanding activities.

We assign each participant 12 <InlineComment,

Code> pairs whose inline comment contains subject/predi-
cate/object structure ellipsis, along with 12 completed pairs
with predicted missing structures. They do not know in
advance whether the assigned inline comments have ellipsis
and whether the completion is correct or not. By using a
five-point Likert scale [50], they only need to rate the pairs
on how useful the inline comment is for understanding the
code, where 1, 2, 3, 4, and 5 indicate that the inline comment
completely unable, basically unable, partially helpful, help-
ful, and very helpful to understand the code. After we
obtain participants’ ratings, we perform a statistical analysis
to calculate the minimum, 1st quartile, median, 3rd quartile,
and maximum values of scores for comments with and
without ellipsis, respectively. The significant differences are
calculated with the help of the Mann-Whitney U test [46]
and Cliff’s delta [47].

3.2.5 Evaluation on Facilitating Code Abbreviation

Extension

Abbreviations (e.g., “str” for “string”) are common in
source code. Several studies have indicated that abbrevia-
tions may have a negative impact on software engineering
tasks [26], [27], [30], [55], such as program comprehension
and maintenance activities [26], [56]. The potential of com-
ments in assisting code abbreviation extension [29], [55],
[57], and the tendency of developers rarely write comments
in detail [35], [36], inspired us to explore whether the com-
ments after ellipsis completion could facilitate the code
abbreviation extension task in this section.

Specifically, we choose the state-of-the-art code abbrevia-
tion extension approach Linsen [29] that also use comments
as dictionary as our evaluation basis. We replicate Linsen
on comments before and after ellipsis completion. Linsen
uses dictionary-based and rule-based strategies to extend
abbreviations. Comparing the results could help us better
understand the usefulness of our completion approach in
improving code abbreviation extension, and could also help
us have a glimpse into application prospect of our approach
in automated software engineering tasks.

4 EXPERIMENTAL RESULTS OF EMPIRICAL

ANALYSIS

4.1 RQ1: Prevalence of Syntactic Structure Ellipsis

In total, we have 722,348 pairs of <InlineComment,

Code> to be analyzed. Among them, there are 603,912 com-
ments that have ellipsis. Table 4 shows the three ellipsis
types as well as their possible grammar patterns. In the
table, Columns 1-5 represents ellipsis type, the possible
grammar patterns for each type, the meaning of different
symbols used in each ellipsis type (columns 3-5), respec-
tively. Then we analyze the prevalence of ellipsis in differ-
ent code structures (e.g., If-Else Branch). Table 5 shows our
results. From the table, we have the following observations.13. https://scikit-learn.org/stable/modules/classes.html

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2293

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://scikit-learn.org/stable/modules/classes.html


� Only 16.4% of inline comments contain all necessary syn-
tactic structures (i.e., including subject, predicate, and
object). This suggests that developers may not write
inline comments in detail during development and
maintenance process.

� The ellipsis of subject structure is more prevalent than the
other types of ellipsis, amounting to 42.5%. This indi-
cates that developers mostly use predicate and object
structures to write inline comments. In addition,
comments with predicate ellipsis take up only 8.3%
(the smallest ratio among the three types). This is in
line with our common sense, as predicate structure
connects the subject and the object structure and

people may not tend to ignore it in daily language
communications.

� All different code structures show that only a small part of
inline comments do not have syntactic structure ellipsis,
which ranges from 14.3% to 21.4%. Nevertheless, inline
comments of different code structures still show
some differences in syntactic structure ellipsis. Inline
comments of If-Else Branch structure show the least
ellipsis, with 21.4% of them containing all necessary
syntactic structures; while For-While Loop structure
and Code Statement show most subject ellipsis (with
49.3% and 45.8% respectively compared to the aver-
age of 42.5%).

Finding 1. On the whole, most (83.6%) inline comments
do have syntactic structure ellipsis. Subject ellipsis is the
most common (42.5%) in inline comments. A similar
phenomenon could also be observed in different code
structures.

4.2 RQ2: Potential Impacts of Structure Ellipsis on
Code Understandability

According to the method in Section 3.1.2, Fig. 7 present the
results of manual inspection. We can observe that:

� For code with comments having syntactic structure
ellipsis, the 1st quartile and 3rd quartile of the Likert
Scores are at 3 and 4, respectively, with a median
value of 3. This suggests that comments with ellipsis
can be partially helpful in code understanding.

� For code with comments having no syntactic struc-
ture ellipsis, the 1st quartile and 3rd quartile of the
Likert Scores are at 4 and 5, respectively, with a
median value of 4. This indicates that comments with-
out structure ellipsis are more helpful in code understand-
ing compared to that with ellipsis.

� For the statistical results, the p-value of the Mann-
Whitney U test between comments with and without
syntactic structure ellipsis is 2:6e�23 (<0.05), indicat-
ing a significant difference from the statistical per-
spective. The Cliff’s delta effective size is 0.39,
indicating that comments without ellipsis are more

TABLE 4
The Types of Syntactic Structure Ellipsis and the Meaning of Different Symbols in Each Ellipsis Type

Ellipsis Type Grammer Patterns Abbreviation Used Full Name Description

Ellipsis of Subject

hC; Ini ! OnlyContains VP In Inline Comment Comments inside a method
hC; Ini ! OnlyContains V&VP C Code Comments corresponding code
hC; Ini ! OnlyContains (V&VP) & FW NP Noun Phrase Noun-centered phrase
hC; Ini ! OnlyContains (V&VP) & FP

Ellipsis of Predicate

hC; Ini ! OnlyContains NP VP Verb Phrase Verb-centered phrase
hC; Ini ! OnlyContains FW V Verb Composed of some kind of action
hC; Ini ! OnlyContains FP FW Functional Words Composed of conjunction/
hC; Ini ! OnlyContains NP & FP adjective/adverb
hC; Ini ! OnlyContains NP & FW

Ellipsis of Object

hC; Ini ! OnlyContains NP &V FP Functional Phrase Composed of (preposition/
hC; Ini ! OnlyContains (NP &V) & FW adjective/adverb/
hC; Ini ! OnlyContains (NP &V) & FP positional) phrase

TABLE 5
The Prevalence of Different Ellipsis in Comments

for Different Code Structures

Code Structure Ellipsis Type Number Rate

All Comments

None Ellipsis 118,436 16.4%
Ellipsis of Subject 307,160 42.5%
Ellipsis of Object 237,187 32.8%
Ellipsis of Predicate 59,565 8.3%
All 722,348 100%

If-Else Branch

None Ellipsis 34,859 21.4%
Ellipsis of Subject 55,888 34.3%
Ellipsis of Object 63,738 39.1%
Ellipsis of Predicate 8,548 5.2%
All 163,033 100%

For-While Loop

None Ellipsis 6,164 14.3%
Ellipsis of Subject 21,180 49.3%
Ellipsis of Object 12,183 28.3%
Ellipsis of Predicate 3,473 8.1%
All 43,000 100%

Try-Throw Exception

None Ellipsis 10,795 17.9%
Ellipsis of Subject 21,237 35.1%
Ellipsis of Object 22,793 37.7%
Ellipsis of Predicate 5,619 9.3%
All 60,444 100%

Single Statements

None Ellipsis 66,618 14.6%
Ellipsis of Subject 208,855 45.8%
Ellipsis of Object 138,473 30.4%
Ellipsis of Predicate 41,925 9.2%
All 455,871 100%

2294 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



conducive to code understanding activities than comments
with ellipsis to a medium degree.

� For the data with and without ellipsis, 16.1% of data
(124/768) are scored as completely unable (score 1)
and basically unable (score 2) to help code under-
standing activities. We further analyze this part of
data and find that 4.8% (37/768) of them have incon-
sistency between code and comments. This indicates
that the inconsistency between code and comment would
result in lower scores regardless of whether this part of
data contains ellipsis or not.

Finding 2. Inline comments without syntactic structure
ellipsis are more helpful in assisting code understanding
activities than those comments with syntactic structure
ellipsis, with a medium effect size.

5 EXPERIMENTAL RESULTS OF ELLIPSIS

COMPLETION AND EVALUATION

5.1 RQ3: Completion of Structure Ellipsis of Inline
Comments

We totally obtain 65,254 pairs of<InlineComment, Code>,
with whose inline comments having no syntactic structures
ellipsis (working as the ground truth in model building and
testing) according to the data set construction approach men-
tioned in Section 3.2.1. Based on the data set, we build the
three model introduced in Section 3.2.2. Table 6 shows the
performance of the completionmodels.We could find that:

� Among three models, for exact word completion
(i.e., precisely predicting the words that are masked
from the ground truth), CodeBERT achieves the best
results in complementing subject, predicate, and
object ellipsis, with 62.5%, 61.0%, and 65.3% in preci-
sion, respectively.

� LSTM and Transformer perform better in subject
completion while CodeBERT performs more effec-
tively in object completion in terms of precision
results. By analyzing our data set, we find that sub-
jects tend to contain more common words, such as
“the code”, “this user”, and “the task”, while objects
tend to contain more words related to code snippets.

The generalizability of LSTM and Transformer used
in various applications and the specificity of Code-
BERT in code related tasks may be a potential reason
for the performance difference of the three models in
comment completion tasks.

� The precision of predicate completion is the lowest
among three models, which indicates that the predi-
cate structure is the most difficult to be predicated
among the three structures.

� The recalls of three models are relatively lower com-
pared to the precision. The not-so-high values of
Recall are within our expectation, as predicting the
original masked subject/predicate/object words is a
strong constraint (even a simple lexical gap problem
that two words expressing the same meaning would
negatively affect the performance values).

Finding 3. Our neural network based ellipsis completion
model could achieve a precision of 62.5%, 61.0%, and
65.3% in completing the exact missing subject/predi-
cate/object words.

5.2 RQ4: Evaluation on Facilitating Code
Understandability

Based on the method in Section 3.2.4, the results could be
obtained as follows.

5.2.1 Code Understandability Based on User Study

As mentioned in Section 3.2.4, we randomly select 384
pieces of comment-code data (with 245 pieces being cor-
rectly completed and 139 pieces incorrectly completed).
Then we design a questionnaire and distribute it to 32
participants.

By collecting answers to demographic questions, we find
that: (1) Among the 32 participants, 21.9% of them are grad-
uate students and 78.1% are industry developers; (2) 65.6%
of participants’ main role is development; (3) 84.4% of par-
ticipants have advanced degrees (e.g., Master, Ph.D.); (4)
The participants have different expertise in software devel-
opment: 21.9% of the participants have > 7 years of soft-
ware development experience, and 59.4% have > 4 years of
experience; (5) The ratio of developers who mostly spent

Fig. 7. The distribution of Likert scores of manual inspection on the
helpfulness of comments in code understanding activities.

TABLE 6
The Performance of Our Ellipsis Completion

Model Based on Traditional Metrics

Model Metrics Subject Predicate Object

LSTM Precision 45.5% 44.8% 41.5%
Recall 28.9% 26.5% 28.9%
F1-score 35.4% 33.3% 34.1%

Transformer Precision 47.1% 40.3% 43.8%
Recall 32.0% 35.2% 33.7%
F1-score 38.1% 37.6% 38.1%

CodeBERT Precision 62.5% 61.0% 65.3%
Recall 40.7% 45.3% 48.4%
F1-score 49.3% 52.0% 55.6%

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2295

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



time on open source projects and closed source projects or
both of them are 9.4%, 53.1%, and 37.5%, respectively.

For ellipsis-related questions, Table 7 and Fig. 8 shows the
results of the difference in code understandability between
comments with correct and incorrect completion. By analyz-
ing the results, we have the following observations:

� The mean value of Likert Scores gets improved for
comments with correct completion (increased by 1.0
with a medium difference effect size based on Cliff’s
delta). There is also an improvement for comments
with incorrect completion (increased by 0.48 with a
small difference effect size). To get deeper insights
into this observation, we provide possible explana-
tions in the next paragraph. From a statistical per-

spective, comments with correct ellipsis completion can
help developers better in code understanding activities.

� The mean value of the correctly complemented pred-
icate and object gets larger improvement (increased
by 1.07 and 1.11, which is higher than 1.0 of all data),
and the mean value of the correctly complemented
subject gets an improvement of 0.82. This indicates
that comments with correct predicate and object structure
ellipsis completion could help developers better in code
understanding.

� The proportion of 5 in the Likert Scores increases sig-
nificantly (46.9% of total data) for comments with
correct completion, according to the increasing trend
in Fig. 8. For comments with incorrect completion,
the proportion of 5 also increased, but not as signifi-
cant as those comments with correct completion.
This also indicates that comments after correctly com-
pleting the ellipsis are more helpful in code understanding
activities.

To understand why there is also an improvement for
comments with incorrect completion, we manually review
all data that have been incorrectly completed to find possi-
ble reasons. Our findings are as follows:

� Participants give relatively high scores to the com-
ments with incorrect completion when it is a syno-
nym or a full extension of the ground truth (e.g., the
model predicated word “Variable” is a full extension
of the ground truth “Val”), or when it was a relevant
word selected from the code snippet (but didn’t hit
ground truth).

TABLE 7
The Likert Rating Results on the Helpfulness of Comments in Code Understandability by Developers

Fig. 8. The Likert rating results of the user study on the helpfulness of
comments in code understandability.

2296 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



� Developers may naturally think that comment sen-
tences with complete syntactic structure and conform
to linguistic syntactic norms are easier to understand,
regardless of whether the comments are completed
correctly or not.

Finding 4. The completion of comments with ellipsis (espe-
cially correct completion) could improve the code under-
standability in amedium effect size.

5.3 RQ4: Evaluation on Facilitating Code
Abbreviation Extension Work

We select the code abbreviation extension algorithm Linsen
[29] for evaluation because it is accurate and well known,
representing the state-of-the-art. After applying Linsen, we
obtain 1,358 code abbreviations. We manually review all
abbreviations to filter out those for which we could not find
the corresponding expansions; and finally obtain a total of
378 abbreviations for expansion (as the ground truth). Table 8
shows the expansion results of Linsen towards 378 abbrevia-
tions based on inline comments before and after syntactic
structure completion. From the table, we have the following
observations. Note that, since Linsen only considered the
precision performance metric, in this study, we also only
consider the precision when studying how comment ellipsis
completion could improve the performance of Linsen.

� The precision of abbreviation extension after subject
completion increases from 65.3% to 70.3%, with an
increase of 7.7% (ð70:3� 65:3Þ=65:3); and the preci-
sion value after object structure completion increases
from 65.5% to 72.4%, with a higher increase of 10.5%.
This indicates that object structures contain more words
related to code abbreviation.

� The precision of abbreviation extension does not get
improved (almost keep the same actually) after predi-
cate completion compared to that of subject/object
completion. One reason for such a difference may be
that themissing subject/object in a comment is usually
a noun, gerund, etc., and usually refers to variables/

identifiers in the code while the predicate usually
refers to the action word in the code, and generally is
not abbreviated by developers; variables/identifiers
are more likely to be shortened as an abbreviation and
hence subject/object completion is more helpful for code
abbreviation extension.

The above analysis is on all comments without distin-
guishing comments with correct or incorrect ellipsis com-
pletion. We further apply Linsen on comments with correct
ellipsis completions to better understand how comment
ellipsis completion could facilitate the code abbreviation
task under an ideal situation. The results are shown in rows
11-18 (Correctly Completed) in Table 8. From Table 8, we
have the following observations:

� The precision is greatly improved for correctly com-
pleted comments. After completing the subject struc-
ture, the precision is improved from 62.1% to 71.2%,
with an increase of 14.7%. After completing the object
structure, the precision is improved from 66.7% to
77.1%, with an increase of 15.6%. This also indicates
that object structures contain more words related to code
abbreviation.

� The precision of all 224 code abbreviations is
improved by 11.3% on average (from 63.8% to 71.0%).
There is an 4.8% (11:3%� 6:5%) increase over all
data, indicating that a noticeable improvement could be
achieved in the extension of code abbreviation after cor-
rectly ellipsis completions.

Finding 5. On the whole, the completion of comment
ellipsis could improve the precision of code abbreviation
extension by 6.5%. And inline commentswith correct com-
pletions could largely improve the precision by 11.3%.

6 DISCUSSION

6.1 Implications for Researchers, Practitioners, and
Tool Providers

Implications for Researchers. First, the exploration of different
types of syntactic structures ellipsis would provide foresight

TABLE 8
The Performance of Code Abbreviation Extension Based on Inline Comments Before and After Ellipsis Completion

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2297

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



in the quality of software documentation. This is indicated
by the result that correct completion of the ellipsis in com-
ments could improve code understandabilitywith amedium
effect size (Finding 4). In the future, it would be interesting to
explore other types of syntactic structure, such as comple-
ments (complements are also a component of sentence struc-
ture, which plays an important role in specific situations).
The ellipsis of Javadoc may be worthy to explore in the
future. The result of our preliminary exploration indicates
that Javadoc has 28.5% pairs of data without structure ellip-
sis and the distribution and completion of types of ellipsis
could be further explored. In addition,we build threemodels
to complete the ellipsis in inline comments and achieved a
precision of 65.3% (Finding 3), more advanced methods are
expected to further improve the performance.

Second, Inline comments show great potential in the field
of code abbreviation extension. Precision of the code abbre-
viation extension task could be improved by 11.3% in our
research if the inline comments are correctly completed
(Finding 5). It would be valuable to explore whether inline
comments with ellipsis being completed would facilitate
other code/comment related tasks in the future.

Third, the inconsistency of inline comments and code are
also worth exploring, with 4.8% of inline comments in our
initial review being nearly unable to help code understand-
ing activity (results in Section 4.2), which indicates that the
developer may neglect to make changes to the comments
when conducting the code change activity, resulting in out-
dated comments.

Implications for Practitioners. As a important component of
software document, comments are always essential for soft-
ware comprehension and maintenance. Therefore, first, in
programming activities, developers may need to be more
patient when writing inline comments. This is indicates by
the result that 83.6% of inline comments contain ellipsis and
subject and object ellipsis is the most common (Finding 1).

Second, in code understanding activities, developers
may need to spend more effort on the inline comments that
with ellipsis. This is indicates by the result that comments
without ellipsis are more helpful in assisting code under-
standing activities with a medium effect size ( Finding 2). In
addition, in 8.2% of the method (from 1,000 Java projects),
developers can only use inline comments to conduct code
understanding activity, which indicates that inline com-
ments also play an important role.

Implications for Tool Developers. This work can motivate
tool developers to develop some IDE plugins that can pro-
vide timely feedback once a developer finishes writing a
comment, e.g., by suggesting possible missing content. Such
feedback can work as an assistant for developers to improve
their code/comment understandability and facilitate code/
comment related tasks such as identifier abbreviation exten-
sions (in case they use extension tools). This is indicated by
our results that the completion of inline comments with
ellipsis can improve the corresponding code’s understand-
ability in a medium size (Finding 4) and can improve the
precision of code abbreviation extension (Finding 5).

6.2 Validity Discussion

Threats to Construct Validity. In the dataset construction
(Section 3.1.1), we use some heuristic rules to associate

comments with code like [39]. Despite that we obtained an
accuracy of 95% in our case (sampled data with a confidence
level of 95% and a sampling error range of �5%). We cannot
guarantee that these heuristic rules could always obtain
such an or even higher accuracy in any case.

Moreover, in the evaluation on facilitating code abbrevia-
tion extension part (Section 5.3), we need to replicate the
comment-assist abbreviation extension technique Linsen.
Since the code of Linsen is not open-sourced, we cannot
guarantee that our implementation is 100% correct. To alle-
viate this threat, we have done several code reviews about
the implementation.

Threats to Internal Validity. In the analysis of the potential
impact of ellipsis on code understandability (Section 4.2),
we directly use the original comments sampled from our
datasets. These inline comments may not evolve with code,
which leads to outdated inline comments that negatively
impact code understanding. Completing the structure ellip-
sis for these outdated inline comments may not be so useful
in practice. A more practical way may be to use several
state-of-the-art techniques in identifying and correcting
such inconsistencies first (such as [58], [59], [60], [61]), and
then applying our ellipsis completion approach.

Threats to External Validity. In the evaluation on facilitat-
ing code understandability part (Section 5.2.1), we conduct
a user study to evaluate whether comment ellipsis comple-
tion could improve code understandability. There are
totally of 32 developers participating in our user study,
which is not an extremely large number. Therefore, we can-
not guarantee that our findings obtained by the user study
could be generalized to all software developers. However,
the participants of this study have different educational
qualifications, experience levels, and contribute to various
projects (i.e., open-source and closed-source projects). Such
diversity in backgrounds could make us believe that our
survey results still provided valuable insights into the use-
fulness of our ellipsis completion task.

Another threat is that all our experiments are conducted
on only open source Java projects. We cannot guarantee
that our conclusions are applicable to industrial or projects
in other programming languages. Considering that Java is
widely used by developers in developing software projects
[40], [62], [63] and all experimental projects are popular and
mature projects, we believe that our findings could still pro-
vide insights into the syntactic structure ellipsis problem of
inline comments.

Threats to Conclusion Validity. In this study, we per-
form three types of manual reviews separately in (1)
checking the validity of our heuristic rules in associating
code with comments (Section 3.1.1), (2) evaluating the
impact of ellipsis on code understandability (Section 4.2),
and (3) constructing code abbreviation dataset for evalua-
tion experiments (Section 5.3). All participants evolved in
manual reviews are not the owners (developers) of the
code, we cannot guarantee that all judgments made by
the participants are correct. In order to reduce these
biases, we cross-checked the data by one Ph.D., one Ph.D.
candidate, and one graduate student (non-author pro-
grammer) and solved disagreements through discussions.

In the evaluations on facilitating code understandability
(Section 4.2) and code abbreviation extension (Section 5.2),

2298 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



we conduct some statistical tests to check whether our
results have statistically significance. These tests require
that our datasets meet certain distribution assumptions
(e.g., normal distribution or not). Despite we have verified
that our datasets meet the requirements before applying the
tests, we cannot claim more than what these tests tell us, not
to mention generalize them to other scenarios.

7 RELATED WORK

Relevant research work could be roughly divided into two
categories, namely comment quality analysis, and comment
classification.

7.1 Comment Quality Analysis

Existing studies on quality analysis of code comments
mainly focus on analyzing the density of comments, the cor-
relation between comments and code, and the evolution of
comments and code [23], [61], [64], [65], [66], [67]. Arafat
et al. [68] used the metric of comment density and found
that commenting source code was an ongoing and inte-
grated practice, independent of the chosen programming
language, the age of project, team size and project size.
McBurney et al. [64] found that comments written by subse-
quent developers had a higher semantic similarity than
those by the original developers. Padioleau et al. [35] stud-
ied the programming comments from the latest versions of
Linux, FreeBSD, and OpenSolaris. They found that approxi-
mately 52.6% of comments could improve software reliabil-
ity or programmer productivity. Shinyama et al. [62]
presented a framework for analyzing comments in detail.
They discussed the extent, target and category of comments
in both Java and Python projects, and validated there is a
universal “grammar” for code comments.

The relevance and consistency of comments and their
corresponding code were also taken into consideration by
researchers. Rabbi et al. [58] used a recurrent network to
detect inconsistency between comment and code. They [59]
also proposed an ensemble approach to detect code com-
ment inconsistency by using topic modeling. Stulova et al.
[60] proposed a technique, named upDoc, to automatically
detect code comment inconsistency during code evolution.
Khamis et al. [61] designed JavaDocMiner to automatic
evaluate comment quality by analyzing the consistency rela-
tionship between comments and code.

Many researchers focused on how code and comments
changed during software evolution. Wen [69] found that
making changes to different types of code had different
probabilities in triggering an update of comments. Ratol
[36] took comments corresponding to code entities in Java
code as fragile comments and proposed a rule-based
method Fraco to detect such comments.

There have been a number of studies on detection or
management of technical debt comments [70], [71] or self-
admitted technical debt [72]. Nie et al. [73] presented the
first framework to specify trigger-action todo comments
to benefit the code comprehension and maintenance.

The abovementioned studies considered comment qual-
ity mainly from comment density and the evolution of com-
ment with related code. It would be valuable for future
studies to consider comment quality from the syntactic

structure view for example by taking syntactic ellipsis as a
comment quality measurement metric. This may be action-
able as our study have revealed that syntactic ellipsis of
comments would negatively affect code/comment related
tasks such code/comment comprehension.

7.2 Comment Classification

Classifying comments can help us better understand the
performance of comments under different categories. At
present, there is no unified standard for the classification of
comments. Haouari et al. [74] conducted an empirical study
by analyzing existing comments in different open source
Java projects from both quantitative and qualitative views.
They defined thirteen categories from four dimensions and
found that comments are intended to explain the code that
follows them in most cases. They aimed to study the devel-
opers’ habit of writing comments by proposing this taxon-
omy of comments.

Padioleau et al. [35] mainly studied comments from the
perspectives of What, Who, Where, and When. Martin et al.
[75] studied the classification of API documents. Steidl et al.
[76] defined a preliminary taxonomy of comments compris-
ing seven high-level categories. Pascarella and Bacchelli [40]
studied the comments of six open source Java projects, clas-
sified the comments into a hierarchy of six categories and
sixteen subcategories, and used machine learning methods
to automatically classify code comments. Zhai et al. [34]
treated comments as related attributes of code entities, and
classified them at a fine granularity from different code per-
spectives. Chen et al. [17] classified the comments into types
such as What, Why, and How-to-use.

Several studies analyzed types of self-admitted technical
debt described in comments [71], [77], [78], [79], [80]. Ying
et al. [81] attempted to explore the types of todo comments
or task comments and presented a categorization of Eclipse
task comments on the AWB codebase.

The abovementioned studies mainly classify comments
based on their ability in describing code. It is worth research
efforts to classify comments based on their syntactic struc-
ture characteristics. In addition, existing studies mainly tar-
get at JavaDoc comments, with paying little attention to
inline comments. Given that inline comments play an
important role in code understanding and its substantial
format difference with JavaDoc (Inline comments are writ-
ten in a more casual way by developers than JavaDoc com-
ments), it would be valuable to develop new classification
methods for inline comments.

8 CONCLUSION

In this article, we conducted the first large-scale empirical
study of inline comments from the syntactic structure ellip-
sis perspective. We collected a large data set of inline com-
ments with their corresponding code in Java projects. Based
on the large data set, we analyzed the syntactic structure of
comments, and identified the types of syntactic structure
ellipsis of inline comments. Then, we uncovered the preva-
lence of syntactic structure ellipsis in inline comments and
analyzed the impact of ellipsis on the code understanding
activities. Our research indicated that when considering
the context of the code, comments with ellipsis would

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2299

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



negatively affect (with a medium effect size) the code/com-
ment understanding activities. Last, we tried to complete the
syntactic structure ellipsis of inline comments by building
neural networkmodel and demonstrated the effectiveness of
our completion approach in facilitating code understanding
and code abbreviation expansion tasks. In terms of code
understanding activities, the results of our user study
showed that comments that correctly completed the syntac-
tic structure could assist code understanding activities to a
medium degree. As for code abbreviation expansion task,
we found that the completion of inline comments with syn-
tactic structure ellipsis could improve the precision of gen-
eral code abbreviation expansion technique by 11.3%. Our
explorations are expected to facilitate the research on code
comments and comments-related software tasks.

REFERENCES

[1] N. Chomsky, Syntactic Structures, Berlin, Germany: Walter de
Gruyter, 2002.

[2] P. Khullar, K. Majmundar, and M. Shrivastava, “NoEl: An anno-
tated corpus for noun ellipsis in English,” in Proc. 12th Lang.
Resour. Eval. Conf., 2020, pp. 34–43.

[3] G. G€uneş and A. Lipt�ak, The Derivational Timing of Ellipsis, vol. 79,
Oxford, U.K.: Oxford Univ. Press, 2022.

[4] M. A. Saleem, “A study of ellipsis and elision in English,” J. Tikrit
Univ. Humanities, vol. 28, no. 2, pp. 60–81, 2021.

[5] G. Zhao, “The motivation of ellipsis,” Theory Pract. Lang. Stud.,
vol. 5, no. 6, 2015, Art. no. 1275.

[6] M. C. Kim, J. Park, and W. Jung, “Sentence completeness analysis
for improving team communications of safety-critical system
operators,” J. Loss Prevention Process Industries, vol. 21, no. 3,
pp. 255–259, 2008.

[7] N. Kim, L. Brehm, and M. Yoshida, “The online processing of
noun phrase ellipsis and mechanisms of antecedent retrieval,”
Lang. Cogn. Neurosci., vol. 34, no. 2, pp. 190–213, 2019.

[8] V. P. B. Hansen and A. Søgaard, “What do you mean ‘why?’:
Resolving sluices in conversations,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 7887–7894.

[9] X. Ren, X. Sun, J. Wen, B. Wei, W. Zhan, and Z. Zhang, “Building
an ellipsis-aware chinese dependency treebank for web text,” in
Proc. 11th Int. Conf. Lang. Resour. Eval., 2018, pp. 1749–1754.

[10] S. Petrov and R. McDonald, “Overview of the 2012 shared task on
parsing the web,” First Workshop Syntactic Anal. Non-Canonical
Lang., vol. 59, pp. 1–8, 2012.

[11] P. Khullar, A. Antony, and M. Shrivastava, “Using syntax to
resolve NPE in English,” in Proc. Int. Conf. Recent Adv. Natural
Lang. Process., 2019, pp. 534–540.

[12] W.-N. Zhang, Y. Zhang, Y. Liu, D. Di, and T. Liu, “A neural net-
work approach to verb phrase ellipsis resolution,” in Proc. AAAI
Conf. Artif. Intell., 2019, pp. 7468–7475.

[13] E. Lapshinova-Koltunski, C. Hardmeier, and P. Krielke,
“ParCorFull: A parallel corpus annotated with full coreference,”
in Proc. 11th Int. Conf. Lang. Resour. Eval., 2018, pp. 423–428.

[14] S. M. Bouzid and C. B. O. Zribi, “Efficient learning approach for
pronominal anaphora and ellipsis identification and resolution in
arabic texts,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 29, no. 10, pp. 3335–3348, Oct. 2021.

[15] K. Kenyon-Dean, J. C. K. Cheung, and D. Precup, “Verb phrase
ellipsis resolution using discriminative and margin-infused algo-
rithms,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2016,
pp. 1734–1743.

[16] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of
the documentation essential to software maintenance,” in Proc.
23rd Annu. Int. Conf. Des. Commun.: Documenting Designing Perva-
sive Inf., 2005, pp. 68–75.

[17] Q. Chen, X. Xia, H. Hu, D. Lo, and S. Li, “Why my code summari-
zation model does not work: Code comment improvement with
category prediction,” ACM Trans. Softw. Eng. Methodol., vol. 30,
no. 2, pp. 1–29, 2021.

[18] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred API knowledge,” in Proc. 27th Int. Joint
Conf. Artif. Intell., 2018, pp. 2269–2275.

[19] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation with hybrid lexical and syntactical information,” Empir.
Softw. Eng., vol. 25, no. 3, pp. 2179–2217, 2020.

[20] P. Rani, S. Panichella, M. Leuenberger, A. Di Sorbo, and O. Nier-
strasz, “How to identify class comment types? A multi-language
approach for class comment classification,” J. Syst. Softw., vol. 181,
2021, Art. no. 111047.

[21] S. B. Merriam and E. J. Tisdell, Qualitative Research: A Guide to
Design and Implementation, Hoboken, NJ, USA: Wiley, 2015.

[22] Y. Huang, N. Jia, Q. Zhou, X. Chen, Y. Xiong, and X. Luo,
“Guiding developers to make informative commenting decisions
in source code,” in Proc. 40th Int. Conf. Softw. Eng.: Companion
Proc., 2018, pp. 260–261.

[23] B. Yang, Z. Liping, and Z. Fengrong, “A survey on research of
code comment,” in Proc. 3rd Int. Conf. Manage. Eng., Softw. Eng.
Service Sci., 2019, pp. 45–51.

[24] J. L. Freitas, D. da Cruz, and P. R. Henriques, “A comment analy-
sis approach for program comprehension,” in Proc. IEEE 35th
Annu. IEEE Softw. Eng. Workshop, 2012, pp. 11–20.

[25] Y. Shinyama, Y. Arahori, and K. Gondow, “Analyzing code com-
ments to boost program comprehension,” in Proc. IEEE 25th Asia-
Pacific Softw. Eng. Conf., 2018, pp. 325–334.

[26] Y. Jiang, H. Liu, J. Jin, and L. Zhang, “Automated expansion of
abbreviations based on semantic relation and transfer expansion,”
IEEE Trans. Softw. Eng., vol. 48, no. 2, pp. 519–537, Feb. 2022.

[27] Y. Jiang, H. Liu, J. Q. Zhu, and L. Zhang, “Automatic and accurate
expansion of abbreviations in parameters,” IEEE Trans. Softw.
Eng., vol. 46, no. 7, pp. 732–747, Jul. 2020.

[28] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est
omen: Exploring and exploiting similarities between argument
and parameter names,” in Proc. 38th Int. Conf. Softw. Eng., 2016,
pp. 1063–1073.

[29] A. Corazza, S. Di Martino, and V. Maggio, “LINSEN: An efficient
approach to split identifiers and expand abbreviations,” in Proc.
IEEE 28th Int. Conf. Softw. Maintenance, 2012, pp. 233–242.

[30] Y. Jiang, H. Liu, and L. Zhang, “Semantic relation based expan-
sion of abbreviations,” in Proc. 27th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 131–141.

[31] L. Tan, Y. Zhou, and Y. Padioleau, “aComment: Mining annotations
from comments and code to detect interrupt related concurrency
bugs,” inProc. IEEE 33rd Int. Conf. Softw. Eng. , 2011, pp. 11–20.

[32] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment:
Testing javadoc comments to detect comment-code incon-
sistencies,” in Proc. IEEE 5th Int. Conf. Softw. Testing, Verification
Validation, 2012, pp. 260–269.

[33] C. Rubio-Gonz�alez and B. Liblit, “Expect the unexpected: Error
code mismatches between documentation and the real world,” in
Proc. 9th ACM SIGPLAN-SIGSOFT Workshop Prog. Anal. Softw.
Tools Eng., 2010, pp. 73–80.

[34] J. Zhai et al., “CPC: Automatically classifying and propagating
natural language comments via program analysis,” in Proc. IEEE/
ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 1359–1371.

[35] Y. Padioleau, L. Tan, and Y. Zhou, “Listening to programmers–
taxonomies and characteristics of comments in operating system
code,” in Proc. IEEE 31st Int. Conf. Softw. Eng., 2009, pp. 331–341.

[36] I. K. Ratol and M. P. Robillard, “Detecting fragile comments,”
in Proc. IEEE/ACM 32nd Int. Conf. Autom. Softw. Eng., 2017,
pp. 112–122.

[37] J. Bowers, “The syntax of predication,” Linguistic Inquiry, vol. 24,
no. 4, pp. 591–656, 1993.

[38] X. Ren, X. Sun, J. Wen, B. Wei, W. Zhan, and Z. Zhang, “Building
an ellipsis-aware chinese dependency treebank for web text,”
2018, arXiv:1801.06613.

[39] Z. Liu, H. Chen, X. Chen, X. Luo, and F. Zhou, “Automatic detec-
tion of outdated comments during code changes,” in Proc. IEEE
42nd Annu. Comput. Softw. Appl. Conf., 2018, pp. 154–163.

[40] L. Pascarella and A. Bacchelli, “Classifying code comments in java
open-source software systems,” in Proc. IEEE/ACM 14th Int. Conf.
Mining Softw. Repositories, 2017, pp. 227–237.

[41] T. D. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Mapping API
elements for code migration with vector representations,” in
Proc. IEEE/ACM 38th Int. Conf. Softw. Eng. Companion, 2016,
pp. 756–758.

[42] P. Leitner and C.-P. Bezemer, “An exploratory study of the state of
practice of performance testing in java-based open source proj-
ects,” in Proc. 8th ACM/SPEC Int. Conf. Perform. Eng., 2017,
pp. 373–384.

2300 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



[43] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining GitHub,” in
Proc. 11th Work. Conf. Mining Softw. Repositories, 2014, pp. 92–101.

[44] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in Proc. IEEE/ACM 42nd Int.
Conf. Softw. Eng., 2020, pp. 1385–1397.

[45] Y. Jiang, H. Liu, Y. Zhang, N. Niu, Y. Zhao, and L. Zhang, “Which
abbreviations should be expanded?,” inProc. 29thACM JointMeeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2021, pp. 578–589.

[46] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” Ann.
Math. Statist., vol. 18, no. 1, pp. 50–60, 1947. [Online]. Available:
https://doi.org/10.1214/aoms/1177730491

[47] G.Macbeth, E. Razumiejczyk, and R. D. Ledesma, “Cliff’s delta calcu-
lator: Anon-parametric effect size program for two groups of observa-
tions,”Universitas Psychologica, vol. 10, no. 2, pp. 545–555, 2011.

[48] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu, “How practi-
tioners perceive automated bug report management techniques,”
IEEE Trans. Softw. Eng., vol. 46, no. 8, pp. 836–862, Aug. 2020.

[49] F. Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A unified multi-task
learning model for ast-level and token-level code completion,”
Empir. Softw. Eng., vol. 27, no. 4, pp. 1–38, 2022.

[50] R. A. Likert, “A technique for measurement of attitudes,” Arch.
Psychol. New York, vol. 22, no. 140, pp. 1–55, 1932.

[51] M. Allamanis, “The adverse effects of code duplication in machine
learning models of code,” in Proc. ACM SIGPLAN Int. Symp. New
Ideas, New Paradigms, Reflections Program. Softw., 2019, pp. 143–153.

[52] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[53] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 6000–6010.

[54] Z. Feng et al., “CodeBERT: A pre-trained model for programming
and natural languages,” 2020, arXiv:2002.08155.

[55] D. Lawrie, H. Feild, and D. Binkley, “Extracting meaning from
abbreviated identifiers,” in Proc. IEEE 7th Int. Work. Conf. Source
Code Anal. Manipulation, 2007, pp. 213–222.

[56] D. Binkley and D. Lawrie, “The impact of vocabulary normal-
ization,” J. Softw.: Evol. Process, vol. 27, no. 4, pp. 255–273, 2015.

[57] N. Madani, L. Guerrouj, M. Di Penta, Y.-G. Gueheneuc, and G.
Antoniol, “Recognizing words from source code identifiers using
speech recognition techniques,” in Proc. IEEE 14th Eur. Conf. Softw.
Maintenance Reengineering, 2010, pp. 68–77.

[58] F. Rabbi andM. S. Siddik, “Detecting code comment inconsistency
using siamese recurrent network,” in Proc. 28th Int. Conf. Prog.
Comprehension, 2020, pp. 371–375.

[59] F. Rabbi, M. N. Haque, M. E. Kadir, M. S. Siddik, and A. Kabir,
“An ensemble approach to detect code comment inconsistencies
using topic modeling,” in Proc. Int. Conf. Softw. Eng. Knowl. Eng.,
2020, pp. 392–395.

[60] N. Stulova, A. Blasi, A. Gorla, and O. Nierstrasz, “Towards detect-
ing inconsistent comments in Java source code automatically,” in
Proc. IEEE 20th Int. Work. Conf. Source Code Anal. Manipulation,
2020, pp. 65–69.

[61] N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment
of source code comments: The javadocminer,” in Proc. Int. Conf.
Appl. Natural Lang. Inf. Syst., 2010, pp. 68–79.

[62] X. Xia, L. Bao, D. Lo, Z. Xing, A. E.Hassan, and S. Li, “Measuring pro-
gram comprehension: A large-scale field study with professionals,”
IEEE Trans. Softw. Eng., vol. 44, no. 10, pp. 951–976, Oct. 2018.

[63] S. Cass, “The 2018 top programming languages,” IEEE Spectr.,
vol. 31, 2018, Art. no. 1.

[64] P. W. McBurney and C. McMillan, “An empirical study of the tex-
tual similarity between source code and source code summaries,”
Empir. Softw. Eng., vol. 21, no. 1, pp. 17–42, 2016.

[65] T. M. Khoshgoftaar, Y. Xiao, and K. Gao, “Software quality assess-
ment using a multi-strategy classifier,” Inf. Sci., vol. 259, pp. 555–570,
2014.

[66] Y. Liu, X. Sun, and Y. Duan, “Analyzing program readability
based on WordNet,” in Proc. 19th Int. Conf. Eval. Assessment Softw.
Eng., 2015, Art. no. 27.

[67] X. Sun, Q. Geng, D. Lo, Y. Duan, X. Liu, and B. Li, “Code comment
quality analysis and improvement recommendation: An auto-
mated approach,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 06,
pp. 981–1000, 2016.

[68] O. Arafat and D. Riehle, “The commenting practice of open
source,” in Proc. 24th ACM SIGPLAN Conf. Companion Object Ori-
ented Program. Syst. Lang. Appl., 2009, pp. 857–864.

[69] F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empiri-
cal study on code-comment inconsistencies,” in Proc. IEEE/ACM
27th Int. Conf. Prog. Comprehension, 2019, pp. 53–64.

[70] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2014, pp. 91–100.

[71] E. Maldonado, E. Shihab, and N. Tsantalis, “Using natural language
processing to automatically detect self-admitted technical debt,”
IEEE Trans. Softw. Eng., vol. 43, no. 11, pp. 1044–1062,Nov. 2017.

[72] Z. Guo et al., “How far have we progressed in identifying self-
admitted technical debts? A comprehensive empirical study,”
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 4, pp. 1–56, 2021.

[73] P. Nie, R. Rai, J. J. Li, S. Khurshid, R. J. Mooney, and M. Gligoric,
“A framework for writing trigger-action todo comments in exe-
cutable format,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2019, pp. 385–396.

[74] D. Haouari, H. A. Sahraoui, and P. Langlais, “How good is your
comment? A study of comments in Java programs,” in Proc. IEEE
5th Int. Symp. Empir. Softw. Eng. Meas., 2011, pp. 137–146.

[75] W. Maalej and M. P. Martin, “Patterns of knowledge in API refer-
ence documentation,” IEEE Trans. Softw. Eng., vol. 39, no. 9,
pp. 1264–1282, Sep. 2013.

[76] D. Steidl, B. Hummel, and E. J€urgens, “Quality analysis of source
code comments,” in Proc. IEEE 21st Int. Conf. Prog. Comprehension,
2013, pp. 83–92. [Online]. Available: https://doi.org/10.1109/
ICPC.2013.6613836

[77] R. M. Santos, M. C. R. Junior, and M. G. D. Mendonça Neto,
“Self-admitted technical debt classification using LSTM neural
network,” in Proc. 17th Int. Conf. Inf. Technol.–New Gener., 2020,
pp. 679–685.

[78] M. Farias, M. Neto, M. Kalinowski, and R. Sp�ınola, “Identifying
self-admitted technical debt through code comment analysis with
a contextualized vocabulary,” Inf. Softw. Technol., vol. 121, 2020,
Art. no. 106270.

[79] J. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Is using deep
learning frameworks free?: Characterizing technical debt in deep
learning frameworks,” in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng.: Softw. Eng. Soc., 2020, pp. 1–10.

[80] G. Bavota and B. Russo, “A large-scale empirical study on self-
admitted technical debt,” in Proc. IEEE/ACM 13th Work. Conf. Min-
ing Softw. Repositories, 2016, pp. 315–326.

[81] A. T. Ying, J. L. Wright, and S. Abrams, “Source code that talks:
An exploration of eclipse task comments and their implication to
repository mining,” ACM SIGSOFT Softw. Eng. Notes, vol. 30,
no. 4, pp. 1–5, 2005.

[82] G. Spache, “A new readability formula for primary-grade reading
materials,” Elementary Sch. J., vol. 53, no. 7, pp. 410–413, 1953.

[83] H. Antunes and C. T. Lopes, “Analyzing the adequacy of readabil-
ity indicators to a non-english language,” in Proc. Int. Conf. Cross-
Lang. Eval. Forum Eur. Lang., 2019, pp. 149–155.

[84] N. Bettenburg, S. Just, A. Schr€oter, C. Weiss, R. Premraj, and T.
Zimmermann, “What makes a good bug report?,” in Proc. 16th
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2008, pp. 308–318.

Xiaowei Zhang is currently working toward the
PhD degree with the Department of Computer
Science and Technology, Nanjing University. Her
research interest is intelligent software analysis.

Weiqin Zou received the bachelor’s degree in
software engineering and the master’s degree in
computer science from the Dalian University of
Technology, and the PhD degree in software engi-
neering from Nanjing University. She is currently
an associate professor in College of Computer
Science and Technology, Nanjing University of
Aeronautics and Astronautics. Her research inter-
ests include empirical study and mining software
repositories.

ZHANG ETAL.: TOWARDS THE ANALYSIS AND COMPLETION OF SYNTACTIC STRUCTURE ELLIPSIS FOR INLINE COMMENTS 2301

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/ICPC.2013.6613836
https://doi.org/10.1109/ICPC.2013.6613836


Lin Chen received the PhD degree in computer
science from Southeast University, in 2009. He is
currently an associate professor with the Depart-
ment of Computer Science and Technology,
Nanjing University. His research interests include
software analysis and softwaremaintenance.

Yanhui Li (Member, IEEE) received the BS, MS,
and PhD degrees in computer science from
Southeast University. He is currently an assistant
professor with the Department of Computer
Science and Technology, Nanjing University. His
main research interests include AI testing and
debugging, empirical software engineering, soft-
ware analysis, knowledge engineering, and for-
mal methods. He is a member of IEEE.

Yuming Zhou received the PhD degree in com-
puter science from Southeast University, in 2003.
He is currently a professor with the State Key
Laboratory for Novel Software Technology and
the Department of Computer Science and Tech-
nology, Nanjing University. His main research
interests are software testing, defect prediction/
detection, and program analysis.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2302 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 4, APRIL 2023

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on June 21,2023 at 02:48:09 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


