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Deep Neural Network (DNN) testing has emerged as an effective way of uncovering erroneous behaviors in DNN models and
further enhancing their performance. Research on test input generation has gained much attention from both researchers
and practitioners, aiming to expose faults in models. The newly generated inputs subsequently serve as additional training
instances for model refinement through retraining. Existing approaches generate test inputs by optimizing an objective
function based on testing metrics such as neuron coverage and property-related metrics, and the gradient of the objective is
used to perturb seed inputs. However, these approaches pay limited attention to the model’s decision logic, particularly the
erroneous decision patterns learned during training. Furthermore, they primarily focus on detecting faults without considering
the diversity of detected misbehaviors, which limits the models’ ability to learn diverse features through retraining. To
address these limitations, this paper introduces SUNTest, a novel test input generation approach designed to detect diverse
faults and enhance the robustness of DNN models. SUNTest focuses on erroneous decision-making by localizing suspicious
neurons responsible for misbehaviors through the execution spectrum analysis of neurons. To guide input mutations toward
inducing diverse faults, SUNTest designs a hybrid fitness function that incorporates two types of feedback derived from
neuron behaviors, including the fault-revealing capability of test inputs guided by suspicious neurons and the diversity of
test inputs. Additionally, SUNTest adopts an adaptive selection strategy for mutation operators to prioritize operators likely
to induce new fault types and improve the fitness value in each iteration: Experiments conducted on eight DNN models
demonstrate the effectiveness of SUNTest in fault localization and test input generation. It outperforms existing test input
generators in the number of detected faults, uncovering up to 80.9 more distinct fault types. In terms of model enhancement,
SUNTest increases the average accuracy improvement by up to 8.04% compared to baseline approaches.

CCS Concepts: « Software and its engineering; - Software testing and debugging; - Neural networks;

Additional Key Words and Phrases: Deep Neural Network Testing, Test Input Generation, Fault Localization, Model Retraining

1 INTRODUCTION

Deep Neural Network (DNN) models are progressively being integrated into intelligent software systems and
are pervasive in safety-critical domains, such as medical diagnosis [16], autonomous driving [11], and aircraft
collision avoidance [34]. As the core components of intelligent software, DNN models facilitate advanced
functionalities through perception, prediction, and decision-making. Despite their tremendous success in various
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domains, numerous severe accidents have arisen due to inherent quality issues within DNN models [3, 63].
Therefore, the imperative to ensure and enhance the quality of DNN models has become critical and urgent. DNN
testing has emerged as an effective way of uncovering erroneous behaviors and boosting the trustworthiness
of models. Inspired by traditional software testing approaches, the software engineering research community
has made significant efforts to propose novel approaches specific to DNN models for test input generation
[9, 25, 43, 65, 68, 75, 83], test input selection [10, 18, 50, 61], and test adequacy analysis [21, 36, 37, 47, 74, 78]. In
this study, we mainly focus on the topic of test input generation.

Recent DNN testing studies on test input generation aim to produce inputs specifically designed to uncover
the misbehaviors of DNN models. These inputs are then incorporated as additional training instances to enhance
model performance through retraining. Metric-guided fuzzing (MGF) is the mainstream technique for generating
test inputs. At a high level, fuzz testing (a.k.q, fuzzing) mutates existing test inputs to generate new ones, with the
objective of detecting new faults by exploring large search spaces [52]. Existing MGF techniques [9, 25, 43, 68]
address the test input generation problem using an optimization framework designed to expose errors while
maximizing a specific testing metric in a limited testing budget. The optimization objective is formulated based
on testing metrics such as coverage and property-related metrics (e.g., neuron coverage metric [43], robustness-
oriented metric [9, 68]). The gradient of the objective function is used to perturb the input, directing it towards an
increase in the objective value. For example, approaches like DLFuzz [24] and ADAPT [43] utilize the gradients of
internal neurons within DNNs to perturb inputs. The goal is to generate fault-revealing test inputs while achieving
high neuron coverage. RobOT [68] adopts robustness-oriented testing metrics for designing its optimization
objectives. While existing MGF approaches have demonstrated high effectiveness in generating fault-inducing
test inputs, they still suffer from the following limitations.

Previous approaches have paid limited attention to generating test inputs based on an understanding of the
model’s decision-making mechanisms, particularly its erroneous decision logic. In traditional software testing,
structural test input generators aim to produce test cases that maximize coverage targets, such as branch and
statement coverage [55]. For branch coverage, control dependencies that characterize program logic are exploited
to search for test cases that meet coverage targets. Similarly, existing MGF approaches select neurons within DNN
models for generating test inputs by adding gradients to the original inputs, aiming to increase coverage [25, 43].
However, unlike code-level coverage for traditional software programs, neuron coverage does not necessarily fully
exercise the implicit logic embedded in DNNs. Recent studies [26, 44] also have highlighted that neuron coverage
exhibits a limited correlation with the decision logic of DNN models. Since the decision-making process of DNN
models relies on internal neurons [21, 74], identifying which neurons are crucial to decision-making remains
a challenge for testers, particularly those responsible for erroneous decision logic. The absence of white-box
analysis makes it difficult to find which critical components have been overlooked during debugging and testing.
Existing neuron selection strategies designed by approaches like DLFuzz [25] and ADAPT [43] often fail to
prioritize neurons that are crucial for inducing misbehaviors. Given the vast search space of possible test inputs,
this limitation constrains the generation of test inputs that specifically target fault-inducing neurons, thereby
hindering the ability to stress the model to expose faults. Therefore, the lack of targeted white-box testing
approaches not only hinders the understanding of DNN behaviors but also limits the effectiveness of test input
generation in addressing the root causes of faults.

Second, previous approaches do not consider the diversity of detected incorrect behaviors of DNN models.
Intuitively, a highly diverse set of test inputs can better explore the fault space, thereby increasing the fault
detection capability of the input set. Existing MGF approaches employ gradient-guided strategies to produce
pixel-level perturbations. However, these strategies face challenges due to gradient vanishing. When the gradient
is small, the generated test inputs tend to be highly similar [83]. It limits the capability of DNN models to learn
more diverse features during the retraining process. Additionally, these approaches [25, 43] rely solely on the
number of inputs that induce errors to define the fault detection capability of a test input set. It is misleading
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because some test inputs may share the same types of faults. Gradients do not convey information related to fault
diversity, which may hinder the effectiveness of uncovering diverse fault types in DNN models. This limitation
is particularly pronounced when developers encounter numerous test inputs exhibiting duplicated fault types,
making it difficult to sufficiently repair DNN models.

To address the aforementioned challenges, this paper proposes a novel test input generation approach, termed
SUspicious Neuron-aware Test input generation (SUNTest). The approach is designed with two primary goals:
1) to characterize erroneous decisions in DNN models by localizing suspicious neurons, and 2) to generate
test inputs that induce diverse faults with a focus on erroneous decision-making. Specifically, SUNTest begins
by determining dynamic neuron activation thresholds through an analysis of neuron output distributions. It
establishes an execution spectrum for each neuron by monitoring its behaviors during the execution of training
inputs. It then localizes the neurons responsible for erroneous decisions, referred to as suspicious neurons.
Following this, SUNTest generates new test inputs by iteratively mutating seed inputs using various domain-
specific mutation operators. To guide the mutation process, SUNTest introduces a hybrid fitness function that
incorporates two feedback derived from neuron behaviors: 1) error-revealing capability feedback, which searches
for test inputs that could increase the outputs of suspicious neurons, and 2) input diversity feedback, which
favors test inputs exhibiting high diversity. Newly mutated test inputs that increase the fitness value are adopted
as seeds for further mutation iterations. Additionally, an adaptive operator selection strategy that learns from
historical test execution results of mutation operators is introduced. In each iteration, it prioritizes selecting
a mutation operator that is likely to trigger a new fault type and improve the fitness value. Finally, the newly
generated test inputs serve as additional training instances to enhance the model through retraining.

To evaluate the effectiveness of SUNTest, an empirical evaluation is conducted on four widely used datasets
and eight carefully designed classification models. Adversarial attack strategies are employed to simulate diverse
testing scenarios with varying data distributions. The experimental results demonstrate that SUNTest outperforms
existing fault localization approaches. It surpasses state-of-the-art test input generators, increasing the number
of detected faults by up to 310.5. The increase in the number of triggered fault types ranges from 29.2 to 80.9. In
terms of model enhancement, SUNTest increases the average accuracy improvement by up to 8.04% compared
to baseline approaches, achieving an improvement rate of up to 195.8%. Additionally, both the guidance from
suspicious neurons, the adaptive mutation operator selection strategy, and the hybrid fitness function contribute
to the effectiveness of SUNTest. The replication package can be found in our online artifact [1].

The contributions of this paper could be summarized as follows:

e We propose SUNTest, a novel test input generation approach for DNN models guided by the analysis of
erroneous decisions. SUNTest is designed to detect diverse faults and improve the robustness of DNN
models.

e By employing dynamic activation thresholds based on neuron output distributions, the neuron spectrum
isintroduced to localize suspicious neurons responsible for erroneous decisions in DNN models.

o A hybrid feedback mechanism based on neuron behaviors and an adaptive selection strategy for mutation
operators are designed to guide mutations toward generating error-revealing test inputs capable of
triggering diverse fault types.

e An Empirical evaluation is conducted to investigate the effectiveness of SUNTest. The results demonstrate
its effectiveness in localizing suspicious neurons. SUNTest significantly outperforms other test input
generation approaches in terms of triggering diverse faults and enhancing model robustness.

This paper extends our previous work [24] published in ISSRE 2023, which introduces suspicious neurons for
test input selection. The prior work, called MOON, focuses on selecting a subset of test inputs from an unlabeled
test set for model retraining. SUNTest mutates seed inputs to uncover errors and improve model robustness
through retraining. Both approaches leverage the concept of suspicious neurons to characterize erroneous

ACM Trans. Softw. Eng. Methodol.



4 « Guoetal

decisions made by DNNs and evaluate the potential of inputs to expose errors based on neuron behaviors. The key
differences between the two approaches lie in their downstream tasks and methodologies. MOON transforms test
input selection into a search problem, employing a multi-objective optimization algorithm to identify test inputs
that maximize two objectives: suspicious neuron activation and input diversity. SUNTest adopts a fuzzing-based
framework for test input generation by mutating seed inputs. It formulates the mutation process as a Markov
Chain problem, designing a hybrid fitness function based on neuron behaviors to determine whether a mutated
input can be used in subsequent iterations. Additionally, we integrate MOON to sample initial test inputs from the
input corpus as seed candidates for the fuzzing-based test input generation process. This integration constitutes
an important step in SUNTest’s overall test generation strategy.

The rest of this paper is organized as follows: Section 2 introduces the background knowledge of this work.
Section 3 presents details of the proposed approach. Section 4 outlines experimental settings. Section 5 provides
experimental results and analysis. In Section 6, implications of this work and threats to validity are discussed.
Section 7 presents the related work, and section 8 concludes this paper.

2 BACKGROUND
2.1 Spectrum-Based DNN Fault Localization

DNN models consist of stacked, non-linear layers with highly interconnected neurons, rendering the model
logic opaque to human understanding. The internal complexity and opacity of DNN models pose challenges
in the context of fault localization. The term ‘fault’ is adopted to describe situations where the DNN model
generates an output, but the actual result deviates from the expected outcome. Factors such as poor-quality
training data, an inadequate training process, or suboptimal hyperparameters can contribute to the occurrence
of such faults. Since the decision-making process of DNNs relies on neuron outputs, previous fault localization
techniques for DNNs focus on pinpointing neurons responsible for erroneous behaviors. These techniques draw
an analogy between neurons responsible for erroneous behaviors in DNNs and faulty statements in traditional
programs. The paradigm of Spectrum-Based Fault Localization (SBFL) [32, 85], originally developed for traditional
software programs, has been extended to DNN models. SBFL techniques for traditional software take a faulty
program and a set of test cases as input, producing a ranked list of suspicious program elements as output. It
begins by analyzing the frequency of program elements executed (covered) by both passing and failing test
cases to construct the program’s execution spectrum [73]. Using a risk evaluation formula (i.e., suspiciousness
measure), SBFL then calculates suspicious scores for program elements, indicating their likelihood of being faulty.
Techniques such as Tarantula [33], Ochiai [2], and DStar [72] follow the above paradigm but utilize different risk
evaluation formulas to compute suspicious scores of program elements.

For spectrum-based DNN fault localization, each neuron within DNN models is treated as a distinct component.
Since DNN decisions are collectively determined by all neurons within the model [78], the concepts of ‘executed’
and ‘non-executed’ are not applicable. To capture the execution state of neurons, continuous neuron outputs
are converted into discrete states, i.e., activated or inactivated [15, 58]. Given a DNN model D, the spectrum
of each neuron n is defined as a tuple Nsp = (AZS,Af,f , Aﬁf,A;f ). Specifically, attributes A% and Af,f denote the
number of times neuron n was active when the model D made correct and incorrect predictions. Attributes A
and Aif signify the number of times neuron n was inactivated when D made a successful and failed decision.
SBFL formulas for traditional software are adapted to measure the correlation between each neuron and the
detected erroneous behaviors in the context of DNN models. Neurons with higher suspiciousness scores are
presumed to have a stronger correlation with erroneous behaviors. This paper tailors SBFL techniques to establish
the execution spectra for neurons by employing dynamic neuron activation thresholds, thereby facilitating the
localization of suspicious neurons.
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2.2 Fuzzing-based Test Input Generation

In the Software Engineering community, the generation of test inputs for DNN models has been introduced as a
means to produce artificial inputs. These inputs are adopted to assess whether a DNN model can generalize beyond
the initial training set. Recent research in DNN testing focuses on generating test inputs that are specifically
designed to induce potential misbehaviors of DNN models. Formally, given a non-triggering input x as a seed,
the goal is to generate a new input x” by applying domain-specific perturbations to the seed, such that x” induces
a different prediction output from the DNN model compared to the expected output. The expected output of x” is
assumed to be the same as the output of x. By incorporating the newly generated inputs into the training process,
the DNN model learns to handle a wider variety of scenarios, thereby increasing its accuracy and robustness.
This iterative process of testing and retraining is fundamental to the development of reliable DNN models.

Recent studies propose MGF approaches for generating test inputs, primarily aimed at exposing errors while
optimizing specified testing metrics within a limited testing budget. Previous MGF approaches [25, 43, 68]
tackle the challenge of generating test inputs through an optimization framework. The optimization objective is
formulated based on specific testing metrics (e.g., coverage metrics, model property-correlated metrics, uncertainty
metrics). Formally, let M = {my, my, ..., my} be the set of testing metrics. The goal.is to find a set of test inputs
T = {t1, ty, ..., tn} that maximizes the optimization objective function Qu(T):

k
max Qum(T) = U Z ;0 (my, tj) . (1)

ijT i=1

Each O (m;, t;) denotes the value of test input ¢; with respect to the testing metric m;, and w; represents the
weight of metric m;. The gradient of the objective is employed to perturb the seed input, directing it towards an
increase in the objective value. Particularly, Coverage-Guided Fuzzing (CGF) is one of the MGF techniques that
adopts coverage metrics to formulate the optimization objective. It aims to generate test inputs that are likely to
increase the DNN coverage. This paper evaluates the effectiveness of SUNTest through a comparative analysis
with state-of-the-art MGF approaches.

The primary objective of this formulation is not to simultaneously maximize the test objectives and minimize
the size of the test suite T. Instead, existing approaches aim to generate test inputs under predefined stopping
criteria, with the goal of maximizing the objective functions. While optimizing both test objectives and test
suite size is feasible, it remains an underexplored area for DNN testing. Investigating this trade-off presents a
promising direction for future research.

3 APPROACH
3.1 Overview

Figure 1 provides an overview of SUNTest, which comprises two main components: suspicious neuron localization
and test input generation. Initially, SUNTest determines the dynamic neuron activation threshold by analyzing
neuron output distributions. It constructs the neuron spectrum by monitoring neuron behaviors during the
execution of both correctly and incorrectly classified training inputs. Subsequently, SBFL formulas are employed
to identify suspicious neurons responsible for erroneous behaviors of DNN models. Suspicious neurons are
utilized as guidance to generate error-revealing test inputs.

SUNTest generates test inputs through multiple iterations of mutations. It selects inputs from the original
testing set as seeds. In each iteration, an adaptive mutation operator selection strategy is employed to generate a
new test input by mutating the seed. The mutated test inputs are fed into the DNN model to observe neuron
behaviors and obtain test execution results. To guide the mutation process, SUNTest utilizes a hybrid fitness
function that combines error-revealing capability feedback and input diversity feedback. Guided by suspicious
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neurons, this hybrid feedback mechanism is designed to favor test inputs likely to trigger errors and exhibit high
diversity. These ‘valuable’ test inputs are adopted as seeds for further mutation iterations. The test execution
results of each mutation, particularly the frequency of triggering new fault types and improving fitness values,
are used to update the operator selection strategy.

3.2 Suspicious Neuron Localization

To capture the behaviors of neurons, SUNTest establishes a neuron spectrum for each neuron based on the
dynamic neuron activation threshold. Neurons that respond violently to misclassifications are identified and
categorized as suspicious neurons.

ACM Trans. Softw. Eng. Methodol.
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3.2.1  Dynamic Neuron Spectrum Analysis. Followed by the definition in Section 2.1, SUNTest establishes the
neuron spectrum by inputting both passed (correctly classified by the model) and failed (misclassified by the
model) inputs into the DNN model. Since the decision logic of the DNN model is determined by the training
set, SUNTest establishes the neuron spectrum through the execution of training inputs. It is designed to identify
neurons responsible for erroneous decisions and learned errors during the training phase.

To capture the execution states of neurons, continuous neuron outputs are converted into discrete states, i.e.,
activated or inactivated [15, 58]. A neuron is considered activated if its output exceeds a predefined threshold
(e.g., 0.5 or 0.75). Nevertheless, assigning neurons as either activated or inactivated based on a fixed activation
threshold fails to capture the variations in output among different neurons. To illustrate this, we randomly
select two neurons from the investigated DNN model (MNIST-ConvNet) and generate their corresponding
output distributions by executing training inputs, as depicted in Figure 2. In the figure, the x-axis represents
the output values, while the y-axis represents the frequency of the involved inputs. The orange and blue areas
represent the output distributions of the two neurons, respectively. The darker areas indicate the regions where
these distributions overlap. Noticeable differences are evident in the output distributions, particularly in the
high-frequency regions. Intuitively, each neuron’s output follows its statistical distribution: Therefore, to capture
the variation in neuron behaviors, SUNTest is tailored to the statistical properties of each neuron’s outputs,
rather than relying on a fixed threshold. SUNTest employs dynamic activation thresholds based on the output
distributions of neurons. Specifically, it creates a histogram HT, for each neuron, where the x-axis denotes the
output value and the y-axis represents the number of involved inputs. Initially, by feeding the training set T
into D, SUNTest computes the outputs of neuron n across all training inputs and divides the output range into b
equal intervals. It then determines the proportion of training inputs within each output interval. Finally, SUNTest
derives the activation threshold for neuron n as the average value of the top-K most frequent output intervals.
The dynamic activation threshold for neuron n is defined as follows:

K 1
= ¥ Y
bl

TS, = 3

)
where gbll and ¢ denote the lower and upper bound of output interval i, respectively. In the experiments, b is
set to 1000, and K is set to 100. The activation threshold TS, represents the major behaviors of the neuron n. As
depicted in Figure 2, the clustered output values capture the major behaviors of neurons, whereas neuron outputs
lying in low-frequency regions characterize corner-case behaviors. Moreover, since layers closer to the output
layer extract high-order features [10, 21], SUNTest selects the penultimate fully connected layer as the target
layer for constructing the spectrum for each neuron.

3.2.2  Neuron Suspiciousness Measurement. A risk evaluation formula assigns a suspiciousness score to each
neuron based on four attributes within the neuron spectrum. The suspiciousness score for each neuron reflects
its accumulated response to both correctly and incorrectly predicted instances from the training set. This score
serves as an indicator of how much a neuron contributes to the model’s overall decision-making errors. SUNTest
incorporates well-established SBFL formulas, namely Tarantula [33], Ochiai [2], and DStar [72]. These formulas
have been widely adopted in the domain of automated software debugging [32, 73, 85]. In this section, we have
omitted the formulation of risk evaluation formulas. Interested readers are referred to the literature [15, 24] for
detailed definitions of these formulas as applied in DNN fault localization. In particular, SUNTest adopts a fixed
value of 3 for DStar’s variable *, following recommendations from the literature [57].

Once suspiciousness scores are computed for neurons in the target layer, they are ranked in descending order.
The top A percentile of neurons is selected as suspicious neurons. SUNTest calculates suspiciousness scores by
treating each neuron as a basic computational unit. Model misbehaviors are often linked to multiple neurons. The
hyperparameter A is employed to adjust the number of selected suspicious neurons within a target layer. This
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flexibility allows practitioners to aggregate multiple suspicious neurons within a layer, linking them to observed
model misbehaviors. By doing so, it facilitates the identification of neuron combinations within a layer that may
collectively contribute to these misbehaviors.

3.3 Test Input Generation Based on Suspicious Neurons

Table 1. Mutation Operators Adopted in SUNTest

Pixel-Level Description ‘ Image-Level Description
Random Pixel Change Randomly change the values of pixels to arbitrary in [0, 255] | Translation Moves the pixels of the image for a certain distance
Add Salt & Pepper Noise ~ Randomly convert the values of pixels into 255 or 0 Brightness Adjustment  Adjust the brightness to simulate illumination changes
Add Gaussian Noise Add a randomly generated Gaussian-distributed noise Rotation Rotate the image for a certain angle
Add Multiplicative Noise ~ Add a randomly generated Multiplicative nose Median Blurring Blur the image using a random median filter

Average Blurring Blur the image using a random average filter

Gaussian Blurring Blur the image using a random Gaussian filter

Suspicious neurons, accountable for misclassifications, reflect the erroneous decision logic of a DNN model.
Leveraging suspicious neurons as a guide for generating test inputs enables the induction of the model’s incorrect
decision logic. Existing studies often overlook the diversity of the generated test inputs, resulting in limited
capability to diversify detected fault types. Therefore, SUNTest generates test inputs guided by outputs of
suspicious neurons, which aims to trigger the faulty decision logic within DNN models. Besides, to diversify
the detected behaviors, SUNTest also takes into account the diversity of mutated inputs. Formally, given a
non-triggering test input x as a seed, SUNTest aims to produce a follow-up test input x such that the top-1 label
predicted by the DNN model D differs from that of x. This s achieved by applying a mutation operator O,, to x,
resulting in x” = x + O,,. The mutation process is guided by a hybrid fitness function and a mutation operator
selection strategy. The goal is to generate error-revealing test inputs that can detect various types of faults.

Since mutation operators are domain-specific, this paper primarily focuses on image classification models.
Existing MGF techniques [9, 25, 43, 68] typically perturb a‘small set of pixels in an image to generate a test input.
SUNTest not only uses pixel-wise changes but also incorporates image-level mutations for test input generation.
The primary focus of SUNTest is not on introducing new mutation operators, but rather on adaptively adjusting
the priority of operators in the queue based on the results of test execution. The detailed mutation operators
adopted in this study are listed in Table 1. These mutation operators are widely utilized in simulating real-world
scenarios in recent studies [65, 66, 77].

3.3.1 Test Input Generation Algorithm. Algorithm 1 depicts the details of the neuron behavior-guided test input
generation algorithm. The algorithm takes the DNN model under test D, the hybrid fitness function F, a pool
of mutation operators L, and iteration times max_iter as inputs. The output of the algorithm is the generated
test input set, denoted as R, capable of triggering errors. Within the pool of mutation operators, each operator
maintains a reward score that signifies its priority for selection during the iteration.

The algorithm maintains a seed list S that stores ‘valuable’ seed inputs. Initially, the algorithm randomly selects
a seed input x from the seed_list S (lines 3-4). f;,qx Stores the maximum fitness value among all generated test
inputs. It is initially set to the fitness value of x according to the hybrid fitness function (line 5). The mutation
operator latest_O, is initialized as @. Subsequently, the algorithm generates test inputs through multiple iterations
of mutations, as indicated by the inner loop in lines 7-25. If the mutation operator is @, the algorithm randomly
selects an operator from the pool of operators to initialize latest_O,, (lines 8-9). Otherwise, the algorithm adopts
an operator selection strategy to choose an operator O, (lines 10-11). The adaptive operator selection process
favors an operator that is more likely to make the mutated test input trigger diverse errors. The selected operator
is then applied to mutate the input x, generating a new test input x (line 13). The fitness value of x” is obtained
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Algorithm 1 Neuron Behavior-Guided Test Input Mutation for DNN Models

Input: An DNN model under test D, the hybrid fitness function F, the seed list S, the mutation operator pool L, iteration
times max_iter
Output: Generated test input set R
1: R—©
2: while not_empty(S) do
3 X < obtain_seeds(S) > randomly pick a seed from the list of seeds S
4 S—S\x
5: fmax < obtain_fitness(D, x, F)
6: latest_Op «— @
7
8
9

for t = 1 to max_iter do
if latest_Op == @ then

latest_Op « initialize(L) > randomly select an operator from the pool
10: else
11: Op « find_operator(latest_Op, P) > MCMC-guided mutation operator selgetion
12: end if
13: x' — Op(x) > mutate the input x with the operator
14: fx» < obtain_fitness(D,x’, F)
15: if £(x) # é(x’) then > check whether the model outputs inconsistént results
16: R« RUX
17: else
18: if fyr > fimax then > check whether the objective value is‘increased
19: fmax < fx'
20: x —x'
21: latest_Op < Op
22: end if
23: end if
24: update(Op) > update the rewgatd,score of the operator
25: end for

26: end while
27: return R

using the function obtain_ fitness() (line 14). Next, if the DNN model produces different prediction results for x
and x, x is added to the set R (lines 15-16). The algorithm determines whether to update f;,4x by comparing the
fitness value f; with f;,,, and selects the input with a higher fitness value for the next iteration (lines 18-22).
Finally, the reward score of the operator O, is updated at the end of each iteration based on the test execution
results, including the error-revealing capability, the degree of fitness value enhancement, and the frequency of
the operator being selected (line 24).

3.3.2  Hybrid Feedback Mechanism. SUNTest introduces a hybrid feedback mechanism designed to determine
whether the newly mutated input x” could be used as a seed input for subsequent mutation iterations. Based
on neuron behaviors, it formulates a hybrid fitness function that integrates error-revealing capability and input
diversity measurement as the fuzzing feedback. It aims to favor inputs that are more prone to inducing erroneous
behaviors and triggering diverse behaviors of DNN models.

Error-Revealing Capability Feedback. In the case of test inputs capable of inducing errors, the erroneous
decisions made by DNN models are predominantly influenced by suspicious neurons. Therefore, SUNTest
formulates the fitness function f(x) to favor inputs capable of activating suspicious neurons to a large extent,
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aiming to induce misclassifications in subsequent iterations. This is achieved by maximizing the outputs of a
dynamically combined set of suspicious neurons. The fitness function f(x) is formulated as follows:

Nk
£ &) = > [(bilhe) g ()] (3)
k=1
Ny denotes the number of suspicious neurons within the target layer, where ¢ (x) represents the output of the
k-th suspicious neuron with respect to an input x. The vector b consists of Ni elements, each corresponding to
a suspicious neuron, and it is initialized with all elements set to 0. SUNTest dynamically combines suspicious
neurons by introducing a random vector h, which indicates the positions of randomly selected suspicious neurons.
Specifically, the vector h is defined as h = RANDOM(q 1) (b), where RANDOMq 1) (b) randomly generates a
Boolean vector of the same size as b, with each element h; randomly assigned a value of either 1 or 0. The sum of
elements in h, denoted as }; h, is given by >} h = ROUND(Nj X q), where ROUND() rounds the result to the
nearest integer. In this context, SUNTest sets g to 0.8. Given that by and hj are elements of the vectors b and h,
respectively, the symbol ‘|’ in this case represents the logical OR operation. The condition by |[hx =,1 holds true if at
least one of by or Ay, is equal to 1. To illustrate, consider a simple case where N = 5 and the vector b = [0, 0, 0, 0, 0],
representing five suspicious neurons in the target layer. The random vector h is generated as h = [1,1,1, 1, 0],
with 4 elements set to 1, as determined by the formula 5 X 0.8 = 4. Consequently, the condition by |hx = 1 results
in [1,1,1,1,0], as the logical OR between corresponding elements of b and h results in 1 whenever at least one of
by or hy is 0.

Input Diversity Feedback. Diverse test inputs, exhibiting variations from one another, could reveal diverse
behavior patterns within the DNN model, enabling the detection of a broad range of fault types. Besides,
improving the effectiveness of retraining by incorporating a more varied set of inputs, rather than utilizing a
set of similar inputs, allows the DNN model to learn diverse features. Therefore, SUNTest maximizes a fitness
function designed to measure the dissimilarity between an input and the previously generated error-revealing
inputs. Specifically, SUNTest computes the distance between the individual input x and the inputs within the
set R, where R represents the set of previously generated error-revealing test inputs. The decision behaviors of
DNN models, when confronted with inputs, are characterized by neuron outputs. Consequently, the distance is
calculated based on neuron outputs. The fitness function, denoted as g(x), is formulated as follows:

N N
D6 ()= i (y)
i i p

N denotes the neurons in the target layer. The cumulative outputs of all neurons in the target layer associated
with the input x are denoted-as va @i (x). |||, denotes the LP-norm. SUNTest employs the Euclidean distance to
evaluate the input diversity, where p is set to 2 in the experiments.

Hybrid Fitness Function. The hybrid fitness function F(x) for an input is defined as:

. )

g(x) = MiNyeR yzx

)
f(x)+g(x) R# 0.

In the process of generating test inputs, when error-revealing test inputs have not been generated, the set R

remains empty. In such instances, the fitness function F(x) is solely determined by f(x). In contrast, when R(x)

is non-empty, the fitness function F(x) is defined as a combination of f(x) and g(x).

Hﬂ:{ﬂm R=2

3.3.3 Selection Strategy of Mutation Operators. Various operators induce different types of mutation in the
input, guiding the seed input towards triggering diverse behaviors in DNN models. In each iteration, SUNTest
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employs an adaptive selection strategy that learns from historical test execution results to prioritize an operator
for mutating the seed input. This strategy aims to favor an operator that is likely to produce the next mutated
test input x” with a higher fitness value than x, while also being capable of introducing new fault types. To
achieve this goal, the mutation operator selection process is formulated as a Markov Chain Monte Carlo (MCMC)
problem [35]. MCMC is utilized to sample from a probability distribution by constructing a Markov Chain that
converges to the desired distribution. This process can be modeled as a stochastic process {Opo, Op,, Op,; ..., Op, },
where each state O,, signifies the selected operator at the i-th iteration. The selection of Op,,, from all possible
operators within the pool is solely determined by O,,. SUNTest employs the Metropolis-Hastings (MH) algorithm
[35] to guide the selection of mutation operators.

During each iteration, each operator is assigned a reward score according to the reward function. Suppose O,
is the selected operator at the i-th iteration of mutation. To determine which operator to use for the (i + 1)-th
iteration, operators are ranked in descending order based on their reward scores. To avoid repeatedly selecting
the highest-ranked operator in subsequent iterations, which may produce duplicate test inputs, an acceptance
probability for the state transition is introduced. This acceptance probability determines whether to execute the
state transition, i.e., moving from the current state to the next state. It ensures that each operator has a chance of
being selected, with higher-ranked operators having a greater likelihood. The acceptance probability for O,,,,
given Oy, is defined as follows:

p (OPM |OPi) = min(1, (1 - p)™7"), (6)

where p represents the multiplicative inverse of the number of mutation operators in the pool. r; and r;;; denote
the positions of O,, and O,,,, in the priority list. If O, is ranked higher than O,, (i.e., ri;; < r;), then O,
is accepted. Otherwise, Op,,, still has a certain probability (1 — p)"*™"* to be accepted. Before the end of each
iteration, the reward scores of operators are dynamically adjusted based on the information gathered from
historical test execution results.

Reward Function. The reward score of an operator is gauged by its capability of generating test inputs with
diverse fault types and enhancing the fitness value. Specifically, the reward function is designed based on two
factors: 1) The frequency of triggering new fault types. How many distinct fault types have been detected based
on the operator? 2) The frequency of improving the fitness value. How often the fitness value has been enhanced
by the operator? The reward function is formulated as follows:

di Wi

r(Op)= ’7i+fx e

(7)

The symbol i denotes the number of iterations. 1; represents the total number of times that the operator has been
selected. To prevent the case of division by zero when #; equals zero, ¢ is set to le-5. §; represents the number of
non-redundant fault types detected by the operator, while w; signifies the frequency with which the fitness value
has been enhanced by the operator.

4 EXPERIMENTAL SETTINGS

SUNTest is implemented on an Ubuntu 18.04 server, using Python (v3.8) as the programming language. The
open-source Machine Learning frameworks employed in this study are Keras (v2.5.0rc0) and TensorFlow (v2.5.0).
The geatpy library (v2.6.0) is utilized to implement the search-based test input selection algorithm. All experiments
were conducted on a machine with an NVIDIA GTX 3090 GPU, an Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
processor, and 160 GB of memory.

4.1 Research Questions

In the experimental evaluation, we aim to answer the following five research questions.
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¢ RQ1: Can SUNTest localize suspicious neurons effectively?

Since suspicious neurons contribute to erroneous decision results, reversing the weights associated with these
neurons could potentially mitigate error propagation to subsequent layers [82], thereby improving the accuracy
of DNN models. To evaluate the effectiveness of SUNTest in localizing suspicious neurons, we reverse the sign
of the weights of these neurons and examine the Inconsistency Rate (IR) of the DNN model as a result. The IR
metric is defined as follows:

Zyex ¥(G(x) # -C(X))’ ®)
X1

where X is a set of test inputs. G(x) denotes the predicted label of x after flipping the outputs of suspicious
neurons. £ (x) represents the actual label of x. ¥ is the indicator function. The IR metric indicates the percentage
of inputs in a set for which the prediction results differ from the actual labels after flipping suspicious neurons in
a DNN model. The IR metric and accuracy are conceptually similar, as both evaluate model performance, though
from different perspectives. Accuracy focuses on the number of correctly predicted samples, whereas IR counts
the number of incorrectly predicted samples. We chose to adopt the IR as a metric based onits use in prior work
[74]. It indicates the percentage of inputs in a set for which the prediction results differ from the actual labels
after flipping suspicious neurons in a DNN model. The IR metric is complementary to accuracy. Once the IR is
calculated, accuracy can be easily derived using the equation: Accuracy = 1 — IR. A lower IR corresponds to
higher accuracy.

This paper adopts the parameter A to control the size of suspicious neurons. It also represents the proportion of
neurons with flipped weights for each model. To avoid the large accuracy degradation caused by flipping a large
number of neurons in DNN models, the parameter A is varied from 0to 0.6 with an interval of 0.1. Given an input
set, we first analyze the IR results produced by the original DNN model without neuron ablation (When A = 0).
We then compare these results with the IR values obtained after'ablation of the suspicious neurons. A lower
IR value for A values ranging from 0.1 to 0.6, compared to the original IR, indicates that flipping the weights of
suspicious neurons helps to mitigate certain errors in the model. In addition, the optimal parameter setting is
determined by identifying the A value that results in the lowest IR.

IR(X) =

e RQ2: How effective is SUNTest in generating fault-triggering test inputs?

RQ2 investigates the fault detection capability and fault diversity triggering capability of SUNTest compared
to baseline approaches. Similar to traditional software testing, a test input generation approach that can trigger
more faults is more effective at revealing software defects. Therefore, we compare the number of triggered faults
(i.e, the number of error-revealing test inputs) in the test inputs generated by SUNTest and baseline approaches.
The investigated generation approaches adopt the same test input selection strategy to select seed inputs of the
same size for iteratively generating test inputs.

To uncover diverse erroneous behaviors in DNN models, we expect the test input generation approach to
detect not only a greater number of faults but also a variety of fault types. We adopt the number of triggered fault
types to evaluate the fault diversity triggering capability of the compared approaches. Given a test input x being
misclassified by a DNN model, its fault type is defined as a tuple (L(x) — G(x)) consisting of the actual label
and the predicted label [19]. £ denotes the actual label of x and G(x) denotes the predicted label, respectively.
Taking the MNIST dataset as an example, if a handwritten digit image x with a true label of ‘3’ is misclassified as
‘5’, the fault type of x is denoted as (3 — 5). For an input set with 10 categories, the total number of distinct fault
types is 10 X 9 = 90. Given a set of generated test inputs X, the number of triggered distinct fault types (FT) is
defined as follows:

FT (X) = [{(L(x) = G(x)) | x € X}, )
where {(L(x) — G(x)) | x € X} denotes the set of unique fault types triggered by X.
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Coverage metrics of DNN models provide a quantifiable way to measure the diversity of a test suite. RQ2
further investigates the effectiveness of SUNTest in generating diverse test inputs by analyzing the coverage
of the generated inputs. We adopt two typical coverage criteria, i.e., Distance-based Surprise Coverage (DSC)
[36, 37] and Neural Coverage (NLC) [78] in the evaluation. Specifically, the Distance-based Surprise Adequacy
(DSA) metric quantifies the distance between the neuron output values of an input and the neuron output values
of the training set. The DSC criterion quantifies the range of DSA values covered by a test suite, reflecting its
diversity relative to the training set. It measures the test adequacy by assessing the coverage of the test suite over
the training set. NLC is designed to capture the divergence and correlation in distributions formed by neuron
outputs, demonstrating its effectiveness in assessing the diversity of a test suite.

Furthermore, RQ2 employs Inception Score (IS) [60] and Fréchet Inception Distance (FID) [28] as quantitative
metrics to assess the quality of the generated test inputs. These metrics are widely recognized in both the Al and
software engineering communities for assessing image quality [26, 78]. The IS metric evaluates two key attributes
of the generated inputs: each input contains a clear object and exhibits high diversity. FID measures the distance
between the generated and real images at the feature level.

¢ ROQ3: Does the test inputs generated by SUNTest guide the model retraining more effectively?

The retraining process plays a key role in the model enhancement, facilitating the correction of learned errors
and the acquisition of new knowledge. RQ3 aims to evaluate the effectiveness of SUNTest in guiding model
enhancement through retraining with newly generated test inputs. Due to the potential problems of overfitting
or catastrophic forgetting [8] when retraining models, we retrained DNN models using mixed training sets. For
each model, newly generated test inputs produced by each test input generation approach are merged with the
original training data, forming a combined training set utilized for retraining the model. The retraining process
involved an additional five epochs. The hyperparametersused during retraining were set in the same way as
those for the pre-trained DNN models. The retraining process was repeated 5 times to mitigate the effects of
randomness, and average accuracy improvements were reported as the final results.

o RQ4: What are the effects of SUNTest components in generating test inputs?

The SUNTest algorithm consists of three main components: suspicious neuron localization, the hybrid fitness
function, and the adaptive selection strategy for mutation operators. RQ4 aims to perform an ablation study to
explore the contributions of each of these components to the overall effectiveness of the algorithm. We evaluate
SUNTest and its variants by reporting the number of error-revealing test inputs, the number of triggered unique
fault types, and the average accuracy improvements achieved in DNN models.

¢ RQ5: How efficient is SUNTest?

RQ5 aims to investigate the efficiency of SUNTest in localizing suspicious neurons and generating test inputs.
Regarding the execution time cost for localizing suspicious neurons, we separately record the time overhead
for both neuron spectrum analysis and neuron suspiciousness measurement. In terms of test input generation
efficiency, we calculate the average execution time cost of four test input generation approaches across all seed
selection strategies. To ensure consistency, each test input generator is applied to a fixed number of seed inputs
and follows the same iteration stopping condition.

4.2 Datasets and DNN models

The experiments were conducted on four well-established datasets: MNIST [42], CIFAR10 [38], SVHN [53], and
CIFAR100 [39]. MNIST is a dataset consisting of handwritten digits, with 60,000 training and 10,000 testing
inputs. The CIFAR10 dataset comprises 50,000 training inputs and 10,000 testing inputs, including objects such
as birds and airplanes. The SVHN dataset captures street-view house numbers from real-world scenarios. It
includes 73,257 training images for training and 26,032 images for testing. CIFAR100 is a dataset consisting of 100
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Table 2. Datasets and DNN models

Dataset DNN model # Layers # Trainable Parameters # Neurons Testing Accuracy
MNIST LeNet5 10 107,786 120 98.58%
ConvNet_1 12 1,218,634 128 91.06%
ConvNet_2 25 2,915,114 512 77.12%
CIFAR10 VGG16 23 2,856,010 256 84.32%
SVHN ConvNet_3 19 6,530,250 128 91.00%
VGG16 23 2,856,010 256 92.92%
VGG19 45 15,038,116 512 68.95%

IFAR1 e

CIFAR100 ResNet18 69 11,486,826 512 67.12%

object classes, comprising 50,000 training images and 10,000 testing images. For each dataset, two DNN models
with different architectures were employed for evaluation. For the MNIST dataset, a LeNet5 model [41] and a
Convolution Neural Network (CNN) model (ConvNet_1) were trained. We used-a VGG16 model [62] and a CNN
model (ConvNet_2) for the CIFAR10 dataset. For SVHN, a LeNet5 model and a CNN model (ConvNet_3) were
applied. For CIFAR100 dataset, we used a VGG19 model [62] and a ResNet18 model [27]. Table 2 provides detailed
information on the datasets and DNN models investigated in this work. The number of neurons in the target
layer for each DNN model is presented in the fifth column.

4.3 Data Simulation

Figure 3 illustrates the data simulation procedure. To mimic the testing context involving data distribution shifts,
we employed four commonly used adversarial attack strategies, i.e., Fast Gradient Sign Method (FGSM) [23], Basic
Iterative Method (BIM-a, BIM-b) [40], and Jacobian-based Saliency Map Attack (JSMA) [56]. These strategies
were implemented using the Python library Cleverhans [22].

RQ1 evaluates the inconsistency rate of DNN models on mixed input sets with varying compound ratios after
flipping suspicious neurons. We conducted a merging process to integrate the original test inputs with adversarial
examples. Specifically, five mixed input sets were constructed with compound ratios ranging from 0% to 80%,
in 20% intervals. For instance, ‘80% + 20%’ indicates that 80% of the inputs in the mixed set were derived from
the original testing set, while the remaining 20% were sourced from the adversarial example set. A ‘0% + 100%’
set denotes that all inputs were derived from the adversarial example set. To answer RQ2 and RQ4, we used the
original testing set to simulate an unlabeled collection of test inputs for selecting seed inputs for generation. The
generated test inputs, combined with the original training set, were subsequently used for model retraining. For
RQ3 and RQ4, inputs in the original testing set that were not used as seeds were merged with corresponding
adversarial examples to form an evaluation set. Following the data simulation process for RQ1, five mixed input
sets with varying compound ratios were constructed to assess the effectiveness of the retraining process.

4.4 Baseline Approaches

4.4.1 Suspicious Neuron Localization Approaches. To answer RQ1, DeepFault [15] and NNSlicer [81] are utilized
as baseline approaches.
e DeepFault [15] employs SBFL techniques to identify suspicious neurons with a fixed neuron activation
threshold.

o NNSlicer [81] quantifies the contribution of each neuron and each synapse through forward and back-
ward analyses, and calculates dynamic slices of DNN models as the neurons and synapses with larger
contributions. Despite its primary focus not being the identification of suspicious neurons, we regard
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Fig. 3. The Procedure of Data Simulation

NNSlicer as a baseline approach. This is attributed to its capability to model

the average behavior of each

neuron by leveraging the average output values obtained from the entire training set.

RQ1 investigates the impact of different neuron activation thresholds on the localization of suspicious neurons,
including i.e., DeepFault’s fixed activation threshold, NNSlicer’s average neuron outputs, and SUNTest’s dynamic
activation thresholds. For each approach, the average IR results of three SBFL formulas are recorded.

4.4.2 Test Input Generation Approaches. To evaluate the effectiveness of SUNTest in generating test inputs, three

state-of-the-art approaches adhering to the MGF framework are employed as base
and ADAPT [43] focus on covering specific sets of neurons. RobOT [68] adopts
testing metrics as guidance for generating test inputs.

line approaches. DLFuzz [25]
model robustness-correlated

e DLFuzz [25] generates test inputs aimed at maximizing neuron coverage as defined by Pei et al. [58]
and the prediction difference between the original input and the mutated input. It proposes four neuron
selection heuristics to prioritize neurons covered frequently, rarely, neurons with top weights, and neurons

near the activation threshold.

o ADAPT [43] adopts an adaptive neuron selection strategy by considering both static and dynamic neuron
features. This strategy is employed to generate test inputs under the guidance of the multi-granularity

neuron coverage metrics defined by Ma et al. [49].

direct the fuzzing process for generating test inputs.

RobOT [68] defines model robustness metrics, i.e., Zero-Order Loss (ZOL) and First-Order Loss (FOL), to

4.4.3 Variants of SUNTest. To explore the effects of different components of SUNTest, we introduce four variants

as follows:

e SUNTest-RO replaces the adaptive selection strategy of mutation operat

ors in SUNTest with random

selection. The abbreviation ‘RO’ denotes ‘Random Operator’. This variant aims to investigate whether
integrating historical execution information of mutation operators could induce diverse misbehaviors.

ACM Trans. Softw. Eng. Methodol.



16 « Guoetal.

e SUNTest-RN replaces the suspicious neurons adopted in the fitness function f(x) with randomly selected
neurons. The abbreviation ‘RN’ stands for ‘Random Neuron’. By randomizing the selection of neurons,
this variant is designed to assess the impact of suspicious neurons on the overall performance.

o SUNTest-ER substitutes the hybrid fitness function in SUNTest with the fitness function f(x), focusing
solely on the error-revealing capability feedback of test inputs. The abbreviation ‘ER’ signifies ‘Error-
Revealing’. The comparison between SUNTest-ER and SUNTest aims to investigate the usefulness of the
input diversity guidance in SUNTest.

e SUNTest-ID replaces the hybrid fitness function in SUNTest with the fitness function g(x), which solely
considers the diversity feedback of test inputs. The abbreviation ‘ID’ denotes ‘Input Diversity’. This variant
is designed to investigate the usefulness of the error-revealing capability guidance in SUNTest.

4.4.4 Test Input Selection Approaches. This paper constructs the initial seed list for generating test inputs by
employing various test input selection approaches. This process facilitates the construction of a seed list containing
test inputs that are more likely to trigger misclassifications. For each dataset under investigation, six selection
approaches are performed on the correctly classified inputs extracted from the original testing set. KM-ST [68]
and BE-ST [68] are designed based on the calculation of FOL values of test inputs. FOL measures the extent to
which the highest loss could be obtained within the seed’s neighborhood. Both DeepGini [18] and MCP [61] are
uncertainty-based selection metrics, leveraging output probabilities of DNN models.

e Random is the basic and simplest selection approach, where each input has the same probability of being
selected.

o KM-ST [68] divides the range of FOL values of test inputs into k sections, and randomly selects the same
number of test inputs from each range.

e BE-ST [68] equally combines test inputs with small and large FOL values.

e DeepGini [18] utilizes the output probabilities of DNN models to measure the Gini impurity of the
test inputs. It prioritizes test inputs with the most uncertainty, enabling the detection of potentially
misclassified test inputs.

e MCP [61] clusters test inputs into different decision boundary areas by calculating the predicted proba-
bilities for the top two classes. Test inputs with high priorities (i.e., the ratio of the probability of the first
class to that of the second class) are uniformly selected from each boundary area.

e MOON [24] is our previous research that addresses the test input selection problem by formulating it as a
search-based testing problem. By tailoring a multi-objective optimization algorithm, it directs the search
process to maximize the activation of suspicious neurons while promoting diversity in neuron behaviors.

4.5 Hyperparameter Configurations

SUNTest determines the activation threshold for each neuron based on its output distributions. The parameter
b represents the number of equal intervals into which the output range is divided. Similarly, DeepGuage [48]
partitions the output range of each neuron into several equal sections. Following DeepGuage’s configuration,
b is set to 1000: The parameter K denotes the number of the most frequent intervals used to characterize high-
frequency regions of neuron outputs. If K is set large, it may introduce certain output intervals with low frequency.
Thus, it is set to 100. Both parameters A and g are adopted to control the size of suspicious neurons. The parameter
A controls the size of localized suspicious neurons. It also represents the proportion of neurons with flipped
outputs for each model. The identified suspicious neurons not only contribute to errors but may also influence
the classification of other inputs. To avoid the large accuracy degradation caused by flipping a large number of
neurons in DNN models, the parameter A is varied from 0.1 to 0.6 with an interval of 0.1 in the experiment. To
obtain the error-revealing capability feedback guided by suspicious neurons, the parameter q is utilized to further
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select neurons from the set of identified suspicious neurons. This parameter controls the size of dynamically
combined suspicious neurons used for test input generation. If q is set too small, fewer suspicious neurons will
be used to measure the error-revealing capability of test inputs. Therefore, it is set to 0.8.

To compare SUNTest with existing MGF approaches under uniform conditions, test inputs are iteratively
generated with a fixed number of seed inputs until the maximum iteration limit is reached. The number of seed
inputs is set to 200. Assigning the appropriate number of iterations is crucial. A large number results in significant
differences in input semantics, while a small number fails to produce noticeable changes in the seed inputs.
Therefore, the maximum number of iterations is set to 5. Additionally, regarding the test input selection strategies,
for both BE and KM, the range of FOL is divided into 20 sections. In the case of MOON, the population size is
set to 100, and the algorithm undergoes 50 iterations of evolution. For the coverage criteria DSC utilized in the
experiment, the number of buckets is set to 1,000. The upper bound of SC values for test inputs is set to 10, while
the lower bound is set to 0.

4.6 Statistical Analysis Methods

To determine the statistical significance of SUNTest’s performance compared to baseline approaches, we employ
two statistical analysis methods: the Wilcoxon signed-rank test [7] and Cliff’s delta |d] [59] to quantify the
differences in results. The confidence level for the Wilcoxon signed-rank test is set at 0.05. A p-value below
0.05 indicates that SUNTest demonstrates a statistically significant advantage over other baseline approaches.
Conversely, when the p-value is greater than 0.05, there is no considerable difference observed between the two
compared approaches. For Cliff’s delta, the magnitude of differences is assessed using the following thresholds:
|8] < 0.147 as negligible, 0.147 < |5| < 0.330 as small, 0.330 < |§] < 0:474 as medium, and |§| > 0.474 as large. In
experiments, SUNTest is considered to significantly outperform baseline approaches when the p-value is less
than 0.05 and Cliff’s delta || is greater than 0.147.

5 EXPERIMENT RESULTS
5.1 Answer to RQ1: Effectiveness in Suspicious Neuron Localization

Table 3 presents the inconsistency rates observed in DNN models after flipping the weights of suspicious neurons.
The ‘Ratio’ column illustrates different combinations of original test inputs and adversarial examples within
mixed input sets (i.e., mimicking various data distributions). When A is set to 0, no modifications (no neurons
were flipped) were applied to the DNN models. In this case, the reported inconsistency rates serve as baselines.
The decreases in IR values, when compared to the original values (A = 0), demonstrate the effectiveness of flipping
suspicious neurons in rectifying erroneous neuron behaviors.

As presented in Table 3, the inconsistency rates of DNN models can be reduced by reversing the weights of
suspicious neurons, particularly when A is set to 0.1 or 0.2. In these cases, the IR results obtained by the three
approaches are mostly lower than the original value. As highlighted by the underlined results in Table 3, a A value
of 0.1 results in the highest frequency of the lowest IR values. As the A value increases, the IR values naturally rise,
eventually exceeding the original value. This can be attributed to the fact that the localized suspicious neurons
not only contribute to the errors but also potentially play a role in the classification of other inputs. Additionally,
it is obvious that as the proportion of adversarial examples in the mixed dataset increases, the inconsistency rate
of DNN models also increases. The reduction in IR results achieved by SUNTest becomes more pronounced as the
proportion of adversarial examples rises. For example, in the CIFAR100-VGG model, the original inconsistency
rate is 44.26%. SUNTest achieves the lowest inconsistency rates of 42.67%, 54.94%, 67.27%, 77.63%, and 90.83%
across five compound ratios, corresponding to decreases of 1.59%, 2.32%, 3.47%, 6.15%, and 6.23%, respectively.

Based on the observations above, the test input generation algorithm sets A to 0.1. In the following part, we
focus primarily on the results of achieved inconsistency rates when A is set to 0.1 and 0.2. As shown in Table 4, the
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Table 3. The Inconsistency Rates (%) of DNN Models after Flipping Suspicious Neurons

| The Proportion of Selected Suspicious Neurons (1)

Dataset Ratio  Approach |—3 01 02 03 04 05 06 | 0O 01 02z 03 04 05 06
ConvNet LeNet5
DeepFault 7557 2785 3565 5909 8138 9324 2016 2693 3067 3780 6615 7159
80%+20%  NNSlicer | 27.03 2590 2886 3776 5511 7424 8524 | 21.08 2456 3294 3759 4338 5618  70.65
SUNTest 2538 2675 3295 5175 7249 8176 1971 2543 2871 3646 5519 7257
DeepFault 1153 4287 4909 6726 846z  93.23 3840 4108 4363 5116 7151 7552
60%+40%  NNSlicer | 4533 4191 4415 5079 6403 7834 8670 | 40.70 4002 4566 4945 5358 6340  74.80
SUNTest 10.69 4220 4680 6117 7754 88.59 3639 39.18 4211 4360 6270 7591
DeepFault 5739 5781 6230 7538 8757  93.20 52.65 5520 5674 5764 7712 7989
407+60%  NNSlicer | 6349  57.96 5947 6389 7290 8227  88.04 | 6046 5504 5811  6L19 6363  70.66 7935
SUNTest 5639 56.81  60.81  70.80  80.59  89.49 5425 53.03 5565 5684 73.89  78.65
DeepFault 7425 7269 7554 8329 9063  93.06 7096 6901 6977 7066 8280 8443
MNIST ~ 20%+80%  NNSlicer | 81.86 7507 7469 7680 8L60 8616  89.28 | 8011 7047 7100 7310 7390 . 7827  84.01
SUNTest 73.14 7216 7451 7930 84.65  90.15 7161 67.06  69.15 7022 8005 8226
DeepFault 8897 8755 8862 9128 935 9311 8523 8326 8390 8364 8829 8871
onit00n  NNSlicer | 1000 8976 8985 8978 9045 9017 9073 | 99.80 8572 8402 8494 8394 8488 8747
SUNTest 87.17 8688 87.33 8817 8774 9179 8533 8102 8276 8357 8602 = 86.80
ConvNet VGG
DeepFault 3802 3853 3947 4275 5377 6366 3222 3436 | 4721 7551 9269 9574
80%+20%  NNSlicer | 3778  37.26  37.00 3749 3863 4440 6508 | 3216 3217 3458 | 47.69 7710 9220  95.60
SUNTest 3733 3682 37.33 3772 3841  41.05 3207 (3370 4616 7332 9103 95.08
DeepFault 5279 5291 5339 5573 6398 7052 1789 4896 5886 7881 911z 9307
60%+40%  NNSlicer | 5312 5233 5188 5187 5255 5663 7193 | 4842 4785 4919 5897  80.07  90.90 9291
SUNTest 5174 5069 5177 5202 5235  53.94 4689 4865 57.28 7692  89.80  92.23
DeepFault 6751 6125 6735 6877 7424 7832 6415 6440 6995 8212 8979 9038
407%+60%  NNSlicer | 68.18 6735 6658 6730 6643 6896  78.65 | 650 6426 6439  70.53 9320 8983  90.26
SUNTest 67.10 6601 6633 6621 6634 _ 66.23 63.88 | 63.02 6825 8103  88.96  90.74
DeepFault 8186 8125 8L0Z 8158 8425 8595 | 8001 79.65 8189 8578 8828  87.86
CIFAR10  20%+80%  NNSlicer | 83.04 8204 8127 8045 8015 8115 8554 | 8120 7993 7946 8276 8648 8873 8775
SUNTest 80.59  79.77  79.54  79.67 8022 8274 | 7817, 78.09  80.29 8516 8717 8732
DeepFault 9644 9550 9489 9455 9451 9371 9592 9473 9351 8931 8695 8522
omst00  NNSlicer | 9811 9687 9673 9465 9390 9331 9227 | 9766 9584 9430 9325 8969 8764  B85.08
SUNTest 9576  93.80 92.83 9198 (9217 9188 9467 9319 9203 8872 8713 8511
ConvNet VGG
DeepFault 2731 2790 2913 3837 6022 7504 2605 3468 5760 8195 9284 9564
80%+20%  NNSlicer | 27.18 2721  27.83 2925 | 3745 5703  73.62 | 2508 2644  37.36 5820  80.45 9168 9537
SUNTest 27.05 2725 2811 3346 5423  73.58 25.80 3401 5629  78.17 9033 95.24
DeepFault 4489 4487 4517 5080 6533  77.46 B2 5154 6694 8321 9140 9375
60%+40%  NNSlicer | 4529 4495 4484 4496 5107 6679 7761 | 42.99 4343 4958 6668 8432 9216 9401
SUNTest 43.98 4367 4421 4851 6358  77.27 1276 4446 6502 8204  90.13  93.06
DeepFault 6270 6212 6127 6434 7346 8L 6088 6456 7572 8680 9147 9238
407%+60%  NNSlicer | 6361 6272 6195 6092 6390 7349 8019 | 6103 6106 6587 7576 8605 9113 9221
SUNTest 6216 6181 5936 6317 7231 8190 5927 62.07 7439 8534 9028  91.03
DeepFault 8027 7912 | 7714 7780 8191  84.9 7823 7952 8473 8934 9088 90.15
SVHN  20%+80%  NNSlicer | 8167 80.27 7884 7666 7654 8028 8297 | 7891 7830 8020 8459  89.01  90.85  90.70
SUNTest 79.64 7834 7602 7780 7913 8408 7727 7836 84.17 8872 9013 90.45
DeepFault 9802 9632 9325 9136 9029 8893 9552 9431 9373 9183 9023  89.18
oms100n  NNSlicer | 0986 9798 9592 9267 8934 8696 8555 | 9685 9549 9427 9328  OL83 9055  89.12
SUNTest 97.02 9688  92.07 9206 9001 8630 9457 9373 9346 9102 90.13  88.14
VGG ResNet
DeepFault 196 5160 7781 9502 9909 9974 87 5942 7791 9312 9852 9972
80%+20%  NNSlicer |744.26 4359 4582 5824 8078 9568 9891 | 4569 4905 5842 7568 9188 9834  99.62
SUNTest 42.67 4520 5859 8145 9658  99.09 4721 57.27 7608 9233 9837  99.68
DeepFault 5603 6161 8198 9565  99.05  99.60 6002 6790 8229 9444 9876 9968
60%+40%  NNSlicer | 57.26 5578 5733 6661 8426 9625 9887 | 5878 6001  67.08  80.64 93.33 9858  99.60
SUNTest 54.94 5648 6682 8491 9693  99.04 57.89  65.78  79.96 9381  98.63  99.64
DeepFault 6880 7221 8657 9659  99.15 9955 7086 7645 8690 9573 9885 9967
407+60%  NNSlicer | 70.74 6874 6935 7548 8818 9694 99.04 | 7129 7098 7594 8559 9485 9875  99.61
SUNTest 67.27 6830 7575 8867 9746  99.11 69.12 7390 8443 9522 9880  99.62
DeepFault 8102 8253 9085 9738 9915 9949 8165 8481 9124 9694 9906 9967
CIFAR100  20%+80%  NNSlicer | 8378 8113  80.94 8432 9165 97.47 9899 | 8412 8163 8428 9043 9644 99.01  99.61
SUNTest 7763 79.17  83.80 9207 9794 9905 80.13  82.87 9018 9662 99.03  99.62
DeepFault 9359 9292 9521 9822 9920 9939 9246 9329 9558 9815 9920 9965
ome100r  NNSlicer | 0706 9394  93.07 9317 9553 9818 99.08 | 9688 9237 9302 9554 9809 9923 9961
SUNTest 9167 90.83 9293 9501 9848  99.13 9026 9160 9443 9816 9925  99.63

For each A configuration (ranging from 0.1 to 0.6), the lowest inconsistency rate among the three localization approaches is highlighted in bold. The lowest
inconsistency rate, achieved by each approach across A configurations ranging from 0.1 to 0.6, is underlined.
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Table 4. Comparison Results of Inconsistency Rates Achieved by Different Approaches

2 \ # Top-1 (Formula) | # Top-1 (Approach) | Avg Dec
Dataset Model
Configuration [ Tarantula Ochiai DStar ‘ DeepFault NNSlicer SUNTest ‘ w.r.t Orig w.r.t DeepFault w.r.t NNSlicer
0.1 5 0 0 2 1 2 6.97 0.02 170
= LeNet
; 0.2 5 0 0 0 0 5 7.29 1.97 5.20
= 0.1 5 0 0 0 0 5 6.99 0.99 157
ConvNet
0.2 0 2 3 0 0 5 6.58 0.79 244
- 0.1 0 5 0 0 1 4 1.54 0.82 0.67
= ConvNet
5 0.2 3 0 2 0 0 5 2.63 1.67 127
=) 0.1 5 0 0 0 0 5 175 0.90 0.87
o VGG
0.2 0 0 5 0 0 5 1.56 1.09 1.05
0.1 0 5 0 0 0 5 155 0.67 0.66
z ConvNet
oo} 0.2 0 4 1 0 1 4 1.93 0.48 0.29
>
«» 0.1 0 5 0 0 0 5 1.04 0.95 1.01
VGG
0.2 0 4 1 0 0 5 -1.55 2.40 2.93
=3 0.1 0 1 4 0 0 5 3.78 1.84 1.80
S VGG
I 0.2 0 3 2 0 0 5 2.62 4.18 1.31
<
=] 0.1 0 5 0 0 0 5 2.43 1.85 1.89
o ResNet
0.2 0 1 4 0 0 5 -2.93 2.09 1.46
0.1 15 21 4 2 2 36 2.90 0.89 113

Total
0.2 8 14 18 0 1 39 2.01 1.63 177

4 Top-1 (Formula)’ columns report the number of instances where a suspiciousness measure (Tarantula, Ochiai,
or DSatr) outperforms the others across five data compound ratios. The ‘4 Top-1 (Approach)’ columns provide
the frequency with which each approach (DeepFault, NNSlicer, or SUNTest) achieves the lowest inconsistency
rate across five data compound ratios. Since we have a total of 8 models and 5 data compound ratios, there are 40
result instances in total (8%x5=40). The ‘# Top-1 (Formula)’ and ‘4 Top-1 (Approach)’ columns display, in the “Total’
rows, the total number of instances where the top-1 rank is achieved. As observed in the ‘# Top-1 (Formula)’
results, different SBFL formulas exhibit varying performance across different datasets and models. When A is
set to 0.1, the Tarantula formula outperforms the others for the MNIST and CIFAR10 datasets, while Ochiai is
effective for the SVHN and CIFAR100 datasets. Regarding the “Total’ results, Ochiai outperforms both Tarantula
and DStar, achieving the lowest inconsistency rate 21 times. Tarantula and DStar follow, achieving the top rank
15 times and 4 times, respectively. When A is set to 0.2, DStar outperforms Tarantula and Ochiai, achieving the
top rank 18 times. Based on these observations, for the test input generation algorithm, we employ Tarantula
for MNIST and CIFAR10, and Ochiai for SVHN and CIFAR100. Compared with baseline approaches, SUNTest
achieves the lowest inconsistency rates across almost all instances. It obtains the top rank 36 times when 1=0.1
and 39 times when A=0.2, whereas DeepFault achieves the top rank 2 times in both configurations, and NNSlicer
only achieves it once.

For each investigated model, the ‘Avg Dec’ columns show the average decreases in inconsistency rates across
five data compound ratios, achieved by SUNTest with respect to the original values (1 is configured with 0),
DeepFault, and NNSlicer, respectively. The ‘Avg Dec’ columns in the ‘Total’ rows display the average decreases in
inconsistency rates across all investigated models. As indicated by the ‘Dec (w.r.t Org)’ results, SUNTest achieves
inconsistency rate decreases of up to 7.29%, 6.99%, 2.63%, 1.75%, 1.93%, 1.04%, 3.78%, and 2.43% for the investigated
models, respectively. On average, compared to the original values, SUNTest reduces the inconsistency rates
by 2.90% and 2.01% across the investigated models in the 0.1 and 0.2 A configurations. Additionally, compared
to DeepFault, SUNTest achieves average reductions in inconsistency rates of up to 1.97%, 0.99%, 1.67%, 1.09%,
0.67%, 2.40%, 4.18%, and 2.09% across the investigated DNN models, respectively. Compared to NNSlicer, SUNTest

ACM Trans. Softw. Eng. Methodol.



20 « Guoetal

achieves average reductions of up to 5.20%, 2.44%, 1.27%, 1.05%, 0.66%, 2.93%, 1.80%, and 1.89%, respectively. These
results indicate that SUNTest is effective in localizing suspicious neurons.

Answer to RQ1: SUNTest outperforms baseline approaches in localizing suspicious neurons by employing
dynamic neuron activation thresholds based on neuron output distributions. Specifically, after flipping
suspicious neurons under the A configurations of 0.1 and 0.2, SUNTest achieves reductions in inconsistency
rates of up to 4.18% and 5.20%, respectively, compared to DeepFault and NNSlicer.

5.2 Answer to RQ2: Effectiveness in Test Input Generation

SUNTest is compared with baseline approaches in terms of the effectiveness of test input generation from four
perspectives, i.e., the capability of fault detection, the capability of triggering diverse fault types, the coverage
achieved by the newly generated test inputs, and the validity of the generated inputs. Table 5 presents the average
number of error-revealing test inputs and triggered fault types for each approach adopting different seed selection
strategies. The ‘# Inps’ rows report the number of generated test inputs that trigger misclassifications, while
the ‘4 Typs’ rows show the number of distinct fault types. The “|” rows detail the average increases (A-B) in
results (i.e, average ‘# Inps’ and ‘# Typs’ results achieved across investigated models) obtained by SUNTest (A)
compared to the baseline approaches (B) when using the same seed selection strategy. The 1 (%)’ rows present
the average improvement rates (i.e., (A-B)/B) of the results. Table 6 details the average DSC and NLC results
achieved by the generated test inputs. In Tables 5 and 6, the ‘Avg’ columns present the average results across all 6
seed selection strategies for each test input generation approach. Since we compare SUNTest with the other 3
baseline approaches with 6 seed selection strategies, the total number of combinations of the test input generation
approaches is 4 X 6 = 24. The ‘Avg Rank (I)’ rows represent the average rank of each approach when adopting the
same seed selection strategy. The ‘Avg Rank (II)’ rows denote the average rank of each combination. The lower
the average rank, the better the approach. The ‘# Top-1 (I)’ rows present the frequency with which each approach
is ranked as the top among the four, given the same seed selection strategy. The ‘# Top-1 (II)’ rows detail the
number of times each combination achieves the first rank.

5.2.1 Fault Detection. In terms of the average number of error-revealing test inputs across all seed selection
strategies, as indicated by ‘Avg’ results, SUNTest outperforms baseline MGF approaches in nearly all investigated
models, with the exception of CIFAR10-ConvNet. Based on the ‘1’ results for average ‘# Inps’ obtained from 6 seed
selection strategies, we observe that SUNTest is able to find more error-revealing test inputs compared to baseline
approaches, with average increases ranging from 100.3 to 310.5. Considering the ‘I (%)’ results, SUNTest obtains
average improvement rates of 17.7%, 162.9%, and 37.5% compared to DLFuzz, ADAPT, and RobOT, respectively.
In the view of the ‘4 Top-1 (I)’ results, SUNTest achieves the top-1 best average performance 7 times, whereas the
second-best; DLFuzz, only achieves it once. Additionally, SUNTest achieves the best average rank of 1.25, while
the average ranks for DLFuzz, ADAPT, and RobOT are 2.50, 3.88, and 2.38, respectively. In general, SUNTest
achieves the best results in most investigated DNN models, indicating its capability to detect more faults.
When adopting Random, BE, KM, MCP, and MOON strategies, SUNTest significantly outperforms DLFuzz,
ADAPT, and RobOT across almost all investigated models. For example, with the Random, BE, KM, MCP, and
MOON strategies, SUNTest achieves the lowest average ranks among the four approaches, with values of 1.25,
1.38, 1.25, 1.38, and 1.38, respectively. Nevertheless, when employing the DeepGini strategy, SUNTest performs
worse than baseline approaches. Specifically, with the DeepGini strategy, DLFuzz, ADAPT, and RobOT achieve
average ranks of 1.63, 2.88, and 2.13, respectively, whereas SUNTest obtains an average rank of 3.38. Among all 24
combinations, DLFuzz paired with DeepGini yields the lowest average rank of 1.50, as indicated by the ‘Avg Rank
(IT) results. It achieves the highest frequency of being the top-ranked combination, as shown by the ‘# Top-1 (II)
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Table 5. Comparison Results in Generating Error-Revealing Test Inputs and Triggering Fault Types

DLFuzz ‘ ADAPT ‘ RobOT ‘ SUNTest

Dataset Model Metric
[Random BE KM DeepGini MCP MOON] Avg [Random BE KM DeepGini MCP MOON] Avg[Random BE KM DeepGini MCP MOON| Avg [Random BE KM DeepGini MCP MOON| Avg

#Inps| 4552 527.23454 9838 4907 5040 [551.1| 560 3519336 5829 79.1 777 [1969] 80.1 499.8 632 9667 120.9 1173 [308.0| 594.6 667.6620.3 6825 613.9 6183 |632.9
& LeNets
2 #Typs| 542 482 451 645 583 561 | 544 | 201 422 124 542 244 253 [208| 170 419 141 550 196 232 [285| 747 707 684 750 748 736 | 72.9
z
= #Inps| 3938 49232553 9350 459.6 496.0 |505.3 123 1699 124 1741 21.6 275 [69.6 76.2 4383 524 618.4 111.1 150.1 [241.1] 607.8 620.3606.9 661.8 635.7 633.7 |627.7
ConvNet - — - —
#Typs| 515 530 353 710 532 622 |543| 43 335 36 356 7.1 89 [155| 188 471 159 623 280 307 [338| 829 776 726 827 857 867 | 814
#Inps| 4557 46452973 6910 4757 4862 [478.4| 4025 507.2321.3 7563 4630 4910 [490.2| 624.9 497.9 4185 7423 6784 678.6 [606.8 6385 69896448 6844 628.1 6347 |655.4
ConvNet
Z #Typs| 590 600 475 624 625 68 |599| 602 602 489 725 612 650 |613| 59.1 454 380 564 605 610 |534| 756 769 686 790 795 804 | 76.7
% #Inps| 5273 74405363 987.0 5133 593.8 [6503| 2611 666.1266.2 966.6 2733 3140 [457.9| 4433 713.7549.6 9655 423.9 457.6 [5923| 679.0 693.9673.0 7364 6823 694.6 |693.2
VGG
#Typs| 683 775 673 845 693 778 | 734 | 467 659 456 767 518 529 [566| 523 527 492 555 519 528 [524| 826 814 789. 864 853 862 | 835
s c N #Inps| 9540 901.08958 987.8 9643 959.9 (943.8| 416.6 492.4289.3 8820 493.0 481.2 [509.1f 8963 777.9 807.8 956.5 908.2 890.4 |872.9| 824.6 817.4802.6 903.7 8256 829.3 [833.9
- onvNet
] #Typs| 745 714 620 738 720 745 | 714| 594 605 426 752 633 646 |60.9| 664 574 554 659 709 666 |638| 725 684 657 723 . 729 732 |708
5 vog  FInps| 5052 54653985 9857 818 6136 |6052| 3578 515.02507) 9611|4200 4132 4876 7893 777.2694.9] 9586 |81L3 7424 [195| 8207 S20.1841.2 9074 8946 8568 |859.3
#Typs| 692 680 568 798 723 762 | 704 | 57.6 60.1 533 734 607 654 |617| 7L1 469 60.8 373 679 698 [59.0| 725 718 726 762 748 812 | 749
S ygg *mmes| 6810 3378930008 754 8083 |786.1| 5457 63175547 [OITT 6665 6413 [669.9 8678 8364 870.4 19050 9904 8966 (698.1/ 156 92050181 (9663958 9522 9321
g
= #Typs| 2777 30233327 403 3167 417.0 [341.6| 2290 2455 225 3513 2646 284.8 [266.7] 200.9 14022028 187.9 191 206.4 [188.2) 462.6 44494612 4767 4745 479.8 |464.0
g =2
£ N #Inps| 7743 81378253 9907 8247 849.2 8463| 6745 787.3778.6 9897 (7638 823.6 [802.9| 882.6 89929198 9959 O1L6 894.4(017.3| 9166 926 9342 968.9 9287 930.6 | 934.2
esNet
#Typs| 3267 37003677, 4123 373.0 4142 |377.3| 2705 2957299.6 319.9 2924 326.6 [300.8| 239.8 182.42243 1578 2152 2414 [210.2| 4062 391.64105 4243 4140 427.5 | 4124
T #Inps| 1575 12292130 -130.0 1355 1027 [1003| 4100 25584420 266 370.9 357.9 [310.5| 1682 90.7 2088 -859 157.5 1632 [117.1
#Typs| 436 291 355 152 355 178 |202| 727 525 709 392 67.0 619 |604| 755 837 798 868 821 793 |80.9
T #Inps| 322 230 614 -134 256 187 [17.7 | 7944 7339112 321 4934 4111 [1629) 1752 171 2556 88 1173 1014 |375
%)
#Typs| 301 226 379 96 257 153 |220 | 3003 4963393 326 1959 1611 [98.8| 1221 827 1414 752 1047 90.8 [849
AvgRank  #Inps| 238 238 263 163 238 250 | 250 | 400 375 388 288 400 3.88 [3.88| 238 250 225 213 225 225 [238| 125 138 125 338 138 138 | 125
m #Typs| 213 200 225 200 200 188 [200| 338 300 350 288 350 338 [3.3| 338 3.8 325 375 350 363 375 113 113 1.00 138 100 113 | 113
AvgRank  #Inps| 161 133 158 15 138 121 235 171 233 59 208 200 | - | 146 126 163 29 120 134 | - 96 76 89 43 76 13
an #Typs| 119 120 156 60 94 63 198 164 215 90 176 153 180 203 213 174 179 161 54 70 76 31 34 20
#Top-1  #Inps| 1 2 1 5 1 1 1 0 0 0 1 0.0 |o 0 0o 0 2 1 1|0 7 6 7 0 6 6 7
1) #Typs| 1 10 1 0o 1 1 0 0 0 1 o o |o 0 0o 0 0 o o |o 7 708 5 8 7 7
#Top-1  #Inps| 0 0 0 5 00 - 0 0 0 1 o o |- 0 0o 0 2 o o |- 0 0 0 0 00
(I # Typs 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 5

! For each test input generation approach, the best result across six seed selection strategies is underlined. The best average results ‘Avg’ among the four test
input generation approaches are highlighted in bold and displayed with a yellow-colored background.

2 Uncolored cells signify instances where SUNTest significantly outperforms baselines under the same seed selection strategy. Cells with a gray background
denote cases where SUNTest performs worse than the baseline or where there is no statistically significant difference between SUNTest and the baseline.

results. Besides, for the four test input generation approaches, DeepGini demonstrates superior performance
compared to the other seed selection strategies, as indicated by the underlined results. These observations can be
attributed to the fact that DeepGini tends to select the most uncertain test inputs as seeds, which are more likely
to result in the mutated inputs triggering misclassifications.

5.2.2  Fault Diversity. Similar to the results of fault detection, with the exception of CIFAR10-ConvNet, SUNTest
demonstrates significant superiority over DLFuzz, ADAPT, and RobOT, achieving the highest average number of
triggered fault types. As indicated by the 1" results, SUNTest detects more diverse fault types compared to baseline
approaches, with increases of 29.2, 60.4, and 80.9 on average. In terms of the ‘T (%)’ results, SUNTest obtains
average improvement rates of 22.0%, 98.8%, and 84.9% compared to DLFuzz, ADAPT, and RobOT, respectively. For
the ‘# Top-1 (I)’ results, SUNTest achieves the top-1 best average performance 7 times, whereas the second-best,
DLFuzz achieves it once. Additionally, SUNTest achieves the best average rank of 1.13, compared to the average
ranks of 2.00, 3.13, and 3.75 obtained by DLFuzz, ADAPT, and RobOT, respectively. When adopting the same
seed strategy, SUNTest demonstrates the lowest average rank among the four approaches. Specifically, SUNTest
achieves average ranks of 1.13, 1.13, 1.0, 1.38, 1.0, and 1.13 for the 6 seed selection strategies, respectively. These
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Table 6. Coverage Achieved by the Generated Test Inputs

Dataset Model Criteri | DLFuzz ADAPT RobOT SUNTest
ataset Wodel Trfter [Random BE KM DeepGini MCPMOON] Avg [Random BE KM DeepGini MCP MOON| Avg[Random BE KM DeepGini MCP[MOON[Avg [Random BE KM DeepGini MCP MOON| Avg

o LeNet5 DSC 143 131 145 143 142 147 (142 19.6 1251 211 22.6 213 227 |22.1| 143 171 148 18.8 163 17.5 165 209 22.0 208 20.2 214 22.8 214
eNet: — i . —
E NLC 243.6 281.7256.4 237.2 2243 286.4 |254.9| 243.7 37052384 159.2 219.0 392.1 |270.5| 210.6 334.1201.6 1355 184.5 342.3 [234.8| 72221.5 67245.1 80049.5 73114.0 71294.3 80099.9 [ 74004.1
= c Net DSC 132 141 138 13.5 136 145 (138 197 227 19.2 20.4 210 236 (211 202 208 204 21.9 208 232 |21.2( 218 23.2 220 19.6 214 23.6 216
onvNef
NLC 393 593 418 251 381 648 [447| 376 500 380 158  37.0 619 [40.0| 368 496 37.3 154 361 62.9 |39.7|32942.8 25114.2 291455 29230.3 32638.3 37767.3 [ 31139.7
ConvNet DSC 133 140 129 129 144 204 |146| 178 200 189 180 187 231 |194| 166 153 173 169 167 23.0 [17.6| 40.8 412 403 41.0 409 430 41.2
onvNet
E NLC 579.4 856.6586.6 621.6 569.8 1042.7 |709.5| 498.5 647.5455.6 446.9 4652 6944 |534.6| 97.7 141.6101.7 100.9 100.2 177.5 [119.9] 52887.2 51019.8 54202.4 53893.3 64288.7 70153.6 [ 57740.8
a VGG DSC 141 143 152 14.8 145 155 [14.7| 228 237 227 204 221 234 |225 175 17.7 17.9 133 171 17.6 |168| 405 422 41.0 38.1 40.3 42.0 40.7
NLC 175.1 197.8181.7 146.4 176.1 2003 [179.6 949 142.9100.6 654 1022 1313 [106.2| 77.6  80.1 80.8 42.0 793 825 |73.7( 2097.6 21627 2046.0 2173.2 2100.7 2186.0 | 2127.7
2 ¢ Net DSC 217 223 218 224 220 226 |221| 263 27.0 255 23.0 264 271 (259| 222 238 229 229 225 234 (230 189 19.1 18.1 18.2 18.3 18.6 185
= onvNef
5 NLC 191 204 213 220 215 222 |211| 141 286 135 34 95 83 [129] 63 81 80 6.1 62 74 |70 |198345 17582.8 19243.6 17043.8 18810.1 19485.7 | 18666.7
E VGG DSC 146 158 153 153 144 159 (152 233 246 233 213 233 249 [234| 145 140 157 135 148 149 |146 194 19.6 204 18.9 19.3 19.6 19.6
NLC 453.7 569.2455.4 361.2 459.1 461.0 [460.0| 327.7 452.6314.9 277.3 3420 463.1 [362.9| 1283 133.8152.2 51.2 127.7 1434 (122.8] 74601.5 78328.8 77688.2 77987.3 77217.1 78727.2 | 77425.0
g VGG DSC 19.9  20.8 20.1 19.9 20.7 206 |20.3 245 257 239 24.0 246 251 [24.6 209 19.2 209 12.6 212 210 (193] 227 22.7 229 221 232 23.6 22.9
E NLC 469.6 476.8460.8 4258 473.6 486.0 |465.5| 420.9 484.4411.7 389.7 417.5 459.7 |430.7| 555.8 571.1530.9 338.3 572.7 590.8 [526.6| 95856.8 108587.498737.9 94458.0 95540.6110974.9/100692.6
é ResNet DSC 115 109 115 114 118 119 |115| 204 204 202 176 191 207 |19.7 135 142 140 132 140 144 [13.9] 194 193 194 18.9 195 195 19.3
esNe
© NLC 346 352 345 32.1 350 359 |34.5| 331 361 329 295 319 346 |33.0 320 338 308 8.3 282 340 (279 319 32.3 32.2 324 328 334 32.5
Avg Rank DSC 3.50  3.50 3.88 3.38 3.88 3.63 |3.67 163 138 1.50 1.50 1.63 150 [1.67| 3.13 3.25 275 3.13 2.88 3.00 |2.83 1.75 1.88 1.88 2.00 1.63 1.88 1.83
[11] NLC 213 2.63 2.00 2.00 2.00 238 |200| 288 250 3.00 3.13 3.13 288 [3.00| 3.63 3.63 3.75 3.88 3.75 338 [4.00 1.38 1.25 1.25 1.00 113 1.38 1.00
Avg Rank DSC 2150 19.6319.63 2038 20.38 15.88 | - 825 375 838 9.25 6.75  3.00 - 17.38 15.7514.38 16.13  15.00 11.75 | - 9.50 7.38 9.13 11.88 9.13 6.50 -
(I NLC 12.25  9.00 11.38  14.88 11.88 7.50 1525 950 1613 2113 17.25 1113 | - | 19.88 15881875 23.63 20.50 14.38 5.88 563 550 5.25 513 225 -
# Top-1 DSC 0 0 0 0 0 0 0 4 5 5 4 3 4 5 0 0 0 1 0 1 0 1 3 3 4 5 3 3
(U] NLC 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 8 7 7 7
# Top-1 DSC 0 0 0 0 0 0 - 0 1 0 0 0 4 - 0 0 0 0 0 0 - 1 1 0 0 0 1 -
(I NLC 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 6 -

! For each test input generation approach, the highest coverage result across six seed selection strategies is underlined. The best average results ‘Avg’ among the
four test input generation approaches are highlighted in bold.

2 Uncolored cells indicate instances where SUNTest achieves significantly higher coverage than the baselines under the same seed selection strategy. Gray cells
denote where SUNTest performs worse than or shows no statistically significant difference from the baseline.

observations demonstrate that SUNTest significantly outperforms three state-of-the-art approaches in terms of
triggering diverse fault types in most of the investigated DNN models.

As highlighted by the ‘Avg Rank (II)’ results, SUNTest paired with MOON outperforms other generators, while
SUNTest paired with Deepgini achieves the second-best performance. Specifically, for DLFuzz and ADAPT, the
DeepGini strategy achieves the lowest average ranks compared to other seed selection strategies. For RobOT
and SUNTest, MOON achieves the lowest average ranks, and Deepgini performs the second best. Several factors
may explain these results. DeepGini tends to generate the highest number of error-revealing test inputs, which
naturally increases the likelihood of finding various fault types. MOON not only considers error-revealing test
inputs but also promotes the diversity of test inputs, which helps enhance the variety of erroneous behaviors.

5.2.3 Coverage Analysis. Compared to DLFuzz and RobOT, SUNTest achieves significantly higher average DSC
across nearly all the investigated DNN models, except for CIFAR10-ConvNet. Compared to ADAPT, SUNTest
obtains remarkably higher average DSC on the SVHN dataset, with values of 41.2 and 40.7. ADAPT achieves
the highest average DSC results on the CIFAR10 and CIFAR100 datasets. According to the ‘Avg Rank (I)’ results,
ADAPT achieves the best average rank of 1.67, compared to the average ranks of 1.83, 2.83, and 3.67 obtained by
SUNTest, RobOT, and DLFuzz, respectively. In the experiments, we observed that SUNTest tends to generate
test inputs with higher DSA values compared to DLFuzz, ADAPT, and RobOT. DSC is computed by counting
how many buckets within the pre-defined DSA value ranges are covered by a test suite. Therefore, several inputs
generated by SUNTest yield high DSA values beyond the pre-defined ranges (i.e., [L, U]). These test inputs do not
contribute to an increase in DSC.
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NLC is more indicative of a diverse test suite, as a diverse test suite is likely to uncover different neuron
correlations. As can be observed, SUNTest achieves remarkably higher NLC than state-of-the-art approaches
across all seed selection strategies and investigated DNN models. For instance, for CIFAR10-ConvNet, SUNTest
reaches an average coverage value of 18,666.7 across six seed selection strategies, while DLFuzz, ADAPT, and
RobOT achieve average values of 21.2, 12.9, and 7.0, respectively. According to the ‘Avg Rank (I)’ results, SUNTest
ranks first, followed by DLFuzz, ADAPT, and RobOT. These rankings are consistent with the ‘Avg Rank (I)’ results
for the number of the triggered fault types shown in Table 5. This finding indicates that NLC is correlated with the
diversity of fault types, which conforms to the finding observed by the literature [78]. The superior performance
of SUNTest in coverage increase can be attributed to the following reasons. 1) Test inputs generated using various
mutation operators (pixel-level and image-level operators) are more diverse than those generated by adding
perturbations to specific pixels. 2) SUNTest is more effective in detecting diverse fault types compared to baseline
approaches.

As highlighted by the underlined results, MOON outperforms other seed selection strategies in achieving higher
DSC and NLC. BE ranks second in performance. These observations can be attributed to several factors. MOON
employs a customized multi-objective optimization algorithm that optimizes both diversity and error-revealing
capability to guide the search process. BE relies on the concept of FOL, which quantifies how unfamiliar the
input is to the DNN model. By selecting seeds with both low and high FOL values, BE ensures that the inputs
include both familiar and unfamiliar examples. A set of inputs ranging from those similar to the training set
(with low DSA values) to those very different from the training set (with high DSA values), results in a high DSC.
Both MOON and BE select seed inputs with a wider range of SA values, facilitating the subsequent mutated test
inputs to achieve a higher DSC. Similarly, both strategies are designed to select seed inputs that induce diverse
neuron correlations or activations within the network. This promotes better exploration of the model’s internal
representations, leading to higher NLC values.

5.2.4 Input Validity. Table 7 presents a comparison of IS and FID scores achieved by different test input generators.
A higher IS score indicates that the generated inputs are both diverse and of high quality. A lower FID score
suggests that the generated inputs are more similar to real images, both in terms of visual quality and distribution.

Table 7. Comparison of Test Input Generators in Terms of Input Validity

\ IS | FID
Dataset
‘ DLFuzz ADAPT RobOT SUNTest ‘ DLFuzz ADAPT RobOT SUNTest
MNIST 1.30 1.32 1.39 4.22 3.68 4.43 10.72 53.42
SVHN 1.23 1.33 1.76 3.24 2.53 3.67 34.35 67.66
CIFAR10 1.15 1.16 1.62 3.53 2.13 2.41 34.47 68.86
CIFAR100 1.12 1.10 1.33 2.98 4.23 4.60 46.44 70.15

SUNTest achieves the highest IS scores across all four datasets, which signifies that the inputs generated by
SUNTest are both diverse and of high quality. However, SUNTest also obtains the highest FID scores across
the datasets. Several factors may explain these findings. SUNTest employs higher-order mutation operators,
whereas other methods typically rely on pixel-level operators. While these higher-order mutation operators
could preserve the semantic content of the samples, they can increase the distance between the mutated inputs
and the original seeds. This effect is particularly noticeable with transformations such as translation, rotation,
and brightness adjustment, which modify the spatial or visual properties of the generated inputs. Consequently,
the increased distance between the mutated samples and the original seeds contributes to the higher FID scores.
Although the FID values achieved by SUNTest are higher than other baselines, they are still at an acceptable
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level. The IS metric rewards inputs that are diverse and exhibit clear features, even if these inputs are distant
from the original seed. In summary, SUNTest generates test inputs that exhibit a certain level of image quality.

Answer to RQ2: SUNTest significantly outperforms state-of-the-art approaches in generating error-
revealing test inputs and triggering diverse fault types across almost all investigated DNN models.
Specifically, SUNTest increases the average number of detected faults by 100.3 to 310.5, with an average
improvement rate of up to 162.9%. The increase in the average number of triggered fault types ranges
from 29.2 to 80.9, achieving an average improvement rate of up to 98.8%.

Among all 24 combinations of seed selection strategies and input generation strategies, the combination of
DLFuzz and Deepgini performs the best in generating error-revealing inputs, ranking first most frequently.
Regarding fault diversity, SUNTest paired with MOON achieves the best performance, ranking first five
times across the eight investigated models.

5.3 Answer to RQ3: Effectiveness in Model Enhancement

Table 8 presents detailed results of the average accuracy improvements of DNN models after retraining with test
inputs generated by various approaches. The ‘Avg_1" columns show the average performance across six different
seed selection strategies for each test input generator. The results reveal that as the proportion of adversarial
samples in the evaluation set increases, the model’s accuracy improvement becomes more pronounced. For
example, for CIFAR100-VGG, accuracy improvements range from 1.66% to 4.48% when the data compound ratio
of the evaluation set is ‘80%+20%’. When the evaluation set consists entirely of adversarial samples (‘0%+100%’),
accuracy improvements rise significantly, ranging from 17.42% to 22.03%. Regarding the performance of the four
test input generators, with the exception of the two models on the MNIST dataset, SUNTest achieves the best
‘Avg_1’ results across the majority of DNN models, as indicated by the cells highlighted with a yellow background.
This outperformance is especially evident when the evaluation set contains a higher proportion of adversarial
samples. For MNIST-LeNet5 and MNIST-ConvNet, while DLFuzz yields the highest accuracy improvements, the
improvements of DLFuzz and SUNTest are comparable. For instance, the ‘Avg_1’ result achieved by SUNTest
when the data compound ratio is ‘0%+100%’ is 33.15%, which is slightly lower than DLFuzz’s result of 34.55%. In
comparison to ADAPT and RobOT, SUNTest demonstrates significantly higher accuracy improvements across
nearly all DNN models and data compound ratios. These results highlight that SUNTest consistently outperforms
other test input generators in enhancing the accuracy of DNN models, particularly when the evaluation set
contains a higher proportion of adversarial samples.

Table 9 presents the average accuracy improvements across five data compound ratios, represented as the ‘Avg_2’
results. Additionally, for each DNN model, the ‘T’ rows report the average increase in accuracy improvements
achieved by SUNTest compared to the baseline approaches using the same seed selection strategies. The ‘T (%)’
rows present the relative improvement percentages when comparing SUNTest to other baselines. As observed
from the results, with the exception of the two models on the MNIST dataset, SUNTest obtains the best ‘Avg_2’
results across the four test input generators. Specifically, for MNIST-LeNet5 and MNIST-ConvNet, DLFuzz
achieves the highest accuracy improvement, followed by SUNTest, RobOT, and ADAPT. For models trained on
the SVHN, CIFAR10, and CIFAR100 datasets, SUNTest achieves the highest accuracy improvement of 10.68%,
10.15%, 7.35%, 12.15%, 11.88%, and 14.10%, respectively, with DLFuzz following behind. Considering the |” results,
SUNTest increases the average accuracy improvements by up to 6.51%, 1.32%, 6.11%, 3.39%, 3.02%, 8.04%, 1.44%,
and 6.92% on the investigated models compared to baseline approaches. As indicated by the ‘T (%)’ results, these
increases correspond to relative improvement rates of 67.1%, 6.4%, 133.8%, 50.0%, 69.6%, 195.8%, 13.8%, and 96.4%,
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Table 8. Accuracy Improvement (%) of DNN Models after Retraining with the Generated Test Inputs

Model Rati | DLFuzz | ADAPT | RobOT | SUNTest
odel Ratio
[Random BE KM DeepGini MCP MOON Avg_1|Random BE KM DeepGini MCP MOON Avg_1|Random BE KM DeepGini MCP MOON Avg_i|Random BE KM DeepGini MCP MOON Avg_1

g 80%+20% 6.81 6.55 6.55 6.87 6.73 678 | 6.71 291 359 291 3.77 3.03 375 333 339 4.97 3.60 5.75 372 577 4.53 6.54 6.66 6.51 6.58 6.59  6.68 6.59
% 60%+40%| 13.16 1254 1271 13.07 13.03 13.08 | 12.93| 536 6.97 544 7.02 585 713 | 6.29 6.41 9.54 6.81 10.98 7.06 1091 | 8.62 12.01 12371220 1238 12.22 12.38 | 12.26
r‘.‘. 40%+60%| 19.18 18.33 18.64 18.99 19.01 19.06 | 18.87 7.88 10.14 7.74 10.20 8.56 10.27 | 9.13 9.45  13.57 9.65 15.64 10.17 1535 | 12.31 16.51 16.76 1644 1677  16.59 16.77 | 16.64
E 20%+80%| 25.53 24.46 2476 2531 2539 2544 | 25.15| 10.61 13.4810.54 13.71 11.53 13.64 | 12.25 12.54 1832 13.08° 2111 13.67 21.06 | 16.63 19.90 20.6520.17 20.74 2038 20.66 | 20.42
= 0%+100%| 3142 2897 3069 3099 3145 31.55|30.85| 1535 20.261549 18.04 1535 2043 | 17.49 18.90 20.01 1868 2095 18.93 2097 | 19.74 | 24.81 25212501 2533 25.14 25.22 | 25.12
g 80%+20%| 1142 11.16 1133 11.68 1147 11.65 | 11.45| 10.72 10.66 10.77 10.63  10.71 10.81 | 10.72 10.89 10.89 10.81  10.80  10.80 10.93 | 10.85 1117 11511113 1162 11.20 11.21 | 11.31
E 60%+40%| 16.79 16.15 16.58 17.20 1692 17.08 | 16.79| 1550 1546 1555 1544 1549 15.58 | 15.50 1572 15711558 15.60 1556 15.80 | 15.66 1649 17.06 1644 17.21 1656 16.74 | 16.75
E 40%+60%| 22.61 21.74 2230 2321 2282 22.63 | 22.55| 20.78 20.76 20.85 20.78 20.81 20.87 | 20.81 2111 21.092093 2094 20.89 2115 | 21.02| 21.03 21.8320.81 2205 21.04 21.81 |21.43
E 20%+80%| 2825 27.10 27.89 29.28 2850 28.54 | 28.26| 25.96 25.9126.04 2598 26.04 26.07 | 26.00 26.32 26232608 26.06 26.08 26.13 | 26.15| 2682 27.6926.42 28.02 26.77 27.62 | 27.22
= 0%+100%| 3523 34.97 3489 3236 3406 3579 | 34.55| 30.33 30.0130.17 3042 29.92 3048 | 30.22 31.24 31033124 3070 31.17 31.46 | 31.14 | 32,66 33.4032.43 3401 3254 33.87 | 33.15
2 80%+20%| 2.02 163 1.77 1.78 209 2.09 1.90 2.06 143 212 1.85 1.79 1.83 1.85 171 0.92 ' 1.60 175 181 124 | 1.50 0.88 1.39 095 107 120 125 112
: 60%+40%| 3.50 278 3.17 3.04 3.62 355 3.28 4.00 2.86 4.04 3.79 371 399 3.73 3.16 153 287 3.13 332 322 2.87 5.78 6.26 5.85 5.98 587  5.90 5.94
<3 40%+60%| 5.57 4.18 488 4.74 534 552 | 5.04 6.11 443 6.24 5.51 561 632 | 570 4.67 220 4.12 4.61 495 459 | 419 1049 1086 10.77  10.77  10.77 11.44 | 10.85
;% 20%+80%| 7.22 537 6.33 6.12 7.05 7.55 6.61 8.30 5.89 8.55 7.54 752 854 7.72 6.47 2.92 5.75 6.18 6.28  6.59 5.70 15.16 15.4515.27 1545 1539 16.08 | 15.47
3: 0%+100%| 12.41 10.85 12.44 1224 12.80 12.94 | 12.28 13.58 11.3214.56 13.77  13.55 14.52 | 13.55 9.12 5.23 8.93 9.31 9.44 948 8.58 19.600 19911978 19.88 19.84 21.16 | 20.03
) 80%+20%| 4.73 4.34 470 4.47 4.64  4.69 4.60 3.20 3.60 3.21 4.06 2.89  4.00 3.49 4.32 4.40 4.36 3.95 4.23 430 4.26 4.74 4.71 4.77 4.65 4.68 4.73 4.71
g 60%+40%| 7.14 649 7.21 6.76 7.07 714 | 6.97 4.68 516 4.62 6.09 449  6.05 | 518 645 6.59 6.53 5.68 620 634 | 630 741 7.37 748 7.32 741 748 | 7.41
é 40%+60%| 9.47 8.56 9.41 8.91 9.26  9.37 9.16 6.05 6.69 5.96 7.99 585 8.03 6.76 8.37 8.60 6.44 7.37 8.10  8.22 7.85 10.04. 9.91 10.08 9.86 9.95 10.06 | 9.98
3) 20%+80%| 11.62 10.42 11.60 11.00 1157 11.93 | 11.36 7.40 8.17 7.17 9.84 7.27 991 8.29 10.23  10.62 10.44 8.89 9.90 © 10.36 | 10.07 1282 1256 12.78 1258 12,63 13.09 | 12.74
0%+100%| 13.61 13.38 14.07 13.76  13.89 14.25 | 13.83 9.09 9.86 8.76 12.02 8.82 12.08 | 10.11 1241 13.0112.87 11.25.1235 1261 | 12.42 15.84 157116.10 1572 1585 16.29 | 15.92
2 80%+20%| 2.77 271 281 211 274 271 | 2.64 1.85 185 1.72 175 1.62  1.69 175 2.08 2.08 2.04 2.07 203 228 2.06 1.94 2.07 1.98 1.92 2.00  2.00 1.99
E 60%+40% 5.18 533 533 4.29 505 5.24 5.07 3.34 3.45 331 3.18 3.16 = 3.27 3.28 3.67 3.72 3.82 3.59 3.68  3.66 3.69 391 3.94 4.18 3.89 343 341 3.79
3 40%+60% 7.44 7.68 7.55 5.90 7.16 = 757 | 7.22 4.44 4.28 439 4.51 4.01 459 437 5.09 5.14 5.17 4.47 4.98 517 5.00 7.28 7.76 7.66 7.74 773 1.78 7.66
& 20%+80%| 9.87 10.00 9.99 7.78 9.75 10.11 | 9.58 5.66 540 541 5.63 529 577 | 553 6.41 6.22 6.64 6.11 6.37 6.68 | 6.41 10.26  10.10 10.07  11.28 9.25 10.50 | 10.24
é 0%+100%| 12.73 1247 12.39 9.86 1156 13.18 | 12.03 6.83 6.51 6.67 6.92 642 7.16 6.75 7.74 7.53 7.74 7.20 7.67 7.83 7.62 13.06 12.9113.26 1320 1261 13.52 | 13.09
8 80%+20%| 3.31 3.30 3.33 3.32 3.50 391 3.45 2.01 222 194 2.73 147 144 1.97 3.24 331 3.25 3.44 3.14 349 331 3.99 3.92 3.93 3.83 4.08 423 4.0
= 60%+40%| 5.72 585 585 5.96 6.11  5.96 591 3.03 333 2.85 4.25 274 391 335 4.47 4.51 4.45 4.65 4.26  4.64 | 4.50 7.72 7.83 7.83 7.89 799 8.0 7.88
E 40%+60%| 7.74 7.57 8.06 8.10 8.05 8.09 7.94 3.80 4.03 3.58 5.59 373 447 4.20 5.63 5.74 5.88 5.97 557 6.17 5.83 1173 11811191  11.91 1201 1259 | 11.99
é 20%+80%| 9.29 9.11 9.46 9.94 9.59  9.76 9.52 4.64 4.88 4.31 6.77 491 553 5.17 6.79 6.81 6.93 7.02 6.62 740 6.93 16.13 16321634  16.31 16.41 16.71 | 16.37
© 0%+100%| 1122 1039 1099 1210 11.09 1153 | 11.22 5.48 5.62 4.61 7.36 546 6.51 5.84 7.45. 7.51 7.14 7.38 730  8.11 7.48 20.21  20.39 20.37  20.47  20.41 21.20 |20.51
8 80%+20%| 447 433 452 447 463 446 | 448 3.98  3.89 4.02 4.02 331 280 | 3.67 4.51 447 449 431 442 408 | 438 168 140 1.65 122 165 238 | 1.66
z 60%+40%| 7.73 7.75 7.88 7.76 786 794 | 7.82 6.94  7.01 6.87 717 6.67 6.69 | 6.89 7.96 7177 792 7.65 7.97 778 7.84 6.65  6.62 6.89 6.53 6.57 6.53 | 6.63
2 40%+60%| 11.08 11.14 11.03  10.94 11.26 11.33 | 11.13 10.31  10.29 10.10  10.32 9.98 10.02 | 10.17 1135 11121135 1113 1137 1137 | 11.28( 11.71 11.6411.87 12.06 11.89 1271 | 11.98
E 20%+80%| 14.90 1503 15.15 1504 1526 15.18 | 15.09 13.88 13971394 1422 1395 1432 | 14.05 1549 15241544 1507 1573 1631 | 15.55 16.70 16.67 16,94 17.14 17.13 18.10 | 17.11
S 0%+100%| 18.49 18.50 18.54 18.32  18.63 19.12 | 18.60 17.15 17.2717.35 17.60  17.26 17.89 | 17.42 18.57 18.67 18.79 1855 19.21 19.93 | 18.95 2215 21.2021.58 2202 21.94 23.25 | 22.03
2 80%+20%| 4.71 4.51 455 4.26 443 471 4.53 2.63 3.06 2.94 2.89 3.00 235 2.81 4.65 4.81 4.57 4.81 4.68 435 4.64 5.18 5.09 5.05 4.98 522 539 5.15
s
&1 60%+40%| 7.30 6.77 6.95 6.36 6.81 7.76 6.99 4.53 4.89 4.74 4.97 5.07 4.90 4.85 7.20 7.24 7.03 7.21 7.07  7.51 7.21 9.29 9.30 9.15 9.19 9.38  9.76 9.34
8 40%+60%| 9.82 9.17 9.42 8.95 9.54 10.63 | 9.59 6.81 6.94 6.82 7.07 7.05 7.08 6.96 9.80 9.86 9.73 9.79 9.60 1 9.85 13.61 13.7213.66 13.59 13.73 14.34 | 13.78
5 20%+80%| 12.19 11.76 12.21 1155 12.08 12.72 | 12.09 9.06 8.97 9.08 9.50 9.51  9.69 9.30 12.62 12551254 1260  12.33 13.26 | 12.65 17.98 18121847 1833  18.04 19.35 | 18.38
E 0%+100%| 15.09 14.70 1540 14.55 1525 15.78 | 15.13 12.00 11.6911.87 1223 11.86 12.17 | 11.97 1533 15711556 1557 15.16 15.86 | 15.53 [ 23.56 23.6523.56 23.84 23.69 24.82 | 23.85

! The best ‘Avg_1’ result among the four test input generation approaches is highlighted in bold and displayed with a yellow-colored background.
2 Uncolored baseline cells indicate instances where SUNTest obtains significantly higher accuracy improvements compared to the baselines under the same seed
selection strategy. Gray cells indicate instances where SUNTest performs worse than or shows no statistically significant difference from the baseline.

respectively. Besides, when compared to baseline approaches, SUNTest achieves increases in average accuracy
improvements of up to 4.86%, 8.04%, and 6.54% across the investigated DNN models, respectively.

Table 10 provides the ‘Avg Rank’ and ‘4 Top-1’ results for different test input generators. The definitions of
these metrics are consistent with those in Tables 5 and 6. In Table 10, both ‘Avg Rank’ and # Top-1" metrics are
calculated based on the accuracy improvements achieved across all data compound ratios. As indicated by the
‘Avg Rank (I)’ results, SUNTest is the most effective in guiding model enhancement. It achieves the best average
rank of 1.53, followed by DLFuzz, RobOT, and ADAPT, with values of 1.98, 2.80, and 3.70, respectively. One
interesting finding is that the ranking of these four approaches in terms of retraining effectiveness is consistent
with their ranking in terms of error-revealing test input generation. Regarding the effectiveness in triggering
errors, SUNTest and DLFuzz consistently rank among the top two approaches, while RobOT and ADAPT occupy
the bottom two positions. These findings suggest that retraining with the generated error-revealing inputs leads
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Table 9. Average Accuracy Improvement (%) of DNN Models Across Five Data Compound Ratios
Model l DLFuzz ADAPT RobOT SUNTest
ode
[Random BE KM DeepGini MCP MOON Avgil{Random BE KM DeepGini MCP MOON Avgileandom BE KM DeepGini MCP MOON Avgil{Random BE KM DeepGini MCP MOON Avg_1
Avg 2| 1922 1817 18.67 19.04 19.12 19.18 | 18.90| 842 10.89 8.42 10.55 886 11.04 [ 970 10.14 1328 10.36  14.89 1071 14.81 | 12.37 1595 16.33 1607 1636 16.18 16.34 | 16.21
MNIST-LeNet5 T -3.27  -1.84 -2.60 -2.68 -2.94 -2.84 | -2.70 7.53 544 7.64 5.81 732 530 6.51 5.81 3.05 5.70 147 547 153 3.84
T(%)| -170 -10.1-13.9 -14.1 -154 -148 | -143 89.4 50.0 90.7 55.1 826 48.0 67.1 57.3 23.0 55.0 9.9 511 103 311
Avg 2| 2286 22222260 2275 2276 23.14 | 22.72| 20.66 20.56 20.68 20.65  20.59 20.76 | 20.65 21.06 20.99 2093 2082 20.90 21.10 | 20.97 2163 22302145 2258 2162 22.25 | 21.97
MNIST-ConvNet T -1.23 008 -1.15 -0.16 -113 -0.89 | -0.75 0.98 174 077 193 103 149 1.32 0.58 131 0.52 176 072 115 101
T(#| 54 03 51 07 50 38 | 33 | 47 85 37 94 50 72 | 64 27 62 25 85 35 55 | 48
Avg 2| 614 4.96 5.72 5.58 6.18 633 5.82 6.81 519 7.10 6.49 643 7.04 6.51 5.02 2.56 4.65 4.99 516 5.02 4.57 1038 1077 1053  10.63 1061 11.17 | 10.68
SVHN-ConvNet T 4.24 5.81 4.81 5.05 443 484 4.86 3.57 559 342 4.14 418 413 417 5.36 8.21 587 5.64 545  6.14 6.11
T(%) 68.9 117.1 84.1 90.3 717 764 835 524  107.7 482 63.8 649 58.6 64.1 106.6 3208 126.2 1128 1057 122.2 | 133.8
Avg 2 9.31 8.64 9.40 8.98 929 948 9.18 6.08 6.70 594 8.00 586 8.01 6.77 8.36 8.64 813 7.43 8.16  8.37 8.18 10.17  10.0510.24 1003 10.11 10.33 | 10.15
SVHN-VGG T 0.85 141 0.84 105 0.82 085 0.97 4.08 335 430 2.03 424 232 339 181 141 211 2.60 195 1.96 197
T (%) 9.2 16.4 9.0 116 8.8 9.0 10.6 67.1 50.1 723 253 724 289 50.0 217 16.3 26.0 35.0 239 235 24.1
Avg 2| 7.60 7.64 7.61 5.99 7.25 776 7.31 442 430 430 4.40 410 450 434 5.00 4.94 5.08 4.69 495 513 4.96 7.29 735 743 7.61 7.01 744 7.35
CIFAR10-ConvNet | -0.31  -0.29 -0.18 162 -0.25 -0.32 0.05 2.87 3.06 3.13 3.21 291 295 3.02 229 242 235 2.92 206 232 2.39
T(%) -4.1 -3.7 -24 27.1 34 41 0.6 64.8 711 728 73.0 709 655 69.6 45.8 48.9 46.2 62.2 416 452 48.2
Avg 2| 746 7.24 754 7.88 7.67 785 7.61 3.79 4.02 3.46 534 3.66 437 4.11 5.52 5.58 5.53 5.69 538 5.96 5.61 1195  12.05 1208 1208 1218 1255 | 12.15
CIFAR10-VGG T 4.50 4.81 454 4.20 451 470 4.54 8.16 8.04 8.62 6.74 852 8.18 8.04 6.44 6.48 6.55 6.39 6.80 6.59 6.54
T(%) 60.3 66.4 60.2 53.2 588 59.8 59.7 2153 200.2249.0 1262 2325 187.1 | 195.8 1167 1162 1184 1124 1264 110.5 | 116.6
Avg 2| 1133 11351143 1131 1153 1160 | 11.42 1045 1049 1045 1067 1024 1034 | 10.44 1158 1146 11.60 1134 11.74 11.90 | 11.60 1178 11511179 1179 11.84 1259 | 11.88
CIFAR100-VGG T 0.44 0.16 0.36 049 031 099 0.46 1.33 102 133 112 160 225 144 0.20 0.05 0.19 0.45 0.10 070 0.28
T(%) 3.9 14 32 4.3 27 8.5 4.0 12.7 9.7 127 10.5 156 218 138 17 05 1.6 4.0 0.8 59 24
Avg 2| 9.82 9.38 9.71 9.13 9.62 1032 | 9.67 7.01 711 7.09 7.33 730 724 718 9.92 ~ 10.03 9.88 10.00 9.97 1027 | 9.98 1392 13971398 1399 1401 1473 | 14.10
CIFAR100-ResNet T 4.10 4.59 4.27 4.85 439 441 4.44 6.92 6.86 6.89 6.65 671 749 6.92 4.00 3.94 409 3.99 4.25 447 4.12
T (%) 41.8 48.9 44.0 53.1 456 427 45.9 98.8 96.5 97.2 90.7 920 1035 | 96.4 40.3 393 414 39.9 435 435 413

! For each DNN model, among the ‘Avg_1’ values across the four test input generation approaches, the best ‘Avg_2’ result is highlighted in bold and
presented with a yellow background.

Table 10. Average Rank and Top-1 Frequency of Test Input Generators for Model Enhancement

DLFuzz ‘ ADAPT ‘ RobOT

SUNTest

‘Random BE KM DeepGini MCP MOON Avgil‘Random BE KM DeepGini MCP MOON AVng‘Random BE KM DeepGini MCP MOON Avg_1

Random BE KM DeepGini MCP MOON Avg_1

AvgRank (I)| 190 218 198

AvgRank (I)| 860  12.05 9.40
#Top-1(I) 13 8 13
# Top-1 (I) 3 101

2.08 190 188 1.98 3.68 3.68 3.68 3.55 373 3.68 3.70 2.83 2.75 2.80 2.88 278  2.88 2.80 1.60 140 1.58 1.55

10.45 8.60 6.35 20.00 20.6519.95 18.05 20.85 17.60 1443 14351535 1508 15.05 12.53 8.05  6.53 7.65 6.35
12 15 14 13 1 0o 1 1 0 0 0 2 2 1 0 1 0 1 24 30 25 27
4 1 2 - 0 01 0 0 0 - 0 0 0 0 1 0 - 0 12 2

1.60

7.33

24

0

1.58

5.00

26

21

1.53

26

to the correction of erroneous knowledge acquired by the model. Diverse fault types enable the model to learn
more diverse information. Both factors contribute to the enhancement of model robustness.

Since eight DNN models were evaluated across five different data compound ratios, the total number of cases
is 5 x 8 = 40. Regarding the ‘Avg_1’ results, SUNTest ranks first most frequently, appearing in the top position 26
times, which accounts for nearly two-thirds of the cases. DLFuzz ranks second, with a frequency of 13 occurrences.
Regarding the results achieved by different seed selection strategies, regardless of the chosen seed selection
strategy, SUNTest consistently achieves the lowest average rank among the four test input generators.

When considering the results of each approach combination (‘Avg Rank (II) and ‘# Top-1(Il)’ results), the
combination of SUNTest and MOON achieves the highest frequency of being ranked first among all 24 com-
binations, appearing in the top position 21 times. This combination also achieves the lowest average rank of
5.0. Two approach combinations, i.e., SUNTest and DeepGini, and DLFuzz and paired with MOON achieve the
second-lowest average rank of 6.35. Furthermore, as observed from the ‘Avg Rank (II)’ results, when comparing
different seed selection strategies within the same test input generator, the MOON strategy outperforms the
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Fig. 4. Comparison Results between SUNTest and its Variants in Terms of the Number of Error-Revealing Test Inputs

others. Across all four test input generators, MOON consistently achieves the lowest average rank compared to
the other selection strategies.

Answer to RQ3: SUNTest is effective in generating test inputs for model enhancement through retraining,
increasing the average accuracy improvements by up to 4.86%, 8.04%, and 6.54% compared to baseline
approaches. This superior performance is attributed to its effectiveness in fault detection and its capa-
bility te trigger diverse fault types. Besides, SUNTest paired with MOON outperforms other approach
combinations in enhancement, achieving the top position in nearly one-third of the cases.

5.4 Answer to RQ4: Ablation Study

Figure 4 and Figure 5 present the comparative analysis between SUNTest and its variants, specifically focusing
on the number of error-revealing test inputs and the types of triggered faults across six seed selection strategies.
The results are illustrated using boxplots, where the horizontal line indicates the median value, the triangle
marker represents the average result, and the circle marker denotes the outlier point. For each model, red dotted
lines with ‘x” symbols at both ends above certain pairs of boxes indicate that SUNTest significantly outperforms
the corresponding variant, based on p-values and |§| values. Table 11 presents the comparative results between
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Fig. 5. Comparison Results between SUNTest and its Variants in Terms of the Number of Triggered Fault Types

SUNTest and its variants concerning model accuracy improvement. The ‘Avg_1’ rows report the average accuracy
improvement across five data compound ratios for each approach, while the ‘Avg_2’ rows denote the average
improvement across all eight investigated models.

5.4.1 Usefulness of the Adaptive Operator Selection Strategy. As depicted in Figure 4, the ER, ID, and SUNTest
variants generate significantly larger numbers of error-revealing test inputs compared to the RO variant. This
highlights the contribution of the adaptive operator selection strategy to fault detection. Regarding the capability
to trigger diverse fault types, SUNTest statistically significantly outperforms the RO variant. These findings align
with our expectation that considering the historical capabilities of fault detection and fault diversity triggering of
mutation operators enhances the likelihood that subsequent mutated test inputs will result in a greater quantity
of, and more diverse, erroneous behaviors.

In terms of retraining effectiveness, as shown in Table 11, SUNTest achieves significantly higher accuracy
improvements than RO across the majority of data compound ratios (27 out of 40). This observation indicates
that both fault detection and fault diversity capabilities contribute to enhancing model robustness. Therefore, we
can conclude that the adaptive selection strategy for mutation operators is useful in finding more and diverse
faults, and guiding model enhancement.

5.4.2  Usefulness of the Guidance from Suspicious Neurons. ER, ID, and SUNTest generate larger numbers of
error-revealing inputs compared to RN. These results highlight the effectiveness of suspicious neuron guidance in
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Table 11. Comparison Results between SUNTest and its Variants in Terms of the Accuracy Improvement

Dataset Model Ratio | RO RN ER D SUNTest
80%+20% 6.27 5.43 6.54 6.57 6.59
60%+40% 11.14 10.74 1231 12.32 12.26
LeNets 40%+60% 15.00 14553 1677 16.78 16.64
20%+80% 17.88 17.78 20.61 20.73 20.42
0%+100% 24,04 22.86 23.93 24.04 25.12
Avg_ 1 11.87 11.27 16.03 16.09 16.21
MNIST B0 20% 10.50 10.10 TI.20 TI21 11.31
60%+40% 16.09 14.90 1655 1658 16.75
40%+60% 21.45 2038 21.04 21.14 21.43
ConvNet 20%+80% 26.19 2437 26.65 26.74 27.22
0%+100% 3253 30,57 32.46 3255 33.15
Avg_1 7135 20.07 7158 7164 21.98
80%+20% 2.07 0.82 1.27 0.99 112
60%+40% 5.57 5.41 6.04 5.84 5.94
40%+60% 9.31 9.98 10.80 10.47 10.85
ConvNet 20%+80% 13.07 14.58 15.44 15.22 15.47
0%+100% 16.99 1937 19.97 1961 20.03
Ave 1 9.40 10.03 10.71 10.43 10.68
SVHN B0%20% Z7T 438473 4730 — a7
60%+40% 7.47 7.07 7.43 7.40 7.41
40%+60% 10.23 9.26 10.05 10.02 9.98
VGG 20%+80% 1250 11.82 12.78 1276 12.74
0%+100% 15.08 14.40 15.60 15.65 15.92
Avg_1 10.00 9,39 10.12 10.11 10.15
80%+20% 1.93 1.96 191 1.92 1.99
60%+40% 3.85 3.49 3155 355 376
40%+60% 7.63 455 7.66 7.67 7.66
ConvNet 20%+80% 9.55 6.44 948 9.42 10.24
0%+100% 12.04 10.70 11.97 12.02 13.09
Ave 1 00 543 6.92 6.92 735
—————B0%20% | 174 332 3.37 3.40 4,00
CIFAR10 60%+407% 6.64 724 7.92 7.96 7.88
40%+60% 10.88 10.93 11.83 1164 11.99
VGG 20%+80% 15.66 1477 16.45 16.41 1637
0%+100% 19.84 1801 20.13 20.12 20.51
Avg_ 1 10.95 10.85 1194 T1.91 12.15
80%+20% 1.70 -131 1.51 135 1.66
60%+40% 6.46 237 6.41 6.10 6.63
VGG 40%+60% 11.17 6.62 11.12 11.10 11.98
20%+80% 1635 13.35 1633 16.28 17.11
0%+100% 20.96 19.25 21.13 21.05 22.03
Avg T 133 8.06 1130 118 11.88
B0%220% 507 50 506 509 5.15
CIFAR100 60%+40% 9.25 9.25 9.25 931 934
40%+60% 13.63 13.54 13.61 1367 13.78
ResNet 20%+80% 17.85 17.59 17.79 17.89 18.38
0%+100% 22,42 22128 2238 2244 23.85
Avg T 13.63 1355 13.62 13.68 14.10
Avg_2 1232 1145 1278 12.74 13.06
Avg Rank 3.38 4.68 2.80 2.53 1.70
# Top-1 6 0 3 6 25

! For each data compound ratio and the ‘Avg_1’ result, the highest values are highlighted in bold and displayed with a light purple
background.
2 Baseline cells with a gray background indicate instances where SUNTest statistically significantly outperforms its variants.

enhancing error detection. Notably, SUNTest significantly outperforms RN in generating error-revealing inputs
across all investigated models. When considering the number of triggered fault types, SUNTest demonstrates
significantly better performance than RN, as highlighted by the red dotted lines in the figures.

In terms of retraining effectiveness, out of a total of 40 instances, SUNTest is only found to be not significantly
superior to RN in 3 cases. Additionally, as indicated by the ‘Avg_2’ results, the RO variant achieves the lowest
average accuracy improvement, at just 11.45%, and holds an average rank of 4.68, positioning it last among the
five variants. These results demonstrate that, compared to using randomly selected neurons, focusing on those
identified as contributing to misbehaviors allows SUNTest to enable more targeted and effective fault detection,
thereby enhancing the model’s robustness.
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5.4.3 Usefulness of the Hybrid Fitness Function. In terms of the number of error-revealing test inputs, SUNTest
outperforms ER and ID in terms of average results across nearly all the investigated models. When compared to
ER, SUNTest produces higher average results in most cases (7 out of 8), with the exception of SVHN-VGG. In
terms of the triggered fault types, SUNTest outperforms the ID variant considerably in 6 out of the 8 investigated
models. For models such as CIFAR10-ConvNet, CIFAR10-VGG, CIFAR100-VGG, and CIFAR100-ResNet, SUNTest
triggers significantly larger numbers of fault types than both ID and ER, as indicated by the red dotted lines
in figures. Furthermore, we observed that ER outperforms ID in terms of triggering more and diverse faults.
Considering both fault detection and fault diversity across the eight investigated models (a total of 16 cases), ER
achieves higher average and median values than ID in more than one-third of the cases (11 out of 16).

Regarding model enhancement, SUNTest achieves the highest ‘Avg_2’ result of 13.06%, surpassing the per-
formance of both ER and ID, which yield results of 12.78% and 12.74%, respectively. SUNTest attains the lowest
average rank of 1.70, followed by ID and ER, with values of 2.53 and 2.80, respectively. The performance of the
ER and ID variants is comparable. In terms of the ‘4Top-1’ results, SUNTest achieves the highest frequency of
obtaining the greatest average accuracy improvement across all data compound ratios; followed by ID and RO,
which perform as the second-best approaches. Several factors may account for the superior performance of
SUNTest compared to ER and ID. First, ID evaluates whether an input should be retained as a seed for subsequent
mutation solely based on its potential to increase input diversity, overlooking its ability to detect faults. Second,
the ER variant focuses exclusively on the error-revealing capabilities of test inputs, which may hinder the DNN
model’s ability to learn from a broader range of features during the retraining process. SUNTest incorporates
both fault detection and input diversity. Therefore, these findings indicate that the hybrid fitness function, which
incorporates both error-revealing capability and diversity feedback of test inputs, provides better guidance for
fault detection and model retraining than using individual fitness functions.

Answer to RQ4: The adaptive mutation operator selection strategy, guidance from suspicious neurons,
and the hybrid fitness function contribute to the effectiveness of test input generation. Combining them
leads to improvements in fault detection.and model enhancement.

5.5 Answer to RQ5: Efficiency Analysis

Table 12 reports the average execution time overhead for suspicious neuron localization and test input generation
across various datasets and models.

Table 12. Average Execution Time Overhead of Suspicious Neuron Localization and Test Input Generation (Minutes)

Suspicious Neuron Localization Test Input Generation
Dataset Model Spectrum Suspiciousness
R DLFuzz ADAPT RobOT SUNTest
Analysis Measurement
MNIST LeNet5 30.70 < 0.01s 42.10 0.30 0.75 11.21
ConvNet 48.78 < 0.01s 72.01 0.34 0.73 11.58
SVHN ConvNet 80.35 < 0.01s 223.08 0.88 1.46 14.69
VGG 167.16 < 0.01s 309.27 1.02 2.56 13.01
ConvNet 122.66 < 0.01s 148.42 0.99 1.51 9.26
CIFAR10 VGG 81.65 < 0.01s 468.43 1.03 2.58 11.40
VGG 98.36 <0.01s 646.26 2.22 4.06 12.57
IFAR1
CIFAR100 ResNet 87.10 < 0.01s 969.45 2.82 5.69 14.19
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5.5.1 Efficiency Analysis of Suspicious Neuron Localization. As shown in Table 12, the time complexity of
suspicious neuron localization is primarily driven by the neuron spectrum analysis. The time overhead for this
analysis ranges from 30.70 minutes (LeNet5 on MNIST) to 167.16 minutes (VGG on SVHN). It is largely determined
by both the number of neurons in the target layer and the size of the training set. This process involves traversing
the output activations of all neurons in the target layer across all training instances. Although the process is
time-consuming, it is performed only once at the beginning. To mitigate computational complexity, several
strategies can be employed: 1) selecting representative instances from the training set, and 2) choosing appropriate
target layers to control the number of neurons. Furthermore, we plan to optimize SUNTest’s suspicious neuron
localization algorithm in future work to reduce computational overhead.

Once the neuron spectrum is constructed, the process of measuring neuron suspiciousness becomes computa-
tionally negligible, with execution times consistently under 0.01 seconds, regardless of the model or dataset. In
practical applications, selecting an appropriate SBFL formula to compute suspiciousness is a straightforward task,
even for developers working with custom datasets and models, thanks to the high efficiency of the suspiciousness
calculation step. This allows practitioners to experiment with different configurations to identify the most suitable
SBFL formula and the optimal neuron selection ratio for their specific use case.

5.5.2  Efficiency Analysis of Test Input Generation. It can be observed that ADAPT is the most efficient approach,
demonstrating the lowest average execution time, ranging from 0.30 minutes to 2.82 minutes. RobOT follows
closely behind in terms of efficiency. In the experiments, we also observed that as DLFuzz’s generation process
progresses, the time required to mutate each seed input increases. For instance; the mutation time for the first
seed in the list may only take 1 second, while the mutation time for the 100th seed could extend to approximately
10 minutes. To alleviate this time overhead, we divided the seed list into two separate subsets for efficiency
analysis. Despite this adjustment, DLFuzz remains the approach with the highest execution overhead.

Our proposed SUNTest’s generation algorithm requires slightly more time compared to ADAPT and RobOT,
with its average execution time ranging from 9.26 minutes to 14.19 minutes. For example, consider CIFAR100-
ResNet, the most computationally intensive case in our investigated models. The overall average runtime for
SUNTest is 14.19 minutes, and the time required per seed is calculated as % X 60 =~ 4.3 seconds. The mutation
process in SUNTest involves not only pixel-level mutations but also image-level operators, which makes it more
time-consuming compared to ADAPT and RobOT. In general, the overhead of SUNTest’s test input generation
algorithm is acceptable in practice. While SUNTest is not the fastest among the approaches, it strikes a balance
between computational cost and the functionality it provides. Additionally, the time overhead of SUNTest’s test
input generation is partly due to input mutation with various domain-specific operators, while the majority
arises from the computation of the hybrid fitness function. The time cost of fitness calculation is influenced by the
number of neurons in the target layer of the model. If the number of neurons can be controlled, such as by limiting
the number of suspicious neurons in the target layer (only selecting those most relevant to misclassifications) or
by choosing a target layer near the output layer with a manageable number of neurons, then the overall time
cost can be kept within an acceptable range.

Answer to RQ5: While SUNTest is not the fastest in terms of overall time overhead for test input generation,
it outperforms DLFuzz across all models. The suspicious neuron localization process is relatively more
time-consuming, and future work will focus on optimizing this step to improve efficiency.
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6 DISCUSSION
6.1 Implications

6.1.1  Focused Testing with Interpretation Results. This work leverages critical neuron behaviors for guiding the
testing process, focusing on those involved in mispredictions. As demonstrated by the results for answering RQ1,
the misbehaviors of DNN models are reduced when the signs of suspicious neurons’ weights are reversed. By
understanding which neurons activate in response to specific inputs, we gain deeper insights into the model’s
decision-making and the causes of mispredictions. Integrating neuron-based interpretation techniques into testing
pipelines enables a more focused testing strategy. By identifying and targeting the neurons most critical to the
model’s outputs, testers can design test inputs that stress these neurons, uncovering potential weaknesses or
edge cases. This ensures a thorough evaluation of the model’s most impactful components.

Additionally, while this paper localizes suspicious neurons by executing training inputs, the methodology
could also be directly applied to testing inputs. It is important to note that the choice of instances used in
neuron spectrum analysis directly influences the calculation of suspiciousness scores. Our test input generator
is motivated by the practical consideration that testing data for DNN models is often limited or incomplete. In
this context, SUNTest prefers the use of training inputs to identify erroneousbehaviors in the model’s learned
knowledge. Whether utilizing training or testing instances, the underlying idea remains the same: both strategies
aim to capture internal model behaviors that reflect potential erroneous patterns. These findings can then be
leveraged to further test and enhance the model’s robustness.

6.1.2  Enhancing DNN Robustness with Diverse and Fault-Inducing Test Inputs. DNN models suffer from data
distribution shifts, exhibiting high accuracy on the training set but failing to generalize well to inputs outside
the training distribution due to natural variations in environmental conditions, such as changes in illumination
and camera distortions. Results from RQ3 and RQ4 indicate that considering both the fault-revealing capability
and diversity of test inputs is effective in uncovering erroneous behaviors and enhancing the robustness of
DNN models. From a testing perspective, diverse test inputs reveal a greater number of faults in DNN models.
It prevents the detection of redundant faults; ensuring a balanced testing process across different scenarios.
Additionally, it optimizes the testing budget and effort by increasing the likelihood of discovering unique faults
rather than repeatedly identifying the same issues. From a model enhancement perspective, retraining DNN
models with error-inducing test inputs helps correct erroneous knowledge learned previously. Incorporating
test input diversity prevents the model from disproportionately focusing on specific patterns or classes, thereby
improving performance across various types of inputs. Therefore, to test and enhance DNN models, we recommend
developers and testers consider both the fault-revealing power and diversity of test inputs.

6.1.3  Demonstration of the Generalizability of SUNTest. To assess the generalizability of SUNTest across different
domains, we apply it to transformer-based models trained on the IMDB dataset [51], demonstrating its effectiveness
in localizing suspicious neurons within text classification models. The IMDB dataset is a widely recognized
benchmark for binary sentiment classification, consisting of 50,000 movie reviews labeled as either positive
or negative. It is commonly used to evaluate the performance of Natural Language Processing (NLP) models,
particularly in sentiment analysis tasks. In this study, three sentiment classification models are trained, each built
on a pre-trained transformer-based language model (BERT) [12] as the backbone. These models employ distinct
classification architectures: (1) a Recurrent Neural Network (RNN)-based classifier, (2) a Feedforward Neural
Network (FNN)-based classifier, and (3) a Long Short-Term Memory (LSTM)-based classifier. The input text is
first processed through a tokenizer, which converts raw text into tokenized representations. These tokenized
inputs are then passed through the transformer model, where contextualized embeddings are extracted. Finally,
these embeddings are fed into the respective classifier layers to generate sentiment predictions.
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Following the experimental setup in RQ1, we employ two adversarial attack strategies for the IMDB dataset:
Genetic Attack [5] and MHA [79]. These adversarial samples, combined with the original test set, form mixed
input sets with three different data composition ratios. Given the large number of neurons in the investigated
Transformer-based models, we constrained the range of A and determined the optimal setting based on experi-
mental results. Table 13 presents the inconsistency rates of Transformer-based models after flipping the weights
of suspicious neurons. The results indicate that compared to the original model (where A = 0), the IR values
decrease when suspicious neurons undergo ablation. As a preliminary prototype, SUNTest is capable of localizing
suspicious neurons in the text classification task and Transformer-based models.

Table 13. The Inconsistency Rates (%) of Transformer-Based Models after Flipping Suspicious Neurons

Data Compound Ratio

Model ‘ 4 Configuration ‘[ 100% + 0% 60% + 40% 10% + 60%
Bert + RNN ‘ ,1/1::().(())4 ‘ gf igz gzi
Bert + LSTM ‘ /1/1::().(())4 ‘ i;z gi gzg
Bert + FNN ‘ ,1/1::().(())4 ‘ ig; ggg ggf

It is important to note that SUNTest treats individual neurons as computational units for fault localization. While
this approach is straightforward for Convolutional Neural Network (CNN)-based feedforward networks, applying
SBFL to architectures such as RNNs and Graph Neural Networks (GNNs) requires additional considerations due
to their distinct structural and computational properties. For instance, in LSTM networks, each layer is unrolled
to process sequential inputs, enabling the model to capture temporal dependencies over time. This recurrent
nature complicates the direct application of SBFL, as activations of internal states are influenced by previous time
steps. In GNNs, computations occur on graph-structured data, where node interactions and message passing
introduce additional dependencies. These dependencies must be accounted for when identifying suspicious nodes.
These architectural differences necessitate modifications to SBFL techniques to ensure effective fault localization
in models beyond FNN-based architectures.

6.1.4  Feasibility in Large-Scale Models. This section discusses the feasibility of applying SUNTest to large-scale
models in terms of the computational complexity and the scope of testing.

(1) Computational Complexity of White-box Testing. This work adopts a white-box testing paradigm, which
involves analyzing the internal structure of a model to guide the testing process. It is feasible for detecting
faults in'small to medium-scale models. One of the practical applications of this work lies in model compression,
particularly for deploying large-scale models on mobile or embedded devices with limited computational resources.
However, its applicability may diminish as model sizes increase, particularly with the emergence of large-scale
models containing billions or even trillions of neurons/states. The complexity of model architectures and the
vast scale of training datasets make exhaustive white-box analysis computationally impractical in real-world
scenarios. The key advantage of white-box testing is its ability to leverage internal model information, particularly
insights into the decision-making logic learned during training. This allows for a deeper understanding of model
behavior. In contrast, black-box testing does not require access to a model’s internal structure, making it more
broadly applicable across different architectures. For example, black-box testing evaluates test adequacy based
on a model’s input domain. Given the computational constraints associated with large-scale models, black-box
testing may offer a more efficient and practical alternative.
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In this work, the search space is defined by the mutation operators. Specifically, SUNTest selects mutation
operators from a predefined pool, prioritizing those most likely to enhance the fitness value of the mutated
input. The fitness value is computed based on the outputs of neurons. By carefully managing the number of
neurons involved, our method remains computationally feasible while preserving its effectiveness. To mitigate the
complexity of white-box testing while maintaining its advantages, several strategies can be employed: 1) Targeted
Layer Selection: Focusing on specific layers, particularly those closer to the output layer, where decision-critical
features are concentrated. By prioritizing such layers, the computational cost of fitness evaluation is reduced
while still capturing key information relevant to model predictions. 2) Controlled Selection of Suspicious Neurons:
Restricting the number of neurons analyzed to those most strongly correlated with incorrect predictions. This
targeted approach minimizes computational overhead while maintaining the effectiveness of the testing process.

(2) Testing the Capabilities of Large Models. Large models exhibit strong generalization capabilities across
diverse tasks. It is inherently challenging to achieve comprehensive coverage of all functional areas through
mutation-based testing. In this work, we apply mutation strategies specifically designed for image classification
tasks, leveraging widely used mutation operators from the field of computer vision. Since mutation operators
are inherently domain-dependent, their effectiveness is closely linked to the characteristics of the tasks under
evaluation. Rather than applying mutations indiscriminately across all functionalities, a more refined approach
involves domain-specific testing, focusing on key tasks relevant to the model’s intended application (e.g., sentiment
analysis, code generation, or medical diagnosis). Moreover, for testing large-scale models, defining a clear test
oracle is critical, as it determines whether a test case passes or fails. In the models we examined, the test oracle
is well-defined: the model’s predicted label must match the ground-truth label. However, establishing a test
oracle for large generative models presents a significant challenge. Unlike classification tasks, where correctness
can be directly verified against ground-truth labels, generative models produce open-ended outputs, making it
difficult to define objective pass/fail criteria. Addressing this issue requires further research into effective oracle
definitions capable of assessing the correctness of generated outputs across different domains. Therefore, given
the vast functional space and complexity of large-scale models, exhaustive testing is often impractical. Instead,
targeted testing of specific domain capabilities presents a more feasible alternative.

6.2 Extension of SUNTest

6.2.1  Fault Localization and Repair of DNN models. SUNTest localizes suspicious neurons by inputting misclassi-
fied training data without considering the class to which the input belongs. To more effectively identify specific
errors, particularly class-related errors (i.e., errors related to each fault type), incorporating class information into
the fault localization process represents a promising direction for improving SUNTest [14]. It also facilitates the
fault type-specific test input generation. However, our preliminary experiments indicate that class-level fault
localization based on neuron-spectrum analysis is time-consuming. Specifically, we input training data with
the same fault type into the DNN model to construct the dynamic neuron spectrum. The time required for this
process reaches up to 2 hours for CIFAR10-ConvNet. Therefore, a useful direction for future research is to propose
an efficient class-level fault localization for DNN models.

This paper considers the localization of intra-layer neurons to characterize certain erroneous decision-making
patterns of DNN models. Given the growing complexity of modern neural networks, where interactions between
neurons can collectively influence the model’s behavior, it is crucial to examine more intricate neuron inter-
actions. However, analyzing neuron activation patterns introduces several challenges. For instance, adapting
the SBFL technique to localize suspicious neurons requires identifying appropriate combinations of neurons.
These combinations serve as the fundamental units for characterizing activation patterns that are indicative
of model decisions. Besides, determining which layers to select and how many layers to include presents an
additional challenge. Given these challenges, we plan to further investigate this idea in future work, with a
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focus on how different fault types might be linked to specific neuron combinations (e.g., t-way interactions) that
exhibit sensitivity to errors. This exploration could enhance our ability to diagnose and mitigate model failures.
Specifically, by considering the 2-way combinations of neurons across two layers as activation patterns, we can
leverage SBFL techniques to detect potentially suspicious activation patterns.

Furthermore, there are other fundamental faults in the dataset and DL programs, such as network structure and
training settings, which can impact the model quality [6, 76]. In future work, we aim to extend the SBFL technique
to explore these potential faults. We also plan to explore the fusion of multiple SBFL formulas to combine the
strengths of different approaches. By integrating complementary information from various formulas, this fusion
has the potential to improve fault localization accuracy. Our goal is to integrate these formulas into a unified
framework, enabling adaptive formula selection based on the specific context, model, or dataset characteristics.

Suspicious neurons also provide informed decisions for developers on what to repair. Automatic repair of
DNN models is another promising direction for future research. The ablation of suspicious neurons demonstrates
effectiveness in preventing error propagation. Nevertheless, it may compromise the accuracy of models. While
retraining is able to improve the overall accuracy of models, it may lead to regression errors [46, 77].

6.2.2  Quality-Oriented Test Input Generation. The performance of SUNTest in‘model enhancement is evaluated
using mixed input sets that include both original test inputs and adversarial examples. It is evaluated from
the perspective of model robustness enhancement. SUNTest is generic and could be extended for other model
properties, such as fairness, safety, and privacy. For instance, in the context of fairness testing, major challenges
include localizing faults related to fairness violations in DNN models and determining the appropriate operators
for input mutation. Recent studies [20, 83] offer several solutions for fairness testing and enhancement through
error-inducing neuron analysis. We plan to evaluate the performance of SUNTest in fairness testing.

6.3 Threats to Validity

External Threats to Validity. The external threats to validity primarily originate from the DNN models and datasets
utilized in our experiments. To mitigate these threats, we employ four widely used image datasets. To simulate
diverse testing contexts, we generate mixed input sets by incorporating adversarial examples with varying ratios.
To mitigate the threat arising from the DNN models, we utilize two DNN models with different architectures for
each dataset. Besides, a preliminary evaluation is conducted on three text classification models. However, this
study lacks an evaluation of a broader range of diverse and complex DNN structures, such as RNNs and GNNs.
This paper identifies suspicious neurons as errors within DNN models, while the definition of neurons in CNNs
differs from those in RNNs and GNNs. Future work will adapt SUNTest for application to DNN models with
diverse architectures and extend its use to other domains.

Internal Threats to Validity. The internal threats arise from the implementation of SUNTest as well as baseline
approaches used for comparison. To mitigate these issues, we utilize publicly available implementations of baseline
approaches provided by their authors. The code of SUNTest is carefully checked. Besides, the configuration of
various hyperparameters in this study may introduce additional internal threats to validity. We address this
concern from two aspects. 1) For suspicious neuron localization, the ratio of selected neurons is varied from 0.1
to 0.6 with an interval of 0.1 in the experiment. The experimental results demonstrate that setting the parameter
A to 0.1 is an optimal choice (as detailed in Section 5.1). Regarding the hyperparameters used to determine the
activation threshold for each neuron, we follow the configuration set by DeepGuage. In future work, we plan to
explore the impact of the hyperparameters on the effectiveness of suspicious neuron localization, with a particular
focus on those used to determine neuron activation thresholds. 2) For test input generation, we adhere to the
standard settings used in existing MGF algorithms, and all compared approaches share the same iteration-stopping
criterion (set to 5 iterations). A last internal threat to validity would be the randomness involved in the study.
We repeated the data simulation procedure detailed in Section 4.3 five times, resulting in five different mixed
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input sets. For RQ1, RQ2, RQ4, and RQ5, we conducted the experiments five times. For retraining guidance, the
retraining process was also repeated five times to mitigate the effects of randomness.

Construct Threats to Validity. Using the IR metric as the primary evaluation measure for RQ1 may pose a potential
threat to the construct validity of the research. While IR provides a useful indicator of model performance, it
focuses primarily on the difference between predicted and actual labels after neuron ablation, which may
overlook other aspects of the model’s behavior. To mitigate this threat, future work could incorporate additional
evaluation metrics, such as the number of regression faults [77], to capture a broader range of model performance
characteristics. Moreover, the comparison among different test input generators is based on evaluation metrics
commonly used in DNN testing literature [9, 19], i.e., the number of error-revealing test inputs found, the number
of unique fault types identified, coverage metrics, and accuracy improvement after model retraining.

7 RELATED WORK
7.1 DNN Testing

7.1.1 Test Coverage Criteria. Test adequacy, which evaluates how thoroughly a DNN model has been tested,
remains a fundamental issue in DNN testing. Inspired by white-box testing of traditional software, a growing
body of coverage criteria specifically designed for DNNs has been proposed-at various levels of granularity
[21, 47, 48, 54, 58, 74, 78]. At the neuron level, each neuron operates as an individual computing unit, with
its state classified as either ‘activated’ or ‘inactivated’. An individual neuron is deemed ‘activated’ when its
activation value is above a predefined threshold (e.g., 0.5 and 0.75). For example, Neuron Coverage (NC) [58]
quantifies the proportion of activated neurons within a target layer. DeepGuage [48] further extends NC by
considering the output distributions of individual neurons derived from the training set. At the layer level, the
combinations or sequences of neurons are utilized to characterize the internal behaviors of DNN models. For
instance, DeepImportance [21] identifies important neurons within a target layer. Based on the training set,
it groups the outputs of important neurons into a set of clusters. Subsequently, Importance-Driven Coverage
(IDC) is designed to measure the degree to which the test suite covers the clusters. Neuron Path Coverage
(NPC) [74] utilizes sequences of critical neuron sets, termed the Critical Decision Path (CDP), to characterize the
decision-making process of a DNN model. Two instances of NPC are proposed: Structural-based Neuron Path
Coverage and Activation-based Neuron Path Coverage, which respectively concern the path structure and the
neuron output along CDPs.

The aforementioned coverage criteria quantify the extent to which the internal elements of a DNN model are
covered by a test suite, by considering the syntactic structure of DNNs. Differently, Kim et al. [36, 37] propose
Surprise Coverage (SC) criteria from the perspective of input diversity. The underlying assumption is that a good
test suite should exhibit high diversity, ranging from very similar to very different inputs to those observed
during training. They introduce Surprise Adequacy (SA) metrics to measure the relative novelty of a test input
with respect to the training set by using neuron outputs. The SC criteria are designed to quantify the SA value
ranges that a test suite covers. Additionally, Yuan et al. [78] introduce a criterion, namely Neural Coverage (NLC),
which captures the divergence and correlation in distributions formed by neuron outputs. This paper adopts
Distance-based SC and NLC to evaluate how the test input generation approaches increase coverage metrics.
Additionally, recent works propose coverage criteria specific to Recurrent Neural Networks (RNN) [13, 30]. For
example, TESTRNN [30] introduces Boundary Coverage, Step-wise Coverage, and Temporal Coverage to quantify
the temporal relations exhibited by RNNs when processing test inputs.

7.1.2  Test Input Generation. MGF is designed to generate test inputs that expose errors while maximizing testing
metrics. Previous MGF approaches, such as DeepXplore [58], DLFuzz [25] and ADAPT [43], are designed based
on the guidance from coverage metrics. RobOT [68] utilizes testing metrics related to model robustness to design
the optimization objective. Detailed information on these approaches can be found in Section 4.4.2. To evaluate
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the effectiveness of SUNTest, we compare it against existing MGF approaches. Additionally, several studies
adopt search algorithms to solve the test input generation problem. For example, DeepTest [65] synthesizes test
images by combining image transformation operators with a greedy search algorithm for autonomous driving
systems. DeepAtash [84] focuses on test input generation on input features. It takes as input the desired target
feature value ranges and generates test inputs by optimizing both the sparseness of the generated inputs and
their closeness to the target in the feature map. Similar to our work, DFLARE [66] and DRFuzz [77] address the
fuzzing problem by formulating it as a Markov Chain and leveraging the MH algorithm to guide the selection
of mutation operators. Our approach differs from these techniques in two ways. First, DFLARE focuses on the
deviated behaviors of compressed models, while SUNTest targets standard models. DRFuzz aims to generate
inputs that trigger regression faults, i.e., inputs that originally passed the test but failed in the new version.
SUNTest is designed to find diverse misbehaviors of a trained DNN model and further enhance its robustness.
Second, both DFLARE and DRFuzz are black-box fuzzing approaches, whereas SUNTest follows a white-box
testing paradigm. SUNTest leverages the internal behaviors of models and utilizes this information to guide the
fuzzing process.

Various gradient-based adversarial attack approaches, such as FGSM [23], BIM-a, BIM-b [40], and JSMA [56],
have been proposed to deceive DNN models by generating adversarial examples. Similar to MGF approaches,
gradient-based adversarial attack strategies calculate gradients through an objective function and search for a
malfunctioning input. Besides, the core concept of adversarial training is to enhance the robustness of DNN
models by incorporating adversarial examples during the training phase. These approaches differ from CGF
approaches as they aim to generate common error-revealing inputs without considering the internal logic of
the model. In contrast, the emphasis of CGF approaches lies in systematically examining the model’s logic and
exploring various internal behaviors. The proposed SUNTest approach can be considered a variant of the CGF
technique, specifically designed to generate error-revealing test inputs that are likely to activate suspicious
neurons (i.e., searching for test inputs that could increase the outputs of suspicious neurons). Since suspicious
neurons are responsible for erroneous outputs, SUNTest is designed to generate inputs that explore the faulty
decision logic of DNN models. The generated test inputs are further utilized for enhancing model robustness.

The aforementioned test input generation approaches mainly focus on enhancing model accuracy or robustness.
Recent studies [17, 67, 80, 83] focus on generating test inputs aimed at detecting fairness violations of DNN
models. For example, QUOTE [9], an extension of the RobOT framework, utilizes ZOL and FOL metrics to generate
test inputs that expose fairness violations. AEQUITAS [67] employs a two-phase (local and global) generation
framework to search the input space. It is guided by a probability distribution that indicates the likelihood of
identifying a fairness-violating test input. Similar to our work, NeuronFair [83] identifies neurons responsible
for biased decisions. It further utilizes the gradient of the loss function, which takes into account the outputs of
biased neurons, to guide the input generation process.

7.1.3  Test Input Selection. DNN testing is typically conducted by selecting a dedicated test set from available
labeled data. However, manually labeling test inputs is costly. To reduce the labeling cost, recent studies have
been devoted to two primary test selection tasks. The first task aims to select a subset of test inputs for estimating
the accuracy of the whole testing set [10, 45]. For example, CES [45] selects test inputs by minimizing the cross
entropy between the chosen subset and the original testing set.

Another selection task aims to sample a subset of test inputs that are more likely to be misclassified by the DNN
model. This subset is subsequently utilized for model retraining. For example, DeepGini [18] measures the Gini
impurity of test inputs using predicted probabilities of all classes. The MCP [61] approach is designed to select
test inputs close to the decision boundaries by calculating the ratio of the predicted probabilities between the first
and second classes. KM and BE strategies [68] select test inputs based on their FOL values. Model uncertainty
metrics could be employed for test input selection. Ma et al. [50] adopt model uncertainty metrics to select test
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inputs that are more likely to induce misclassifications. Hu et al. [29] conduct an empirical study to investigate
the effectiveness of existing test input selection approaches in the context of data distribution shifts. They propose
a distribution-aware test selection metric, DAT, which aims to select uncertain test inputs and representative test
inputs from both in-distribution and out-of-distribution sets. In addition, recent studies [4, 24] formulate the test
input selection task into a search-based testing problem. For example, MOON [24] customizes a multi-objective
optimization algorithm to guide the search process toward maximizing the outputs of suspicious neurons while
promoting diversity in neuron behaviors. This study employs several typical test input selection approaches to
select test inputs that serve as seeds for subsequent mutations, as detailed in Section 4.4.4.

7.2 DNN Fault Localization

Several fault localization techniques specifically designed for DNN models have been proposed, including
identifying misbehaviors of model internal elements (i.e., neurons within CNNs, states within RNNs) [15, 49, 64, 82],
diagnosing incorrect training code and hyperparameter settings [6, 70], and detecting data faults [76].

Neural networks rely on internal neurons to make predictions. The faulty neurons resultin erroneous outputs
in an explicit way. DeepFault [15] utilizes SBFL techniques to identify suspicious neurons with a fixed neuron
activation threshold. Differently, SUNTest employs dynamic neuron activation thresholds based on neuron output
distributions. MODE [49] locates faulty features (neurons) using heatmap differentials between correctly classified
inputs and misclassified inputs. It mainly focuses on detecting over-fitting and under-fitting bugs within one
class. TRADER [64] conducts a trace divergence analysis to pinpoint faulty state dimensions of RNNs that are
responsible for causing misclassifications. Al-Lancet [82] performs differential feature analysis by inputting
pairs of correctly and wrongly classified images into the DNN model to identify error-inducing features. It
further maps these error-inducing features to error-inducing neurons by calculating the gradients of the features
with respect to neurons. Among the aforementioned approaches; the key to fault localization in DNN models
lies in analyzing the behavioral differences among internal neurons when processing correctly classified and
misclassified inputs. With the exception of Al-Lancet, current approaches utilize natural inputs from the training
or validation set to perform differential analysis of neuron behaviors. Al-Lancet generates an input pair by
removing the error-inducing regions (i.e., trigger patterns reconstructed by backdoor detection approaches)
from a misclassified input. Additionally, existing studies repair neuron-level errors in DNN models by adjusting
neuron values, modifying neuron weights, and retraining the model. For example, DeepFault [15] and MODE [49]
generate test inputs based on identified faulty neurons and correct the behaviors of DNN models by retraining.
Similarly, guided by the identified faulty neurons, AL-Lancet [82] adjusts neuron weights and retrains DNN
models. SUNTest optimizes DNN models by adjusting the weights of suspicious neurons and generates test inputs
guided by these neurons for model retraining.

Similar to traditional software program testing, faults can also be present in the programs of Deep Learning
systems. To pinpoint faults in DL programs, DeepLocalize [70] localizes faulty layers and hyperparameters by
monitoring the DNN behaviors of numerical errors during the feed-forward and backward propagation phases.
DeepFD [6] converts the fault localization task into a learning-based multi-label classification problem. It maps
runtime features extracted from the training process into various types of faults, inappropriate loss functions,
missing layers, and redundant layers. Besides, recent studies [69, 71] also focus on debugging DL libraries. Faults
in the dataset fundamentally influence the quality of DNN models by affecting their internal elements. DFauLo
[76] is proposed to locate data faults. It captures the differences between clean and faulty data through model
mutation and extracts fault features based on the prediction behaviors of DNN models. It then adopts a logistic
regression model to map fault features to suspiciousness scores for each data input.

Humbatova et al. [31] explore the relationship between fault types and their activation patterns through a
large-scale empirical study. The results show that activation spectra can be utilized as features for fault prediction.
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There are two key differences between their work and SUNTest. 1) While their study focuses on faults related
to data quality, training parameters, and optimization settings, this work focuses on discrepancies between the
model’s actual output and the expected output. 2) SUNTest defines the neuron spectrum as the activation attributes
of neurons across various inputs, while their approach defines the spectrum as the probability distribution of
neuron activation values. Their research also provides valuable insights for future work. Specifically, SUNTest’s
fault localization method could be extended to address faults related to data quality, model parameters, and
optimization settings. This could open new avenues for leveraging SUNTest in various fault localization scenarios.

8 CONCLUSION

This paper proposes SUNTest, a suspicious neuron-aware test input generation approach designed to detect
diverse faults and enhance DNN models. SUNTest utilizes dynamic neuron thresholds to establish execution
spectra for neurons, enabling the localization of suspicious neurons and guiding input mutations: SUNTest designs
a hybrid feedback mechanism driven by suspicious neurons and an adaptive mutation operator selection strategy,
facilitating the generation of test inputs that induce diverse fault types. Experimental evaluations conducted
on eight DNN models demonstrate the effectiveness of SUNTest in fault localization. SUNTest outperforms
state-of-the-art test input generators in detecting diverse faults and enhancing model robustness.
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