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Abstract

Bug reports play an important role in the software development and maintenance
process. As the eye of a bug report, a concise and fluent title is always preferred
and expected by developers as it could help them quickly seize the problem point
and make better decisions in handling the bugs. However, in practice, not all titles
filled by bug reporters are found to be of high quality; some may not carry essen-
tial bug-related information, and some may be hard to understand or contain
extra noise. With the aim to reduce the burden of bug reporters and ease devel-
opers’ life in handling bugs, we propose a deep learning-based technique named
KeyTitle, to automatically generate a title for a given bug report. KeyTitle formu-
lates the title generation problem as a one-sentence summarization task. It could
be viewed as a Seq2Seq generation model (which generally directly generates tar-
get text based on source text) that incorporates keywords planning. Specifically,
within KeyTitle, a transformer-based encoder-decoder model is enforced to gen-
erate a chain of keywords first from the detailed textual problem description, and
then generate the target title by considering both these keywords and descrip-
tion content. Experiments over three large bug datasets collected from GitHub,
Eclipse, and Apache shows that KeyTitle could outperform state-of-art title gen-
eration models relatively by up to 8.9-18.2%, 11.4-30.4%, and 13.0-18.0% in
terms of ROUGE-1, ROUGE-2, and ROUGE-L F1-scores; the titles generated by
KeyTitle are also found to be better in terms of Relevance, Accuracy, Conciseness,
Fluency in human evaluation. Besides generating titles from textual descriptions,
KeyTitle is also found to have great potential in generating titles based on just a
few keywords, a task that also has much value in bug reporting/handling practice.
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1 Introduction

Bug reports play a key role in the software development and maintenance process.
In general, a bug report typically includes information such as observed behavior,
expected behavior, a description of a problem, steps to reproduce the issue, and a title
of the bug report, etc [1, 2]. With the help of bug reports, developers can identify
software defects [3], prioritize bug fixes [4], track the status of bugs [5], and timely
resolve bugs to improve the quality of software products.

Title, as a high-level summary of a bug report, is the part that developers would
see at first glance. It gives bug fixers a direct idea of what the bug report is about and
may also largely affect whether potential contributors would decide to work on the bug
in software projects adopting open-sourced development approach. Hence, drafting a
good title that summarizes a bug report precisely and concisely is quite important,
for both bug reporters/users who hope their bugs got fixed timely and developers who
need to manage a number of bug reports.

In current practice, the title of a bug report is mainly written by end-users or prod-
uct developers/testers. Despite there exist some guidelines like bug report templates?
provided for users to follow in reporting bugs, the titles of existing bug reports are
still found to be of varied quality [6]. Some reasons for low-quality titles include the
inherent difficulty in summarization (which often requires people to spare more time
rethinking the problem and reorganizing the key points), the lack of experience of bug
reporters, and the overlook of title importance [6].

To help reduce the burden of bug reporters and ease the life of developers in
handling bugs, some researchers try to automatically generate a title for a bug report
based on the detailed description of the bug [6-8]. The general idea of these studies
is to treat title generation as a Seq2Seq (sequence to sequence) generation task [9],
where the description and the title is usually treated as the input and the output for
the Seq2Seq model separately.

One problem with current title generation research is that the adopted end-to-end
generation process often takes the whole description as plain text to generate a title
without considering its information structure and filtering possible noise within it. As
an essential part of a bug report, a description usually contains different components,
like plain text, code, and stack trace. The meaning of a word appearing in a code seg-
ment may differ much from that in a normal text (e.g., “while” generally represents “a
loop structure” in code but “in spite of the fact that” in normal text). Additionally,
the embedded stack trace tends to contain much redundant and repeated informa-
tion (e.g., “java.lang.xxx”). Without taking the above points into consideration would
adversely affect the performance of title generation models.

Another problem with this kind of technology is that it would suffer from the
Out-Of-Vocabulary (OOV) problem which is common for software development where

Lhttps://bugs.eclipse.org/bugs/page.cgi?id=bug-writing.html



new words always appear. Despite Chen et al. [6] try to directly copy tokens tagged
by human from input to resolve the OOV problem, the limited human tags (only
for version numbers and identifiers) is not likely to well adapt to future software
development (we still witness the OOV problem using iTAPE proposed in [6], more
details in Section 5.1).

To address the above problems, we propose KeyTitle, a transformer-based frame-
work to generate titles from descriptions with keywords planning, where keywords
planning is used to help solve the first problem and the transformer in which words
are cut into subwords could help solve the OOV problem [10, 11]. More specifically,
we first extract a chain of keywords that reflect the main topic of a bug from the
description. Based on the historical <description, keywords, title> data, we force the
transformer model to generate a chain of keywords first, then to generate the title
guided by the keywords (i.e., keywords planning). Compared to general seq2seq model
that directly generates a title from a description, this could make our model learn more
from both the descriptions and keywords because of the autoregressive mechanism
[12], and hence generate titles with higher quality.

To fully verify the performance of KeyTitle, we use three large bug datasets col-
lected from different platforms that adopt different bug tracking systems to manage
their bugs, i.e., project issues from GitHub, Eclipse bug reports from Bugzilla?, and
Apache bug reports from Jira®. The experiment results show that KeyTitle could out-
perform the state-of-the-art title generation approaches relatively by up to 8.9-18.2%,
11.4-30.4%, and 13.0-18.0% in terms of ROUGE-1, ROUGE-2, and ROUGE-L F1-
scores, respectively. Meanwhile, the titles generated by KeyTitle get higher scores in
terms of Relevance, Accuracy, Conciseness, Fluency in manual evaluation. Besides,
KeyTitle is also found to have great potential in generating titles directly from just a
few keywords. Our main contributions are as follows:

® We propose a transformer-based framework KeyTitle to generate a title for a bug
report by keywords planning.

e Experiments on three large bug datasets shows that KeyTitle could outperform
state-of-the-art baselines in typical evaluation metrics and also achieve better
performance in human evaluation.

® Besides generating titles from descriptions, we also make the first attempt to explore
the possibility of KeyTitle to generate a title directly by giving few keywords.

The rest of the paper is organized as follows: Section 2 introduces the background.
Section 3 details the framework of KeyTitle. We describe our experimental setup and
results separately in Section 4 and 5. Section 6 further discusses the use of GPTs and
the threats to validity. We introduce the related work in and conclude our study in
Section 7 and 8.

Zhttps://www.bugzilla.org
3https://jira.atlassian.com



Table 1: Title Examples with Low Quality

Example 1

Example 2

Example 3

Title: web.xml issue
Description:

i could not load web.xml
file ,deployment descrip-
tor is mnot running i
have done all cleaning,
In Maven project or web
project is mnot running
please provide me neces-
sary details and solution
to resolve it.

Title: Missing code sug-
gestions for result of
a method within the
parameter list of another
method when annotation
processing is enabled (no
annotation processor nec-
cessary)

Description: Cre-
ated attachment 278058
Screenshot without code
suggestions  Steps  to
reproduce: 1. git clone
https://github.com/Adro-
doc/eclipse-bug-
autocompletion.git 2.

Title: Support after(),
around(), cflow() for han-
dler() pointcut

Description:

When trying to answer
SO question, I noticed
that the handler() point-
cut only supports before()
advice. In order to solve

the given problem 1
would need something
like cflow(handler()),

though. I can write and
compile that, but the cor-
responding advice never
triggers...

Import eclipse...

2 Background

In this section, we first elaborate the quality problem of manually filled bug report
titles by using three representative examples. Then we introduce the usage scenario
of KeyTitle.

2.1 Low-quality Titles

Generally speaking, as a summary of a bug report, the title should accurately capture
the key information of the bug, with which readers could get to the point in a few
words. However, in practice, due to various reasons like lacking experience or over-
looking the importance of good titles, it is common to see bug report titles failed to
cover bug-related important information [6]. Based on our observation, we find that
among those titles with low quality, some may be too short to carry crucial informa-
tion; some may contain much redundancy and fail to convey the true concern; and
some may lack naturalness and fluency. Below are three representative corresponding
examples (in table 1).

As shown in Table 1, Example 1 has a very short title, with only two words.
It barely contains much useful information, except for indicating that it is about
“web.xml”. From the tile, readers cannot find out what the “web.xml issue” is really
about. A good title should summarize the bug report accurately. In this example, a
good title maybe should mention “fail to load”, “deployment descriptor” or “Maven”
according to the description. In general, it is unlikely for short titles like Example 1



to convey enough information and make readers understand the major concern of the
bug.

The title of Example 2 in Table 1 is too long for readers to digest. The really useful
information is drowned in the long sentence. Readers may find it difficult to know the
real intention and request. Maybe removing the “when” clause and the parentheses
would make the sentence easier to understand. In this case, long titles may contain
redundant information and not easy to understand.

The problem in Example 3 in Table 1 is more subtle. It contains too many code
related words in the title. Readers will get confused by so many specific functions of
code. This may be because contributors themselves overlooked the importance of titles,
and were only concerned with showing the issue encountered, forgetting to provide
more general information about the issue.

The above-mentioned quality problems of human-filled titles inspire us to develop
automatic title generation techniques, with the hope to assist reporters/developers in
summarizing bug reports, understanding and fixing bugs, etc.

2.2 Usage Scenario

The goal of KeyTitle is to automatically generate titles with good quality as much
as possible. Within KeyTitle, we enforce the model to generate keywords from the
description first, then use the keywords to guide the generation of titles. In other
words, KeyTitle actually supports two kinds of usage scenario, one is to generate titles
from description (noted as description2title), the other is to generate titles directly
based on some keywords (noted as keywords2title) that could be provided from the
outside world rather than from the description, e.g., by users.

In the description2title scenario, when a user finishes writing the description of a
bug report, KeyTitle can generate a fairly good title, that contains key information of
the description and the text itself is natural-sounding and fluent (achieved by using the
pre-trained language model that contains much general knowledge). Without worrying
about the quality of generated title, the contributor could adopt the title with ease and
focus more on providing other useful information related to the bug in the description.

In the keyword2title scenario, when a user wants to write a title but with only
keywords in his/her mind. Without worrying about the organization of content and
grammar issues, he/she just needs to input the keywords, and our model would try to
infer their relations/connections, recover possible events, and then return a title that
is expected by users. When retrieving related content or using a search engine, the
title is usually the search object. However, not every user wants to input the whole
sentence for searching, sometimes they just input a few words. How to bridge the gap
between words and titles become a question now. If the intent of user is not accurately
restored, the search effectiveness will be greatly reduced. In that case, KeyTitle, with
the ability to generate titles from keywords, serves as a solution.
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Fig. 1: Overview of KeyTitle

3 The Framework of KeyTitle

3.1 Overview

Following [6, 7], we also formulate title generation as a one-sentence summarization
task, which also follows the convention that the title is typically submitted as a one-
sentence summary in various bug tracking systems. Unlike existing studies that use
Seq2Seq models to directly generate the title from the description of a bug report, we
introduce a new training objective into the generation model to better generate titles,
that is keywords planning. With keywords planning, the generation process would
have two steps. The first step is to generate a chain of keywords that capture the
main points of the description. Then, these keywords are used to guide the model to
generate the title. We introduce keywords planning mainly by considering that existing
studies generally ignore the information structure of the description (taking code as
plain text) and fail to remove embedded noise, which adversely affect the quality of
generated titles. Figure 1 shows the overview of KeyTitle. In general, KeyTitle can
be viewed as a transformer-based encoder-decoder model enhanced with keywords
planning. The reasons why we choose transformer rather than for example Bi-LSTM
like iTAPE are that the transformer model could better solve the OOV problem and
show great potential in many natural language processing tasks.

As shown in the figure, KeyTitle is first built upon e.g., Apache/Eclipse/GitHub
bug reports. After obtaining the generation model, users only need to feed the model
a new description, and the model would automatically generate a summary, i.e., a
title, for them in the inference part. The whole model training process consists of two
parts, namely Keywords Fusion and Controlled Generation. Keywords Fusion aims to
inject the semantics of keywords into the titles, where the injected titles would work
as the training target during model building. It includes two parts, i.e., Keywords
Extraction and Keywords Injection. For the Controlled Generation part, we mainly
build a standard transformer generation model based on the injected titles, where
the model can be forced to generate keywords first, then the title. The details are as
follows.



3.2 Keywords Fusion

In this part, we mainly do two things, one is called keywords extraction, i.e., extract-
ing keywords from the descriptions; the other one is called keywords injection, i.e.,
injecting the extracted keywords into titles.

Keywords Extraction. To alleviate the problems of ignoring the information
structure and lacking noise removal of the description, we propose a keyword extraction
method to make use of keywords that represent the key points of the description to
guide the generation model training. As the quality of the training set would largely
affect the performance of the model, which words need to be extracted becomes an
important problem to be solved. In this paper, we mainly consider extracting words
from the description and weighting them with their appearance in the corresponding
titles. In detail, we first use the TextRank algorithm proposed in [13] to extract a set of
words that are considered important in its constructed text graph based on the whole
content of the description. In the text graph, each node represents a word and there
would be an edge if two words both appear in the same N-gram window shifting in the
description. The importance of nodes in the graph is calculated as the PageRank score
in the TextRank tool, and the words are ranked according to their PageRank scores.

Table 2: An Eclipse Bug Report with stack trace
Bug ID: 54804

Title: BadLocationException when deleting code containing a breakpoint

Descrtption: In my development workbench, while having a target workbench open in
debug mode ... I got this:

org.eclipse.jface.text.BadLocationException

at java.lang.Throwable.(Throwable.java)

at org.eclipse...BadLocationException.(BadLocationException.java:25)

at org.eclipse...getLineNumberOfOffset(AbstractLineTracker.java)

at org.eclipse...getLineOfOffset (AbstractDocument.java)

at org.eclipse...breakpoint AtRulerLine( AbstractBreakpointRuler Action.java)
at org.eclipse...AbstractBreakpointRulerAction.determineBreakpoint
(AbstractBreakpointRuler Action.java)

at org.eclipse...EnableDisableBreakpointRulerAction.update
(EnableDisableBreakpointRulerAction.java:48)

Besides ranked keywords by TextRank, we also consider retrieving keywords from
the stack trace within the description. The stack trace (Table 2 shows an example) is
found to be useful in helping developers locate software defects by providing potential
buggy files within its logs [14]. Following [15-17], we use regular expressions (in Table
3) to extract the stack trace and retrieve the embedded code file names which contain
relatively important information and are less noisy (e.g., “BadLocationException”
for “org.eclipse...BadLocationException. (BadLocationException.java:25)”) [14]. The
words ranked by TextRank and code file names are then taken as candidate keywords
that capture bug-related information. After the above two steps, we further make use of
titles of historical bug reports to determine the final set of keywords for model training.



To guarantee the quality of keywords, we only consider the words that appear in the
corresponding title for a description as the final keywords (note that this strategy is
only applied to building training datasets, we do not require this for testing datasets).
These words link a title and a description, are more domain-specific, and usually
contain the main topic of a bug report. We place these keywords just in the order they
appear in a title, so as to reflect their semantic relations.

Keywords Injection. The goal of Keywords Injection is to construct keywords-
title pairs that are particularly designed for our controllable title generation. Unlike
titles that are generally sentences with complete syntactic and semantic rules,
extracted keywords are much more discrete and have a relatively less close relation
compared to that of words within a title. Mixing them together without distinguish-
ing them would mislead our transformer-based generation model during the training
phase and generate unexpected titles in the inference part. Hence, we use special
marks to prefix both keywords and titles to make them recognizable by KeyTitle, so
as to let it make use of keywords to generate better titles. As shown in the figure, we
aim to obtain [M1)KW;[M2]T; pairs, where M1 and M2 are set as “keywordsMark”
and “titleMark”, T; represents the ith title and KW; represents a chain of extracted
keywords associated with the title. The M1 and M2 marks are very necessary as it
makes the generation model distinguish keywords from titles to avoid taking them as
the same thing during model training.

3.3 Controlled Generation

Due to the rapid development of deep learning, a number of pretrained languages mod-
els (PLMs) such as BERT [18] have been proposed and demonstrate their effectiveness
in a number of natural language processing (NLP) tasks [18—-20]. It comes with no sur-
prise that PLMs largely dominate the research area of text generation [19-21]. PLMs
are generally trained on large web datasets such as Wikipedia, Google News, which
make PLMs learn much general knowledge of the world. In practice, to let model bet-
ter learn more about domain-specific knowledge, researchers/practitioners would use
a small dataset from their application domains to fine-tune the PLMs to achieve bet-
ter performance for their down-stream tasks. Regardless of using general PLMs or
fine-tuned PLMs, they generally adopt the direct Seq2Seq way (end-to-end) to gener-
ate titles from descriptions. This sometimes would make generated target results not
controllable or even unpredictable especially for cases where the guidance source are
not of high quality. Hence, in this paper, we propose controlled generation for titles.
In other words, we do not adopt the end-to-end generation. Instead, we enforce our
model to generate keywords first, then use the keywords as generation direction to
guide the title generation process.

More specifically, as shown in figure 1, we achieve controlled generation by build-
ing an encoder-decoder transformer model upon titles injected with keywords (i.e.,
[keywordsMark|keywords[titleMark]title) as well as the descriptions. The transformer
model would learn the embeddings of the descriptions and injected titles first (i.e.,
converting textual contents to numeric vectors of certain dimensions). After that, the
embedded description is passed to the encoder. The encoder would then turn the
embedded description into a sequence of continuous representations, which are then



fed into a decoder. The embeddings of titles injected with keywords would work as the
output embeddings, used as the training target. The decoder receives both the out-
put of encoder and the decoder output at previous time to predict the next token. In
specific, when predicting the next token W3 for “[M1] KW1 KW2 [M2] W1 W2”, the
decoder will consider not only the output of encoder but also the output already gen-
erated (from [M1] to W2). When W3 is calculated, it will be appended after W2. The
whole new sentence (from [M1] to W3) will be considered to calculate a new token
W4. When the predicted token is the special end token (i.e., < /s >), the generation
process stops and we then obtain a title corresponding to the input description.

With the keywords/title mark, the model would recognize that keywords and titles
are two different targets and should be treated as different generation tasks. Mean-
while, as the keywords are placed before the titles, the model would generate the
keywords first, then the titles. Since we use the autoregressive decoder that would take
the previous output as additional input when predicting the next token, we can make
sure that the knowledge of keywords would be used to guide the title generation. In
this way, we make it possible to perform controllable generation of titles guided by
keywords.

4 Experimental Setup

4.1 Dataset Construction

To fully understand the potential of KeyTitle in generating titles for bug reports, we
test KeyTitle on three large bug datasets collected from different platforms that adopt
different bug tracking systems to configure their bug reports. They are Eclipse bug
reports managed by Bugzilla, Apache bug reports managed by JIRA, and iTAPE data
(shared by iTAPE [6], the state-of-the-art bug title generation technique) managed
by GitHub issue tracking system. Both Bugzilla and JIRA configured a bug report
template with much more items than GitHub issue template. We crawl bug reports
of Eclipse and Apache from their bug tracking systems. The time span of the Eclipse
dataset is from Oct 2001 to May 2019, and Apache from Apr 2003 to May 2021. The
total number of bug reports crawled from Eclipse and Apache bug report repositories
are 567,898 and 1,038,043, respectively.

Among the collected 567,898 and 1,038,043 bug reports of Eclipse and Apache, we
filtered out those whose title or description is missing as they are not applicable to
model training. Furthermore, titles with fewer than 5 words or more than 15 words
were also excluded. This was because existing studies reported that titles with such
lengths (5-15 words) were more likely to accurately and concisely describe the key
ideas of bugs; we also manually sampled and checked a few title examples and also
found that titles with fewer than 5 words tended to be insufficient to contain key
information, while titles with more than 15 words tended to be redundant. Removing
these titles (taking up about 31% of all bug reports in Eclipse, and 40% in Apache)
could help us obtain a quality-acceptable dataset to build the generation model. Given
that this step aims to obtain a relatively high-quality dataset for model learning, even
we missing some good titles with <5 or >15 words would not affect the validity of the
built methods.



For each left bug report, we extract its description and title items. Following [6],
we use several regular expressions shown in Table 3 to remove tags (if exist) in titles
as our focus is on generating the descriptive text of a title. For the description item,
we further replace the concrete url websites with the general string “URL” to make
models understand the information type without being misguided by detailed individ-
ual url strings during model training. Bug reports whose titles contain url websites
would be directly removed. For those bug reports with stack traces (taking up about
12%-21% of bug reports in Eclipse and Apache, as shown in Table 4), we only con-
sidered the file names embedded within stack traces (e.g. "BadLocationException”
for “org.eclipse...BadLocationException.(BadLocationException.java:25)” ), since file
names are considered to be less noisy compared to the full file paths and it helps bet-
ter reveal bug semantics [15]. Based on the textual contents of descriptions, keywords
are then extracted by using the approach in Section 3.2.

After the above preprocessing, each bug report would be transformed into a
three tuple <the description, keywords, the title>. These tuples constitute our
datasets for model building and prediction (Figure 1 reveals the detailed use of the
three elements of these tuples). We randomly split the datasets into training, valida-
tion and test sets with a ratio of 8:1:1. Table 4 provides the basic statistics of our
experimental data.

Table 3: Regular Expressions

Type Regular Expression

URL (https?lftp) ://["\s/$.7#] . ["\s]*
“|Tag]” at Beginning “(\s*x\[.* ?\])+

“Tag:” at Beginning  ~.*7:

\wH\ ((C\w] )\ Aw+:\d+\) or

Stack Trace 7O\ w2 \d+

Table 4: Basic Statistics of Experiment Datasets
Avg Avg Avg %
Dataset Train Validate Test KW Title Des Stack
Count length length Trace
iTAPE data 267,094 33,031 33,438 2.76  9.09 124.29 1.03%

Eclipse 312,885 38,908 38,212 2.70 8.28 108.00 21.23%
Eclipse iTAPED 221,460 28,275 29,314 3.02 895 114.16 14.69%
Apache 489,866 62,390 60,937 2.60 9.01 107.47 18.03%

Apache iTAPED 336,244 41,263 38,604 3.01 9.46 123.68 12.52%
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4.2 Model Architecture

Our KeyTitle is built on a transformer-based encoder-decoder model namely T5-base
[19] by integrating keywords planning. Both the encoder and decoder consist of 12
blocks, which comprise self-attention, optional encoder-decoder attention and a feed-
forward network. The output dimensionality of the feed-forward network is set as 3072,
following a ReLU nonlinearity and another dense layer. All attention mechanisms have
12 heads and all other sub-layers and embeddings have a dimensionality of 768. We
use the HuggingFace Transformers library[22] to implement the models.

4.3 Baseline Methods

We choose two baselines to compare the generation performance of KeyTitle. One is
iTAPE, the state-of-the-art title generation technique particularly designed for soft-
ware issues. The other one is the fine-tuned T5 that uses a certain number of bug
reports to fine-tune the T5 model, a well-performed pre-trained model for general
text-to-text NLP tasks.

iTAPE: iTAPE[6] uses a seq2seq model to generate a title based on the issue
description. The model mainly includes an encoder network, a decoder network, an
attention layer, and a final generator. The encoder and decoder network is Bidi-
rectional LSTM and unidirectional LSTM respectively. To solve the OOV problem
resulted from the fixed vocabulary dictionary used by seq2seq model, iTAPE adds
special markers to human-named tokens (for version number and identifiers) first and
then uses a copy mechanism to copy these tokens from the input to train a generation
model.

T5: T5[19] is a popular pretrained model based on the transformer architecture,
working on converting NLP tasks into a unified text-to-text task. The model is pre-
tained on the C4 dataset of 750GB documents by using a BERT-sytle denoising
objective. In the pretraining process, some input tokens within a sentence are cor-
rupted, and the model is trained to reconstruct the original text from the corrupted
input. This helps the model learn to understand the relationships between different
tokens and how they fit together in a sentence.

We run all the experiments on a single NVIDIA 3080 (10GB). To compare with
iTAPE, we preprocess the datasets we collected and run the experiments with the
scripts provided by the authors. For T5 and KeyTitle, we run them with batch size
of 4 in 10 epochs with learning rate le-5. The warmup process of Adam Optimizer is
set to the first epoch.

4.4 Evaluation Metrics

Evaluation based on Typical Metrics: To evaluate the performance of our KeyTi-
tle, we use the ROUGE-N F1 scores that are typically used for generation tasks to
measure the quality of generated titles. Three ROUGE metrics, namely ROUGE-1,
ROUGE-2, and ROUGE-L are considered. ROUGE-1, ROUGE-2, and ROUGE-
L measure the overlap of unigrams, bigrams, and Longest Common Subsequences
between generated summary and the reference summary separately. The formulas to
calculate them are as follows:
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> (overlapped_N _grams)

R _ =
ROUGE-N > (N_grams_in_reference_summary)

> (overlapped_N _grams)

P N =
ROUGE-N > (N _grams_in_generated_summary)

Rrovce-N X ProuGE-N

RrovgE-N + ProuGE-N
R(recall) and P(precision) calculate the percentage of overlapped N-grams in the ref-
erence summary and generated summary respectively. Fl-score is a way to balance
the trade-off between recall and precision. In general, a high F1 score indicates that
the model achieves both high recall and high precision at the same time, while a low
F1 score indicates that the model may have low precision, low recall, or both.

Human Evaluation: Besides ROUGE metrics, we also conduct a human evalua-
tion to better understand the generated bug titles. We adopt a three-step approach to
check whether KeyTitle would generate better titles than two baselines, i.e., iTAPE
and fine-tuned T5. First, we randomly select 384 bug reports from three datasets
according to their bug proportion, by following the sampling strategy in [23-25]. Such
sampling could let us achieve a confidence level of 95%, with sampling error within
the range of + 5%. Within each dataset, two kinds of bug reports that are considered
of high or low quality by iTAPE are separately sampled also based on their quantity
proportion. The detailed numbers of the sampled bug reports from three datasets are
shown in Table 5.

Then, for each selected bug report, we run KeyTitle, iTAPE, and fine-tuned T5
separately to generate a title from its description. Last, we recruit several participants
to rate the quality of titles for each bug report. Each bug report would be presented as
a description associated with four titles, i.e., the original title from the bug report, and
three titles generated by KeyTitle, iTAPE, and fine-tuned T5. To avoid potential bias
of participants towards a certain technique, we place four titles of a bug report in a
random order so that the raters are not able to know which title is generated by which
tool. Three participants take part in our human evaluation experiments. They are all
postgraduates in software engineering with over 5 years of experience in programming.
Each participant is asked to independently score the titles for 384 bug reports in terms
of the following four aspects, namely Relevance, Accuracy, Conciseness, and Fluency.
For each aspect, they are asked to score on a Likert scale of 1-5 for poor, better than
poor, okay, better than okay, and great, respectively.

Flpovge-N =2 X

® Relevance. The title should contain bug-related information revealed by the bug
report.

Table 5: Sampled Bug Reports for Human
Evaluation

Dataset Filtered by iTAPE Not filtered

iTAPE data None 78
Eclipse 21 90
Apache 52 143
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® Accuracy. The title should be accurate with respect to the bug report or the domain
knowledge.

e Conciseness. The title should not have redundant or unnecessary content.

® Fluency. The title should be grammatically correct and describe the fact fluently.

4.5 Research questions

In this work, we will investigate the following research questions (RQs) to evaluate
the performance of KeyTitle.

RQ1: Does KeyTitle generate better titles than baselines?

This RQ aims to provide a quantitative comparison between the performance of
KeyTitle and the state-of-the-art iTAPE and fine-tuned T5 generation models with
ROUGE metrics.

RQ2: How good are the titles generated by KeyTitle from a practitioner’s
perspective?

As a method aiming to generate titles for human practitioners, it is important
to know their feedback about the quality of generated titles, which could provide
directions for our further improvements.

RQ3: How well does KeyTitle perform in generating titles directly from keywords?

Existing studies mainly focus on generating titles from the descriptions of bug
reports. Little attention is paid to exploring the scenario that generates a title using a
few keywords given by end users, a task that has broad potential application values.

5 Experimental Results and Discussions

5.1 RQ1: Does KeyTitle generate better titles than baselines?

Goal. In this RQ, we mainly explore whether our KeyTitle can outperform the state-
of-the-art iTAPE and fine-tuned T5 in terms of typical ROUGE metrics, as well as
the ability to solve the OOV problem.

Experimental Setup. We compare KeyTitle with iTAPE and fine-tuned T5
on different bug datasets from Eclipse, Apache, and GitHub (the GitHub dataset is
collected and shared by iTAPE) shown in Table 4. Note that within iTAPE, three
heuristic rules would be applied first to filter bug reports (hence obtained the filtered
Eclipse and Apache datasets) before title generation model construction. While for our
KeyTitle, we has a lower requirement for the quality of bug reports that we only used
the first rule of iTAPE to filter bug reports. To keep a fair comparison, we decided to
only evaluate iTAPE on the filtered Eclipse and Apache datasets (which actually pro-
vides stronger baselines than that on unfiltered datasets). Furthermore, as the authors
kindly shared the iTAPE tool and iTAPE data, we only run KeyTitle and fine-tuned
T5 on iTAPE data and compare the results directly with their reported results of
the iTAPE. For the filtered Eclipse and Apache datasets, we train T5, KeyTitle and
iTAPE (with 30,000 steps) separately to obtain their corresponding performance.

Besides running three techniques on three filtered datasets, we also run fine-tuned
T5 and KeyTitle on the original Eclipse and Apache datasets, in order to better under-
stand the effects of keywords planning (as keywords planning is the major difference
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between these two techniques). We train the fine-tuned T5 and KeyTitle with the same
training settings, i.e. the epoch, learning rate, and warmup strategy. We checkpoint
the two models at each epoch, and select the best checkpoint based on the performance
of validation datasets to carry out the performance comparison between them.

Table 6: Performance Comparison between KeyTitle and
Two Baselines in Terms of ROUGE Metrics.

Model ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1

iTAPE data
iTAPE 31.36 13.12 27.79
T5 33.04 14.14 30.39
KeyTitle 34.14 14.61 31.41
Filtered Eclipse data
iTAPE 30.61 12.56 28.02
T5 32.68 13.8 29.82
KeyTitle 34.10 14.63 31.13
Filtered Apache data
iTAPE 27.97 10.59 25.59
T5 32.33 13.46 29.48
KeyTitle 33.07 13.81 30.19
Eclipse data
T5 26.52 11.51 24.82
KeyTitle 27.76 12.19 26.06
Apache data
T5 26.02 11.76 24.24
KeyTitle 27.08 12.29 25.35

Results. Table 6 present the performance comparison results of three models on
different datasets with respect to three ROUGE metrics. According to the table, we
can find that both KeyTitle and fine-tuned T5 perform better than iTAPE on three
filtered datasets in all three ROUGE metrics. In detail, for the shared iTAPE data
and the two filtered Eclipse and Apache datasets, KeyTitle could outperform iTAPE
by relatively 8.9-18.2%, 11.4-30.4%, and 13.0-18.0% in terms of ROUGE-1, ROUGE-
2, and ROUGE-L F1-scores respectively. The fine-tuned T5 outperforms iTAPE by
relatively 5.4-15.6%, 7.8-27.1%, and 6.4-15.2% in terms of ROUGE-1, ROUGE-2, and
ROUGE-L F1-scores respectively. The comparison results of KeyTitle and fine-tuned
T5 over iTAPE to a certain degree demonstrate the power of pre-training in the bug
report title generation task (both fine-tuned T5 and KeyTitle are based on pre-trained
models). This is explainable, as pre-training brings more general knowledge into a
model, making the model easier to generate more fluent and reasonable titles. As a
result, a simple fine-tuning operation could make the model generate titles of higher
quality than a classic seq2seq model (adopted by iTAPE).
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As for the comparison between KeyTitle and fine-tuned T5, we can find that
KeyTitle could outperform fine-tuned T5 by relatively 2.3-4.7%, 2.6-6.0%, and 2.4-
5.0% in terms of ROUGE-1, ROUGE-2, and ROUGE-L F1-scores, respectively. Such
an ablation study indicates that, incorporating keywords planning into the training
process could indeed make KeyTitle understand better the key points and main topics
of a bug report, thus generating higher-quality titles than simply fine-tuned pre-trained

models with bug reports (fine-tuned T5).

Table 7: Title Examples Generated by iTAPE, fine-tuned T5 and KeyTitle

Example 1
(From iTAPE data)

Example2
(From Eclipse data)

Example3
(From Apache data)

Description: i 'm using
the phofurl repository to
keep my debianubuntu
machines up to date. i
've noted that v verid40
1.3.1 verid0 was released
today - for syncthing, dis-
covery and relay, but the
apt.syncthing.net reposi-
tory seems to be missing
the last two. phofnewline
phofnewline...

Original Title:
apt.syncthing.net missing
1.3.1 release (discovery &
relay)

Description: i think it
would be useful if _.flatten
flats anything that is
iterable, which usually
means they implement
symbol.iterator. the thing
is i am currently migrat-
ing some of the jquery
parts of a web to a native
js alternative. the prob-
lem comes when i want
to migrate something like
$elements.find(input)...
Original Title: should
_flatten flat anything iter-
able 7

Description: build
20020307 1. create the
following compilation
unit: public class a pub-
lic static interface ¢ void
foo(); 2. open it in a
java editor 3. select all
4. paste in the following
content: public class...
5. revert observe: syntax
coloring has been lost:
every character is black...
Original Title: Syntax
coloring lost on revert

iTAPE: v 1.3.1 does n’t
list the ? repository

T5: syncthing 1.3.1 miss-
ing from apt.syncthing-
.net

KeyTitle:

missing 1.3.1 release from
apt.syncthing.net reposi-
tory

T5: _flatten should work
with anything iterable
KeyTitle:

_flatten should flats any-
thing that implements
symbol.iterator

T5: Syntax coloring lost
after revert
KeyTitle: Syntax color-
ing lost when reverting in
java editor

Case Study & Analysis. The value of ROUGE metrics demonstrated the effec-
tiveness of our KeyTitle over baselines from a quantitative perspective. To better
understand the advantages or limitations of KeyTitle. We conducted a qualitative
comparision among the original titles, the titles generated by KeyTitle and the other
two baselines (i.e., iTAPE and fine-tuned T5) on the sampled datasets of 384 bug
reports shown in Table 5. Our analyis includes two parts. The first part is to manual
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compare the quality of titles generalted by KeyTitle and the original titles (i.e., the
ground truth titles provided in the 384 bug reports). The second part is to check the
titles generated by KeyTitle and the two baselines. Details are as below.

We follow a two-step approach to compare the quality of titles generated by KeyTi-
tle and that of the original titles provided in the bug reports. Two authors (acting as
participants) get involved in analyzing the quality of the sampled 384 bug reports. In
the first step, they would randomly select 100 bug reports, analyze their content and
the associated titles, and then obtain the initial quality categories. Specifically, for
each bug report, the two participants would read the description first to gain an overall
understanding of the reported bug. Then, the corresponding original title and gener-
ated title by KeyTitle are investigated to determine whether one has higher (or equal)
quality than the other. In terms of quality, the participants would mainly consider four
aspects, i.e., Relevance, Accuracy, Conciseness and Fluency (i.e., the four metrics used
in human evaluation in Section 5.2) of a title, with more focus on the Relevance and
Accuracy (a title should correctly reveal the reported bug first). Based on their com-
prehensive judgment, the comparison results of titles generated by KeyTitle and the
original titles are divided into three quality categories, namely higher-quality, lower-
quality, and equal-quality, representing that the titles generated by KeyTitle have
higher, lower and equal quality than the original titles, respectively. For each category,
the two participants discussed together and further summarized several subcategories
showing how exactly the titles generated by KeyTitle are better or worse than the
original titles. This provides valuable insights for improving KeyTitle and exploring
potential practical applications. Table 8 shows the initial concluded subcategories.

In the second step, after getting the initial quality categories from 100 sampled
bug reports, the two participants then independently analyzed the remaining 284 bug
reports by following the same process (as in the first step) and placed each bug report
into each subcategory in Table 8. If the subcategories could not cover the bug reports,
they could add new subcategories. Actually, no extra subcategories are added after
they finish checking the 284 bug reports. Hence, the categories shown in Table 8 are
the final category results of quality comparison. The Fleiss’ Kappa [26] is used to
measure the agreement between the two participants; and the overall Kappa value
was 0.76, indicating a substantial agreement according to [27]. For any disagreement
related to categorizing bug reports, the two participants would discuss together to
reach a common decision.

For the comparison of titles generated by KeyTitle and the original titles, we
find that about 49% of the titles generated by KeyTitle are of equal quality as the
original ones; 36% show improvements, and 15% are of worse quality than the original
titles. The improvements of 36% titles over original titles can be concluded into three
categories. First, 12% of titles tend to contain less redundant information (as Example
1s in Table 7 and 8 show). Pre-trained on large-scale datasets, KeyTitle is still able to
generate natural and smooth titles when fine-tuned on downstream tasks. Therefore,
redundant information that is difficult to understand is naturally filtered out. Second,
14% of titles tend to point out which specific function in particular is under discussion
(as Example 2s in Table 7 and 8 show). When users search for relevant information,
they will pay more attention to the specific error function. This improvement can
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Table 8: Quality Comparison Results of Titles Generated by KeyTitle and the

Original Titles

Advantages Over Original Titles (36%)

Less Redundant
Information (12%)

More Specific
Function (14%)

Detailed Program
Context (10%)

Example 1:
Description: ... scan my
repo and look in the gen-
erated nexus index prop-
erties file there is always
has the wrong times-
tamp:...nexus .index .time
= 19700101010000 .000 +
0100...

Original Title: nexus
Aindex .time always set
to 19700101010000.000 +
0100

KeyTitle: nexus .index
.time has wrong times-
tamp

Example 2:
Description: it seems
that extracting large zip
packages is much slower
than with java.util.zip.
in certain tests, the
extraction time of 2 large
packages was almost 1
hour more with vfs. ...
Original Title: extrac-
tion process is unefficient
with large packages
KeyTitle: extracting
large zip packages is
much slower than with
java.util.zip

Example 3:
Description: when
starting axis2server, it
does not return output to
the server console. steps
to reproduce : 1 . start
axis2server in axis2-1.3-
rc2 2. check the console.
nothing will be shown
there...

Original Title:
axis2server console out-
put is not shown
KeyTitle:  axis2server
does not return output to
server console

Disadvantages Against

Original Titles (15%)

Basically Equal
Quality (49%)

Repetitive Unnecessary Basically Equal
Words (3%) Information (12%) Quality (49%)
Example 4: Example 5: Example 6:
Description: this bug Description: ## sum- Description: ...requires
was imported from mary: when wusing git a try/catch block around
another  system  and module, if ssh ://git@192 the executequery. if you

requires review from a
project committer before
some of the details can be
marked public. for more
information about histor-
ical bugs, please read...
Original Title: rte when
tabbing to open a menu
and then mousing down
elsewhere in the applica-
tion

KeyTitle: if you click on
a button, you get a tuple,
a tuple, a tuple...

168 .1 .89: 1357/, the
host check process breaks.
steps to reproduce: 1.
have a git repo available
over ssh on port 22 2.
have a working git check-
out with ssh: //git @

fqdn/...
Original Title: git mod-
ule indicates unknown

hostkey when repo has a
port

KeyTitle: git module
fails with ssh ://git @
192.168.1.89: 1357/

left click on the error
in the left margin and
select either add throws
or add try/catch block,
eclipse deletes the import
java.lang.system!...
Original Title: sur-
round with try/catch
or add throws decla-
ration deletes import
java.lang.system;
KeyTitle: add throws
or add try/catch
block  deletes  import
java.lang.system
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reduce the time for searching and improve productivity. At last, 10% of titles tend to
point out the program context where the issue occurred (as Example 3s in Table 7
and 8 show). In such cases, the basic background of issues is directly given. Such an
improvement allows developers to quickly find relevant bug reports and locate bugs.

Besides the above-mentioned improvements, we further checked the titles generated
by KeyTitle that show worse quality than the original ones, with the hope of finding
possible ways to improve KeyTitle in the future. We summarized mainly two scenarios
that KeyTitle failed to perform well. Specifically, we found that 3% of titles generated
by KeyTitle may contain repetitive words. As Example 4 in Table 8 shows, KeyTitle
generated “a tuple” in a row. This inspires us to reduce the duplication in the generated
title during the training process and improve the diversity and quality of the generated
title. Meanwhile, in 12% of cases, titles generated by KeyTitle may contain unnecessary
information. As Example 5 in Table 8 shows, although the ssh command is important
as it shows the port information for developers to better locate the bug, it is not
necessary to appear in the title. The strange symbols (like “@” or “#”) may drive the
attention of model away, thus making the model generate unusual information.

As for the comparison of KeyTitle over iTAPE and the fine-tined T5, several
typical cases in Table 7 are presented to understand the advantages of our KeyTitle.
For Example 1, we can find that, the version number 1.3.1 is generated successfully
by all three models, proving their ability in generating version numbers. However,
iTAPE still miss the token “apt.synching.net” despite it also paid much attention to
the identifiers. This is predictable as the seq2seq model adopted by iTAPE uses a
fixed vocabulary dictionary, which may not adapt well to various software development
activities with new tokens continuous appearing. Hence, the OOV problem may always
exist for iTAPE.

In contrast, the fine-tuned T5 and KeyTitle successfully generate the domain-
specific token “apt.synching.net”. The possible reasons are as follows. T5 uses
SentencePiece[28] to tokenize a sentence into subwords and neural machine translation
to deeply consider the relationship between subwords. Hence even for rarely-observed
or newly appeared human-named-tokens that are composed of numbers, characters,
or special symbols, T5 will cut them into subparts and consider their relationship
during model training and generate text in a deeper perspective. In this sense, it is
much less likely for T5 to suffer the OOV problem, so does KeyTitle built upon T5.
Also, we notice that after training on the large dataset, KeyTitle learns to choose
more suitable keywords. In the original title, “discovery & relay” are placed in a pair
of parentheses, which is not so normative in a bug report. After training, KeyTitle
learns to discard this phrase and generates a more succinct title. This demonstrates
that after continuously learning from data, the model can better determine keywords
based on semantics.

In Example 2, the original title is asking a question. However, from the description,
we can know that the developer is actually trying to make a suggestion. Both KeyTitle
and fine-tuned T5 use declarative sentences as titles to make the statement of the
problem more objective. Compared to fine-tuned T5, KeyTitle further generates “that
implements symbol.iterator”, which clearly points out the function. In Example 3, the
title generated by KeyTitle also conveys important information “java editor”. “Syntax
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coloring” is usually used in a text editor or integrated development environment. The
usage scenarios are quite different and the original title does not indicate the difference.
The title generated by KeyTitle allows developers to quickly determine whether the
bug report is relevant based on their actual scenarios. As for fine-tuned T5, it generates
a title that is almost the same as the original title without pointing out the scenario like
Keytitle. This demonstrates that, with keywords planning, KeyTitle tends to better
understand the deep semantics within the text and hence can generate better titles.

KeyTitle outperforms both iTAPE and fine-tuned T5 in all three
ROUGE metrics; With keywords planning, our pretrained model based
KeyTitle could better grasp the main points of a bug report, learn more
deep semantics within the text, and hence generate higher-quality bug
titles.

5.2 RQ2: How good are the titles generated by KeyTitle from
a practitioner’s perspective?

Goal. We have evaluated the performance of our KeyTitle based on typical ROUGE
metrics in RQ1. In this RQ, we aim to evaluate the quality of generated titles based on
human evaluation. This could give us both a quantitative and qualitative view about
the quality of titles generated by KeyTitle over other baselines.

Experimental Setup. As introduced in Section 4.4, we randomly select 384 bug
reports from three datasets according to their bug proportion. Then, for each selected
bug report, we run KeyTitle, iTAPE and fine-tuned T5 separately to generate a title
from the description. After that, three participants are asked to independently rate
these titles together with original titles on a Likert scale of 1-5 on four aspects, namely
Relevance, Accuracy, Conciseness and Fluency. For each aspect, an average score of
three scores from three raters is calculated as the final score for each title. We collect
these final scores and conduct evaluations based on them.

Results. Fig 2 shows the average scores of 384 titles on four evaluation aspects
based on human evaluation. We use Fleiss’ Kappa [26] to calculate the inner agree-
ment between annotators. The Fleiss’ Kappa value is 0.71, indicating a substantial
agreement according to [27]. From the figure, we can find that KeyTitle achieves bet-
ter results in all four aspects than fine-tuned T5 and iTAPE, which is consistent with
the findings of evaluation based on ROUGE metrics in RQ1. Specifically, when con-
sidering Relevance and Accuracy, KeyTitle has obvious advantages compared with
other methods. This phenomenon demonstrates that with keywords planning, KeyTi-
tle could better capture the key points in the description, and its wording is more in
line with software engineering conventions.

As for the Conciseness and Fluency aspects, KeyTitle also performs better than
other methods. This again indicates that with pre-trained knowledge, KeyTitle can
better generate smooth, easy-to-understand titles.

Noticeably, we find that the average rating scores towards original titles (i.e., the
ones filled by bug reporters in the bug reports) are all smaller than that of titles
generated by title generation tools (note that raters do not know the sources (from
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a tool or bug reporter) of titles). This to some extent further justifies the need to
develop automated methods for title generation.

Besides considering individual aspects (in figure 2), for each method, we further
consider the overall quality of its generated title by averaging four aspect scores.
For example, suppose the scores of Relevancy, Accuracy, Conciseness, and Fluency
are 3,4,5,3 respectively for a title generated by iTAPE, then their average value 3.75
(344+5+3/4=3.75) is used to measure the overall quality of the title for iTAPE. For
each sampled bug report (384 in total), we could obtain four average scores corre-
sponding to four methods , i.e., KeyTitle, fine-tuned T5, iTAPE, and the original title
from bug reporters (noted as Original). Then we rank these four values and place the
corresponding rank to the rank bag of each method. For instance, suppose the average
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scores for a bug report are 4.2, 3.8, 4.5, 3.7 for KeyTitle, fine-tuned T5, iTAPE, and
Original, then rank2, rank3, rank1, rank4 are put into their rank bag respectively. The
rank bag of each method would have 384 ranks for 384 sampled bug reports. Then we
draw their rank distributions to better observe how raters perceive the quality of each
title on the whole.

Fig 3 shows the distribution of ranks for each method. From the figure, we can learn
that KeyTitle gets largest rank]l among compared methods. iTAPE achieves a similar
result with that of original titles. Fine-tuned T5 are least preferred to human raters
with smallest rank1 count. This may be because fine-tuned T5 learns relatively shallow
knowledge without keywords planning. Hence for descriptions composed of different
components, it is sometimes hard for the model to take consideration into every aspect
clearly during training. For rank2 count, both iTAPE and Original outperform fine-
tuned T5 and KeyTitle.

Titles generated by KeyTitle achieve the highest scores in terms of Rel-
evance, Accuracy, Conciseness, Fluency in manual evaluation. Besides,
KeyTitle obtains the largest number of bug reports for which the titles
generated by KeyTitle are considered to have the best quality on the
whole.

5.3 RQ3: How well does KeyTitle perform in generating
titles directly from keywords?

Goal. KeyTitle is designed to generate a title from a description by generating key-
words first and then using these words to guide title generation. This reveals that
KeyTitle actually could be used to conduct two tasks, one is to generate titles from
descriptions (i.e., description2title task), and the other one is to generate titles directly
from some keywords (i.e., keywords2title task). Both two tasks have great potential
application values. In RQ1, we have demonstrated the effectiveness of KeyTitle for
the description2title task. In this RQ, we make the first attempt to explore how good
the generated titles would be if we only feed KeyTitle a set of keywords.

Experimental Setup. To make KeyTitle generate a title based simply on key-
words, we need to first build keywords2title datasets for model training. We obtain
such datasets from corresponding description2title datasets, where for each bug report,
the keywords extracted from its description is taken as model input and the title of the
bug report is taken as the output. Like description2title task, we also use the typical
ROUGE metrics to evaluate the model performance. Since there is no other studies
that attempt to generate bug titles from keywords, we use the description2title results
of KeyTitle as baseline to evaluate the quality of generated titles. We think this is rea-
sonable as both two tasks target at generating titles; we decide not to take iTAPE or
fine-tuned T5 as baselines since KeyTitle outperformed them in the description2title
task in all ROUGE metrics already (RQ1).

Results. Table 9 presents the performance comparison results. From the table,
we can find that KeyTitle performs better in keyword2title task than in descrip-
tion2title task in all three ROUGE metrics. In detail, for iTAPE, Eclipse, and

21



Table 9: Keyword2title vs Description2title

Dataset ROUGE-1 F1 ROUGE-2F1 ROUGE-L F1
iTAPE data (description2title) 34.14 14.61 31.41
iTAPE data (keywords2title) 43.64 17.57 42.76
Eclipse (description2title) 27.76 12.19 26.06
Eclipse (keywords2title) 40.00 17.42 39.17
Apache (description2title) 27.08 12.29 25.35
Apache (keywords2title) 41.04 16.51 39.95

Apache datasets, KeyTitle could substantially outperform by absolutely 9.50-13.96%,
2.96-5.23%, and 11.35-14.6% in keywords2title task than in description2title task in
ROUGE-1, ROUGE-2, and ROUGE-L. These results demonstrate the generality of
KeyTitle with being able to adapt to the description2title and keywords2title tasks
well. This also validates the power of keywords planning. As through keywords plan-
ning, KeyTitle is able to generate a title of relatively good quality with simply a few
keywords.

The performance difference between the keywords2title and description2title tasks
may lie in the amount of information related to the bug provided to the model. For the
keywords2title task, we directly provide the model with the keywords most relevant
to the defect report, so the model can quickly grasp the key points of the generated
content. What the model needs to consider more may be various prepositions or the
tone of the title, etc. However, as for the description2title task, although we have
provided keywords as a guide, the detailed description of the bug report is generally
long and may contain noisy information [15] that biases the generation direction of
bug titles.

KeyTitle shows great potential in generating qualified titles from key-
words. It performs much better in the keyword2title task than in
description2title task.

6 Discussion

6.1 GPTs in title generation

In Section 5, we compared KeyTitle with iTAPE and fine-tuned T5, which were all
particularly designed for the bug title generation task. To better understand the poten-
tial of our KeyTitle, we further explored whether it would outperform some powerful
large language models like GPT-4, which are designed not for particular but general
generation tasks. Specifically, we chose to compare KeyTitle with GPTs ( proved to
perform best in various generation tasks), namely GPT-4 (which requires payment for
APT use based on the number of input and output tokens) and GPT-3.5 (which is free
for anyone to use). Since the pay mechanism of GPT-4 makes it unrealistic for us to
use the whole large test datasets for experiments, we decided to use the same dataset
in the human evaluation in RQ2. This dataset consists of 384 bug reports that are ran-
domly sampled from the whole dataset with a confidence level of 95% and sampling
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error within the range of + 5% (dataset details in 4.4). We add a prompt “Generate
a title for the bug report in 5-15 words:” before every bug report description to make
sure GPTs understand the title generation task and generate proper titles. Then, we
ran GPT-3.5 and GPT-4 on the dataset to obtain the titles for the 384 bug reports.
We found that some generated titles started with a prefix (i.e., “Bug report:”). We
removed these prefixes for a fair comparison during evaluation. After that, we used the
same ROUGE metrics and human evaluations to measure their quality and compared
with the results of KeyTitle. The comparison results are as follows.

Table 10: Performance Comparison between Models in
Terms of ROUGE Metrics on Human Evaluation Dataset.

Model ROUGE-1 F1 ROUGE-2 F1 ROUGE-L F1

KeyTitle 33.70 15.31 31.12
GPT-3.5 28.34 9.81 25.00
GPT-4 24.48 7.27 21.78

Table 11: Average Likert Scores of KeyTitle and GPTs
based on Human Evaluation

Models Relevance Accuracy Conciseness Fluency

KeyTitle 4.23 4.09 4.52 4.56
GPT-3.5 4.17 3.89 4.37 4.65
GPT-4 4.15 3.88 4.42 4.71

GPTs vs. KeyTitle in ROUGE metrics: Table 10 presents the ROUGE results
of GPT4, GPT-3.5 and KeyTitle. From the table, we can see that KeyTitle per-
forms best among the three techniques. It achieves 33.70, 15.31, and 31.12 in terms
of ROUGE-1, ROUGE-2, and ROUGE-L F1 Scores, respectively. For GPT-3.5, the
three ROUGE values are 28.34, 9.81, and 25.00 respectively. GPT-4 performs worst,
with ROUGE-1, ROUGE-2, and ROUGE-L F1 Scores being 24.48, 7.27, and 21.78,
separately. The relative improvement of KeyTitle against GPT-3.5 could reach 18.9%,
56.1%, and 24.5% in terms of ROUGE-1, ROUGE-2, and ROUGE-L F1 Scores. The
leading advantage of our model is even more obvious when compared with GPT-4,
with relative ROUGE improvements of 37.66%, 110.5%, and 42.88%, respectively, in
terms of ROUGE-1, ROUGE-2, and ROUGE-L F1 Scores. These results illustrate
that our KeyTitle trained specifically for title generation performs significantly better
than general-trained GPTs.

GPTs vs. KeyTitle in human evaluation: Table 11 shows the average results
of KeyTitle and GPTs on four evaluation aspects based on human evaluation. From
this table, we can find that, on the whole, KeyTitle still generates better titles than
GPT3.5 and GPT-4 based on human evaluation (except on the Fluency metric that
KeyTitle obtains slightly smaller values than GPTs). Specifically, KeyTitle obtains the
highest scores of 4.23, 4.09, and 4.52 in terms of relevance, accuracy, and conciseness,
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compared to that of GPT-3.5 (being 4.23, 4.09, and 4.52) and GPT-4 (being 4.15,
3.88, and 4.42), respectively. These results indicate that KeyTitle is more capable of
generating more concrete and accurate bug titles than GPTs. KeyTitle only performs
slightly worse than GPTs in the Fluency aspect, where GPTs obtain 4.71 (for GPT-
4) and 4.65 (for GPT-3.5) scores while KeyTitle gets 4.56. These results demonstrate
that with much more pre-training data and larger model architecture, GPT-3.5 and
GPT-4 may generate more natural and fluent titles than KeyTitle.

Table 12: Title Examples Generated by KeyTitle, GPT-3.5 and GPT-4

Example 1

Example2

Description: ...This class provide an
instance implementation of StageCon-
text and maybe extended to provided
additional functionality of included in
other classes wishing to in the StageCon-
text Interface @author sheldon / public
class BaseContext implements Stage-
Context // Map of DownstreamFeeder
having the Stage as key private final
Map Stage, Feeder feeders:...

Original Title:

Add a base Implementation for Stage-
Context

Description: when pooled bytebuffer
s are used in conjunction with a
protocolcodecfilter, buffers passed to
protocolencoderoutput .write ( ) do
not get released back to the pool in
all circumstances, causing unnecessary
memory allocation . the following patch
appears to resolve this issue in a simple
filter chain, but it should be verified
that there is no case where this change...
Original Title: bytebuffer passed to
protocolencoderoutput.write  ( byte-
buffer ) does not get released back to
the pool

KeyTitle: [keywords| instance imple-
mentation StageContext [title] Add an
instance implementation of StageCon-
text

GPT-3.5: Basecontext Class Imple-
mentation for Pipeline Operations
GPT-4: Code Integration Bug Report:
File Compliance and Functionality
Issues in BaseContext StageContext
Implementation

KeyTitle: [keywords| protocolencoder-
output.write()  pooled  bytebuggers
[title] buffers passed to protocolencoder-
output.write () do not get released back
to pooled bytebuffer s

GPT-3.5: Pooled ByteBuffers Not
Released in ProtocolCodecFilter
GPT-4: Memory Allocation Bug

Report: Unreleased Pooled ByteBuffers
in Conjunction with ProtocolCodecFil-
ter

Case Study & Analysis. We further investigate the low-quality titles generated
by GPT-3.5 and GPT-4. Table 12 shows typical title examples from human evaluation
dataset generated by KeyTitle, GPT-3.5 and GPT-4. We find that there are three
main reasons leading to the generation of low-quality titles of GPTs. First, GPTs may
produce hallucinations(inconsistent with facts)[29] when generating titles. Second, the
titles generated by GPTs sometimes summarize the issue too broadly and thus barely
contain key information. At last, although GPTs acquire much general knowledge, they
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may still miss the keywords when applied to domain-specific tasks and thus generate
off-topic titles. We discuss these issues in detail as follows.

In Example 1, we find that GPT-3.5 and GPT-4 summarize the bug report too
broadly and sometimes may produce hallucinations[29]. The original title asks to “Add
a base Implementation for StageContext”. It is a request for additional functionality.
As for KeyTitle, we can see that it chooses “instance implementation StageContext”
as keywords and thus generates content around these keywords (with the help of the
autoregressive mechanism it adopted) and obtains a relatively good title. For GPT-3.5,
it produces hallucinations when generating this title. The “Basecontext” and “Pipeline
Operations” are not the key information in the bug report but GPT-3.5 forcibly com-
bines them. We cannot find a clear statement in the description corresponding to the
title generated by GPT-3.5. The hallucination may place a heavy burden on users to
check the correctness of the generated title. The key point about “Add a base Imple-
mentation” is also missed by GPT-3.5. For GPT-4, it just points out the bug report
has “File Compliance and Functionality Issues”, which is sort of too broad for users to
find out what is really causing the issue. Users still have to go through the bug report
to get the specific information they want. An ideal title is expected to precisely and
concisely summarize the key points of a bug. Too vague titles like the one generated
by GPT-4 would be of little help in understanding and locating the bugs.

In Example 2, GPT-3.5 also seems to produce hallucinations. In this bug report,
we can find that the pooled bytebuffer is not released properly while using a proto-
colcodecfilter at the same time. The bytebuffer should be released in the “pool”, not
the “ProtocolCodecFilter” as GPT-3.5 states. This is inconsistent with facts and thus
causes factual inconsistency[29]. Although it is fluent to read, it contains completely
wrong information. The title generated by GPT-4 does not make the mistake. How-
ever, it is still not concrete enough as users have to go through the bug report to find
out what function is really causing the issue. On the contrary, KeyTitle captures the
key information as it chooses “protocolencoder-output.write() pooled bytebuggers” as
keywords. The title generated by KeyTitle demonstrates the meaning of the original
title quite well.

As a base large language model trained for general purposes, the GPTs may
lack important domain knowledge when applied to a specific downstream task (like
the bug title generation task). Such a lack may make GPTs produce bug titles
with hallucinations[29]. Meanwhile, as designed, what GPTs should output is greatly
affected by the evaluators. The reinforcement learning from human feedback would
make GPTs tend to generate relatively general and hence less error-prone results that
are welcomed by the public[30, 31], which is not in line with our expectations for ideal
bug titles.

6.2 Threats to validity

One threat to validity comes from the datasets. All experimental datasets in this
study are all collected from open platforms. We cannot guarantee that our findings
are applicable to other open source projects or closed industrial projects. However,
considering that all bug reports are collected from famous open source foundations
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and are managed by different bug tracking systems, we believe that the popularity
and diversity of bug data could still shed lights on the effectiveness of our KeyTitle in
practice. To enhance understanding of our KeyTitle’s applicability, we appreciate any
replication studies on proprietary projects or other open source products.

Another threat comes from the metrics used to evaluate KeyTitle. Despite we
adopted ROUGE metrics that are commonly used in title generation task, we have to
admit that they may not fully capture the nuances of title quality in practical software
development scenarios. Hence, we conducted extra human evaluations on generated
titles by KeyTitle and other baselines, to provide a more comprehensive assessment
of the relevance and utility of the generated titles by KeyTitle and other baselines.

Furthermore, a possible threat also arises related to human evaluation. That is, on
manual evaluation on the quality of titles generated by different techniques, partici-
pants may have a certain preference for the style of the generated titles, which may
cause subject bias in rating titles. To prevent the bias, we write a detailed tutorial for
them to read before rating; meanwhile, we randomly shuffle the titles so that they can
not figure out which title is generated by which technique. The Fleiss’ Kappa value of
0.71 also indicates a substantial agreement among the rating participants.

As a title generation task, we fully understand that it is fundamental to ensure
the quality of datasets used for both constructing and fairly evaluating our KeyTitle
and other baselines. Towards this, we determined data selection criteria based on the
commonly accepted strategy proposed by Chen et al.[6], and performed human evalu-
ation on the quality of the original titles in bug reports that work as the ground truth.
Our human evaluation indicated a quality-acceptable dataset. All preprocessing steps
related to dataset preparation are also detailed in the Section 4.1 Dataset Construc-
tion. In the future, we plan to analyze the impact of different preprocessing steps on
the study findings to further help us understand the robustness of our methodology
and the reliability of the conclusions drawn in this study.

7 Related Work

Study on bug report titles. As the summary of a bug report, some researchers
try to make use of titles to better understand and manage bug reports. For example,
Chaparro et al.[32] and Mills et al.[33] take the title as an important text feature
of a bug report for better text retrieval-based bug localization. Budhiraja et al.[34]
and Isotani et al.[35] use different word embedding models to vectorize the title and
description of each bug report to conduct duplicate bug report detection. Lee et al.[36]
concatenate the titles and descriptions of bug reports as the input of PLM model and
then train classifiers to do bug triage. Mani et al.[37] use a deep bidirectional recurrent
neural network with attention to learn syntactic and semantic features from title
and description for better triaging bug reports. Zhou et al.[38] develop an automatic
vulnerability identification technique for which features related to the titles are also
considered during model building. These studies demonstrate the importance of titles
in various downstream tasks of bug reports. The importance of titles and their varied
quality motivates our work to automatically generate high-quality titles for bug reports
submitted by end users.
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Automated software artifacts generation. There have been a series of studies
on automated generation of different software artifacts, such as bug report summary,
pull request titles, commit messages, etc [6, 10, 39—41]. For bug report summarization,
Rastkar et al. [42] train a summarizer to extract important sentences from the descrip-
tion of a bug report as the summary for the bug. Li et al.[43] utilize a deep-learning
based and unsupervised method, while Liu et al.[39] use a stepped auto-encoder net-
work with evaluation enhancement, to do better summarization. These works all aim to
generate a summary of a bug report, but adopt the extractive approach, i.e., extracting
original important sentences from the description as a summary. Unlike them, we adopt
the abstractive summarization way to automatically generate a new one-sentence sum-
mary for the bug report as its title. Chen et al.[6] propose iTAPE to generate issue
titles, by using three heuristic rules to filter issue data first and then adopt a seq2seq
model to generate issue titles. Ma et al.[44] propose a deep attention-base summariza-
tion model. The model uses RoOBERTa encoder to better capture contextual semantic
information, stacked transformer decoder to generate titles and the copy mechanism
to handle rare token problem. Compared to their study, we emphasize the necessity
of considering the information structure and the importance of keywords.

Besides bug report summary/title, Zhang et al.[45] fine-tune BART to automat-
ically generate pull request title. Fang et al.[10] use a hybrid attention network for
pull request description generation. Liu et al.[46] utilize commit messages and added
source code comments to also generate pull request descriptions. Jiang et al.[47] and
Dong et al.[40] aim to automatically generate commit messages to help developers bet-
ter understand code changes without digging into detailed implementations. Wang et
al.[48] propose an approach, considering both the structual information of crash traces
and the knowledge of crash-causing bugs to summarize solutions automatically. Xie
et al.[49] and Ahmed et al.[41] focus on generating summarization from source code
pieces to assist developers in understanding code and reduce documentation work-
load. Jiang et al.[50] propose a deep learning based approach to generate release notes
according to pull requests, including both the change entries and change category gen-
eration. Unlike their studies, we focus on a rather different generation task, i.e., aiming
to generate a concise and precise title for a bug report.

8 Conclusion and Future Work

In this paper, we propose a technique KeyTitle to automatically generate bug report
titles. KeyTitle formulates title generation as a one-sentence summarization task. It
incorporates keywords planning into the training process, by enforcing the model
to generate keywords first, then output the titles. Experimental results show that,
KeyTitle could generate titles of higher quality from descriptions than both iTAPE
and fine-tuning models in terms of ROUGE metrics. During our manual evaluation,
titles generated by KeyTitle also achieve higher scores in terms of relevance, accu-
racy, conciseness, and fluency than baselines. As a complement, a comparison between
KeyTitle and general large language models like GPTs is also conducted. The results
further validate the effectiveness of our KeyTitle in the specific bug title generation
task. Besides the description2title task, KeyTitle also shows great potential in the
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keyword2title task, where users can simply input a few keywords, and then the model
will generate a qualified title for him/her.

To further improve the performance of title generation, we plan to consider using
more prompts to do keywords planning. We may consider better use of code snippets;
we will also try to investigate better keyword-extracting mechanisms in our future
work.
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