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Abstract—With the aim to help developers better localize
bugs, Researchers propose a series of text retrieval bug
localization (TRBL) techniques. Such techniques take bug
localization as an information retrieval task with a bug
report being a query, all code elements being the docu-
ment corpus, and the retrieved recommended documents
being potential buggy code elements. Like any textual
retrieval-based recommendation system, the success of
TRBL techniques also largely depends on the quality of
queries, i.e., bug reports. Knowing in advance whether
a query would lead to relevant results (buggy code) is
important for developers so that they can for example
decide whether they should reformulate the query before
wasting limited resources in checking irrelevant results. To
this end, we propose an automatic query quality prediction
approach for text retrieval-based bug localization. We take
it as a typical classification task, by first collecting six
categories of features evolving different aspects of bug
reports and code, and then applying classical machine
learning algorithms to build models to predict whether
a bug report query would retrieve relevant buggy code.
Through experiments on six projects, our approach could
obtain an average accuracy of 72-91%, and F1 score of
71-91% over different TRBL techniques, and outperform
existing techniques on average by 6-10.6% in accuracy,
and 5.3-11.1% in F1 scores. We further explore the impor-
tance of different feature subsets and find several common
features that contribute most to prediction performance.

Keywords–Text Retrieval-based Bug Localization, Quality
Prediction

I. INTRODUCTION

With the increasing scale of software and the change in
the way of receiving bugs (e.g., many software systems
use bug tracking systems to openly receive bug reports
from end users[1]), developers often face the challenge of
fixing many defects within a limited time. To help devel-
opers fix bugs in a more effective and efficient way, the
academic community proposed a series of bug localization
techniques to automatically identify the suspicious code
for a given bug[2, 3, 4].

*Weiqin Zou is the corresponding author.

Those bug localization techniques can be broadly divided
into two types, i.e., dynamic bug localization and static bug
localization, depending on whether they need to execute
test cases. Dynamic bug localization generally needs to
run test cases to collect execution information of code
elements under passing and failing tests, and then output
a list of code elements with the largest suspicious scores
which are calculated based on the collected execution
information [39, 40]. Unlike dynamic approaches, static
bug localization is mainly to analyze the static information
within code and bug reports, by calculating the typically
textual similarity (e.g., cosine similarity) between each
code entity and a given bug report, and recommending
code entities with the largest similarity scores, to devel-
opers for their check (the more similar, the more likely
that the code entity is relevant for the bug fixing). The
relatively much lower computation cost and competitive
performance of static bug localization attracted much
attention from the academic community [1][2][5]. A series
of static bug localization techniques appeared one by
one. Textual retrieval-based bug localization (TRBL) is a
mainstream category that has received wide attention.
TRBL treats bug localization as a text retrieval task, where
a bug report is treated as a query, code files represent
the document collection, and the location process equals
retrieving relevant code documents from the collection for
a given bug report. Like any text retrieval-based system,
the success of TRBL techniques heavily depends on the
quality of the bug report query itself. If a low-quality
query is provided, even a proficient TRBL tool will yield
unsatisfactory results. Developers would greatly benefit if
they could determine in advance whether a bug report
query will produce fruitful retrieval results. This knowl-
edge would enable them to optimize their bug reports,
saving time and effort spent on running TRBL tools and
inspecting irrelevant code elements. This is particularly
helpful if they have very limited resources but have to
handle a large number of bug reports.
Towards this end, we propose an automated method to
predict bug report query quality for text retrieval-based
bug localization. We take it as a classification task, by
collecting six categories of features about bug reports
and code first, then building a machine learning model
and using the model to do query quality prediction. The
collected features involve different aspects of bug reports
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and code, that embeds both domain-specific knowledge
of bug localization as well as general knowledge from
the perspective of text retrieval in the natural language
area. To understand the generalizability of our technique,
we build our models for several typical TRBL techniques,
including Blizzard, AmaLgam, BLUiR, BugLocator, and
Lucence. And test our models on six open-source projects
of different domains and with different code scales. Our
major contributions are as follows:
• We build a model based on six categories of features to

automatically predict the bug report query quality for
text retrieval-based bug localization. The experiments
on 5297 bugs show that our approach could obtain an
average accuracy and F1 score of 72 ∼ 91% and 71
∼ 91% respectively over different TRBL techniques
and outperformed the state-of-the-art Q2P [27] by an
average of 6 ∼ 10.6 percent, and 5.3 ∼ 11.1 percent in
terms of accuracy and F1 score.

• We investigate the usefulness of different feature groups
in predicting query quality for bug localization. We find
that models separately built on those feature groups
could also achieve promising prediction results for dif-
ferent TRBL techniques, with a performance difference
between them being about or up to 2 ∼ 3% on average.

• We investigate the importance of features that mostly
affect the prediction performance of our models. We
find several common features that contribute most to
prediction performance over different TRBL techniques.

The structure of the remaining parts is as follows. Section
2 describes the overall framework of our approach. Section
3 describes our experimental setup. Section 4 presents our
experimental results. Section 5 discusses the threats to
the validity of our study. The last two sections introduce
related work and our arrived conclusions.

II. METHODOLOGY

1. Overview

We present an approach to predict the query quality of bug
reports for text retrieval-based bug localization. Following
the definition of query quality in [27], our approach
categorizes bug reports into high-quality and low-quality
based on their ability to retrieve relevant buggy files from
the recommendation list generated by TRBL techniques,
without any additional developer-provided information.
Fig.1 shows the overall architecture of our approach. We
take query quality prediction as a classification task by
attempting to apply typical machine learning algorithms
to designed features (training phase) and using the ob-
tained model to do such predictions for new bug reports
(prediction phase). Details are as follows.

2. Training Phase

In the model training phase, for a software project, we
would take a number of bug reports as well as their
labels (i.e., high or low-quality) as input, and train a

machine learning model as output. More specifically, given
a bug report query, we would extract six categories of
features for the query and combine its label to form a
training instance. Detailed feature extraction and class
labeling could be found in the following subsections II-D
and II-E. After we get the training dataset, we apply
a machine learning algorithm to the dataset to build a
prediction model. Theoretically, any binary classification
algorithm can be used in our experiments. In this study,
we test five typical classifiers and choose the one with the
best performance as our classifier. During model training,
we also adopt SMOTE [19] strategy to handle the class
imbalance problems (the number of instances from two
classes is quite different).

3. Prediction Phase

In the prediction phase, we use the model obtained in
the training phase to predict the query quality of a new
coming bug report for TRBL techniques. Similarly, before
prediction, we need to extract six categories of features
from the bug report query (just like those training in-
stances). Based on these features, the model would predict
the label (i.e., high or low quality) for the bug report. The
predicted label would be referred to by the developers who
use TRBL techniques to do bug localization. With this
label, developers can determine their way of handling bug
reports (e.g., maybe reformulate the bug report first before
tool running) or retrieved results (e.g., to what extent to
accept the results as being true).

4. Feature Extraction

We collect a set of features that embeds both the domain-
specific knowledge of bug localization and general knowl-
edge of text retrieval tasks from an NLP perspective. A
small subset of the features are directly collected from [27]
(published in TOSEM) which also aims to do query quality
prediction like us (they can easily be identified by referring
to the reference number “[27]” in the following feature
description). All features belong to two large categories
namely pre-retrieval and post-retrieval, with each category
including several subcategories. Pre-retrieval features are
those calculated before a query is run while post-retrieval
features are those calculated after running the query.
Pre-Retrieval Features. Pre-retrieval features fall into
three subcategories, namely linguistic, statistic, and
domain-specific-bug. Among them, the statistic feature
group is from [27] while the linguistic and domain-
specific-bug feature groups are newly added by us to help
better do query quality prediction.
1) Linguistic: Linguistic feature group focuses on search-
ing for ambiguity and polysemy from a query to evaluate
its query quality (e.g., ambiguous queries may be related
to poor query results), including the following features.
Word length is a proxy metric for word complexity [8].
the word length of a word is calculated as the number
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Fig. 1: The overall architecture of our approach

of characters it contains. After we obtain a list of word
lengths for words in the bug report, we extract eight fea-
tures based on these word lengths, namely the maximum,
minimum, average, median word length, and the variance,
standard deviation of word lengths.

Word numbers is a proxy metric for query complexity [9].
In this study, We use word-num, same-word-num, and diff-
word-num as metrics to capture query complexity. Word-
num represents the total number of words in a bug report;
same-word-num represents the number of words appearing
both in a bug report and a code base; while diff-word-num
represents the number of words appearing in a bug report
but not in a code base.

Irrelevant Syntactical Word Numbers represent the number
of conjunctions, prepositions, and pronouns in a bug report
query after POS (part of speech) tagging (using NLTK tool
respectively. These words are considered rarely captured
relevant information[9], hence a good/bad bug report is
expected to contain fewer/more conjunctions, prepositions,
and pronouns.

Polysemy value involves the definition of polysemy. Poly-
semy refers to those words having multiple meanings. The
more ambiguous a query is, the worse results this query
may retrieve [9]. In this paper, we first use wordNet[10] to
identify those polysemous words in the bug report query as
well as the number of meanings for each polysemy (mean-
Num). After obtaining these numbers, we further calculate
the maximum, minimum, average, median meanNum as
well as their standard deviation and variance.

2) Statistical: The statistical feature group examines the
word distribution in bug reports and the codebase. Nine
features(IDF, ICTF, QS, SCS, ENTROPY, SCQ, VAR,CS,
PMI) have already been explained in [27], we introduce
an additional feature called Internal Threats. In data
preparation phase, we use some manually summarized
heuristic rules to link a bug report to its corresponding
buggy files. We have to admit that the rules may be not
100% correct. To avoid the potential bias, we have tried
to manually check the linked data carefully and filtered
out wrongly linked bug reports. Another threat is that we
re-implemented the Q2P approach based on its description
from the original paper [27]. We cannot guarantee that we
have 100% correctly implemented Q2P for performance
comparison. To avoid the potential threats, we conduct
several rounds of code review about Q2P.

External Threats. In this study, all experiments and
corresponding analysis are conducted on six open source
software (OSS) projects programmed in Java. We cannot
guarantee that the arrived conclusions or findings could
be applicable to other OSS or industry projects written
in Java or other languages. However, considering that
these projects are well-known and widely-used projects
in practice, plus that they come from different domains
and are of different sizes, we believe our experiments on
these projects still shed some light on the capability of
our approach in the real world. ”variability of term occur-
rences”. This feature concerns the distribution of query
terms over the whole collection. In detail, for each query
term, we first calculate its tfidf in each document, then
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take the standard deviation of these tfidf values as the term
occurrence for the term. We extract three features based on
the term occurrences of all query terms (noted as TOs),
namely the sum-term-occurrence (the sum of the TOs),
avg-term-occurrence (the average term occurrence), and
the max-term-occurrence (the maximum term occurrence).
3) Domain-Specific-Bug: Domain-specific-bug feature
group focuses on retrieving bug localization domain spe-
cific knowledge related to bug report from the perspective
of software practitioners or researchers [13]. Specifically,
we collected the following features.
Reporter Experience refers to the experience of bug
reporters. Previous studies have found that experienced
reporters are better at providing the information needed for
bug fixing[14]. In this study, we mainly consider reporters’
bug reporting experience and their general working ex-
perience. For bug reporting experience, we extract three
features, i.e., bug-num, valid-rate, and recent-bug-num.
bug-num represents the total number of bug reports sub-
mitted by a reporter. recent-bug-num captures the number
of bug reports submitted by a reporter within the last 90
days, considering reporting recency. valid-rate measures
the proportion of bug reports successfully fixed over the
total bug reports submitted by the reporter. To assess
general working experience, we construct a collaboration
network based on comment activities within bug reports,
similar to previous studies [29, 23]. From this network, we
extract nine features, including closeness and total degree,
to quantify a reporter’s position within the network, as
done in [15].
Report Completeness refers to the completeness of tech-
nical information (e.g., stack traces and code samples)
present in a bug report. A bug report with more complete
technical information items is more likely to be located
[13, 16, 17]. Inspired by Zimmermann et al. that steps
to reproduce, stack traces, code samples, test cases, and
screenshots are widely used by developers during their bug
fixing [13], we calculate six completeness features based
on the appearance or not of these items.
Report Readability refers to the readability of the descrip-
tion content present in the bug report. The readability
of the description is found to be an important factor
impacting the quality of bug reports [13], which further
affects the bug localization and bug fixing [18]. in this
paper, we use seven readability measures proposed by
previous studies [13], namely flesch, fog, lix, kincaid, ari,
coleman-liau, and smog.
Post-Retrieval Properties. Post-retrieval features can be
divided into three subcategories: Robustness, Score Distri-
bution, and Domain-Specific-Code. The Score Distribution
and five Robustness features are from [27]. To enhance bug
localization models, we introduce the Domain-Specific-
Code group with five new features from Robustness to
improve model performance. Existing features from [27]
are not redefined here, and we focus on explaining the
newly added features in this study.

4) Robustness: Robustness evaluates the stability of the
retrieved result list when subjected to perturbations in the
query, document list, or retrieval tools [28]. A more stable
result indicates a higher-quality and more reliable query.
To assess query quality, the difference in search results
before and after perturbation is examined. In our study,
we consider a total of ten features from the Robustness
feature group. As five features (QO, RS, FRC, SAC, CT)
have already been explained in [27], we introduce the other
five features added in this study as follows.
Query Feedback (qf) Consistency between the original
query and the new query generated from its results is
measured by the number of common code files (named
as common-qf) in their respective top-k code file lists. A
higher number of common files indicates greater close-
ness between the original query and its retrieval results
[41]. Additionally, we calculate the differences in max-
imum, minimum, average, and median retrieval scores
(max/min/avg/med-qf) between the two lists, as well as
their standard deviation and variance differences (dev/var-
qf), to better measure the consistency.
Subpart Overlap (spo) refers to the overlap between the
results obtained using the whole query and its subsets.
We focus on the overlap of the results by using the report
and its two parts: the one-line summary and the problem
description. We calculate the overlap separately for each
part and then average the results. The overlap is measured
by the number of common code files, the differences in
maximum, minimum, average, and median retrieval scores
(noted as max/min/avg/med-spo) , as well as the standard
deviation and variance differences of the retrieval scores
(noted as dev/var-spo) between the two lists.
Retrieval Overlap refers to the degree of overlap between
the recommendation result lists by different retrieval tools.
In our study, we use BugLocator [2] and BRTracer [1] to
retrieve results for the same query executed by Lucene
in the source code base. We assess overlap based on
the number of common code files (common-ro), as well
as differences in maximum, minimum, average, median
retrieval scores (max/min/avg/med-ro), and the standard
deviation and variance of retrieval scores (dev/var-ro).
Codefile Path Span (fps) measures the cohesion between
the top-k ranked documents obtained by a query. In
software projects where projects are coded according to
strict specifications, similar source files are often placed
closer together than other files. Therefore we use the fps
value between top-k files to measure their cohesion. We
use the common part of the absolute paths to calculate the
distance between two documents (i.e., source code files).
Six feature values based on fps are extracted in the study,
namely the maximum/minimum/average/median fps, the
standard deviation, and the variance of fps.
Codefile Textual Similarity (fts) measures the textual con-
tent cohesion (measured by cosine similarity) between
each pair of code files from the top-k file list obtained by a
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query. A higher similarity among the top-k files indicates
better content cohesion which is related to the quality of a
query [28]. In the study, we extract six features based on
fts, namely the maximum/minimum/average/median fts as
well as their standard deviation and variance.
5) Domain-Specific-Code: Domain-specific-code feature
group focuses on retrieving bug localization domain-
specific knowledge related to code (e.g., Many studies
have found that the quality of recommended buggy code
file list has an impact on the performance of defect
localization [1, 3]. In terms of domain-specific-code, we
totally collect eight features from two dimensions namely
Codefile Bugfix History and Code Complexity as follows.
Codefile Bugfix History refers to the bug-fixing history
of the recommended code file list by TRBL systems.
Previous studies have reported the correlation between
historical bug fixing and the probability a code file in-
troduces new bugs [2, 7]. These features, including fix-
count, fix-developer-count, fix-code-line, and fix-recency.
fix-count means the number of bugs whose fixes require
modifying the code file. fix-developer-count refers to the
number of developers who touched the code file during
bug fixing. fix-code-line refers to the number of code
lines modified during bug fixing. fix-recency refers to the
time distance between the last-fixing-time of a code file
and the reporting time of a given bug report.We totally
calculated six features based on fix-recency of returned top
K files, namely, the maximum/minimum/average/median
fix-recency as well as the variance and standard deviation
of fix-recency.
Code Complexity is an important metric to measure the
quality of code. The more complex a code file is, the
more likely it may be to produce bugs [38], hence is
more likely to appear in the recommendation list for bug
localization [38]. We measure the complexity of a code file
by using the number of methods, the number of variables
and the number of code lines the code file contains. A
more detailed description of all features is available at
https://goo.su/kHcnCT.

5. Class Labeling

To create the training dataset, we label each bug report
based on its recommended top-K code file list generated
by a TRBL tool. As shown in equation (1), following the
strategy in [27], High-quality bug reports are those where
the top-K list contains truly buggy code files, while low-
quality bug reports do not have any truly buggy files in
their top-K list. We evaluate our approach using different
TRBL techniques on K=20 (the same setting for the state-
of-the-art Q2P in [27]).

Label =

{
High, if F irst truthly buggy file rank <= K
Low, otherwise

(1)

III. EXPERIMENTAL SETUP

1. Data Preparation
The goal of data preparation is to create a dataset suitable
for training the query quality prediction model. This in-
volves selecting target software products and transforming
bug reports from these products into individual instances
with features and labels. The whole process includes the
following steps.
Target Projets. In this study, we experiment on six open-
source projects, namely AspectJ, Tomcat, ZooKeeper,
OpenJPA, Hibernate ORM, and Lucene. These projects
are mainly written in Java and widely used in TRBL
techniques [2, 3]. They vary in size, with line numbers
of Java code ranging from 140,175 to 1,762,563 at the
time of crawling. Additionally, they come from different
domains: ZooKeeper focuses on highly reliable distributed
coordination, Hibernate ORM is an Object/Relational
Mapping framework, OpenJPA simplifies storing objects
in databases, Lucene is an information retrieval software
library, AspectJ is an aspect-oriented extension to Java,
and Tomcat is an application server and servlet container.
Bug Report–Buggy Files Linking. To construct a bench-
mark dataset for each selected project, we need to establish
a connection between bug reports and the corresponding
truly buggy code files. This allows us to determine the
class label (high or low quality) for a recommended list
of potential buggy files generated by TRBL systems with
a list size of K.
For AspectJ and Tomcat projects, Ye et al. share their
bug-to-code file links [3]. To avoid duplication of effort,
we directly used their linking results. However, some bug
reports did not have any deleted or modified code files
and were consequently excluded from our datasets. For the
remaining four projects, we followed a three-step approach
to establish the bug-to-buggy file links.
First, We retrieved 7,609 bug reports with fixed resolutions
from the bug tracking systems of the selected projects by
the time we crawled (November 2018). Through manual
analysis of bug reports and commit logs, we found that
developers tended to add projectName-bugID in their
commit logs to tell others which bugs they fixed. Hence we
use the heuristic rule of projectName-bugID to establish
links between bug reports and their corresponding buggy
files. For cases where the heuristic rule failed, we further
searched their raw bugIDs through commit logs, e.g., using
“3217” rather than “ZOOKEEPER-3217”. After the two-
step search and manual verification, we obtained a total
of 6,278 linked bug reports from the four projects.
Following [3], we further removed bug reports that linked
to multiple commits or shared the same commit with
others, as it was not clear which files were relevant. Some
bug reports with no deleted or modified code files were
also ignored as it was not applicable to predict buggy
files that were not created yet in the buggy version of
the project code. Finally, 3,746 bug reports linked to their
fixed commits were left. After we linked bug reports with

https://goo.su/kHcnCT
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bug-fixing commits, following the strategy used in [3], for
each bug report, we checked out the version right before
the bug-fixing commit and took the deleted and modified
code files as the buggy files that contained the bug (adding
files were ignored as they did not even exist yet when the
bug report was initially reported).
Feature Calculating. For each bug report query, we totally
extracted six categories of instance features. Section II-D
presents the detailed description and calculation for each
feature. Among those features, some features (e.g. textual
similarity) are calculated over the textual content of bug re-
ports and code files. For these features, we would perform
text preprocessing on the bug report and code first before
feature calculation. Detailedly, the preprocessing operation
is divided into three main steps: text normalization (we
removed punctuation and tokenized the content of bug
reports and source code files), Stopword/keyword removal
(we use the stopword list mentioned in [6] to filter out
those insignificant words for bug reports, code files would
further remove programming language keywords besides
general stopwords), and Stemming (we use the Porter
Stemmer to reduce words to their word stem, base, or
root form, e.g., predicts to predict).
Experimental DataSets Construction. After we obtain
the features for each bug report, we need to label them
to get the final experimental dataset for model building.
As introduced in the class labeling part (in Section II-E),
class labeling of a bug report requires a top-K suspicious
code file list generated by a TRBL technique and a truly
buggy file set for the bug report (obtained in the Bug
Report-Buggy Files Linking part). For developers who use
a certain TRBL technique to locate bugs in the codebase,
we need to have a corresponding dataset for the TRBL
technique, so that we can build a model to predict the
query quality of a given bug report for the specific TRBL
technique used by developers at hand. By running a TRBL
technique over bug reports of a project at K recommen-
dation level, and using the linked bug reports and truly
buggy files, we can easily obtain an experimental dataset
for the TRBL technique with a certain K (Following [27],
we set K=20). We test our models on five classical TRBL
techniques, namely Lucene, BugLocator[2], BLUiR [5],
Blizzard [4], and AmaLgam [7]. These techniques are
strong baselines in TRBL research and are reported to
have good performance [3, 6]. Testing over various TRBL
techniques could help us have an objective view of the
general performance of our models in the TRBL area. Af-
ter class labeling, for datasets, the numbers of bug reports
with high/low-quality for different TRBL techniques are
shown in Table I.

2. Classifiers and Evaluation Metrics

To understand which classifier is best suitable for our
task, we build our models by applying different classi-
cal machine learning algorithms that are widely used in
software engineering research [24, 25], including Naive

Table I: The numbers of bug reports labeled with
High/Low-quality for different TRBL techniques

Project Lucene BugLocator Bluir AmaLgam Blizzard

Aspectj high 307 389 341 413 329
low 256 174 222 150 234

Tomcat high 769 855 673 860 830
low 223 137 319 132 162

OpenJPA high 349 403 429 426 371
low 184 130 104 107 162

Hibernate ORM high 803 983 715 1017 871
low 482 302 570 268 414

Lucene high 1155 1286 1108 1319 1293
low 299 168 346 135 161

ZooKeeper high 405 432 387 436 421
low 65 38 83 34 49

Bayes, Support Vector Machine, Decision Tree, Logistic
Regression, and Random Forest. As a binary classification
task, we use four typical metrics to measure the overall
performance of our query quality prediction approach for
text retrieval-based bug localization, namely Accuracy,
Precision, Recall, and F1 Score.

IV. EXPERIMENT RESULTS

To understand the effectiveness of our approach in predict-
ing bug report query quality for text retrieval-based bug
localization, we investigate the following three questions.
RQ1. Can we effectively predict the query quality of
a bug report for bug localization tasks?
In this RQ, we try to build a machine learning classifier
based on the features we extract and test its performance
on our experimental datasets. As we have no idea which
classifier is best suitable for our task, we check five typical
machine learning models, including NB, SVM, J48, RF,
and LR. 10-fold cross-validation is conducted over the
datasets to obtain the final performance of a model in
terms of accuracy, precision, recall, and F1 score. Table II
shows the results of different machine learning models on
the datasets of five TRBL techniques.
Classifier with Best Performance. From Table II, we can
find that random forest performs best over all five classi-
fiers in terms of precision, recall, accuracy, and F1 score.
Among five classifiers, NB is found to perform worst in
most projects under five bug localization techniques. The
above results indicate that Random Forest would be a good
choice if we attempt to build a query quality prediction
model for various TRBL techniques.

Finding 1.Random Forest Classifier performed best in
terms of all performance metrics (e.g., accuracy), when
compared to other typical classifiers (NB, SVM, J48
and LR) over different TRBL techniques.

Random Forest Performance. From Table II, we can
observe that on the whole, RF can obtain an accuracy (A),
precision (P), recall (R), and F1 score (F) as high as 0.983,
with the lowest A, P, R, F being 0.698, 0.698, 0.698 and
0.696 respectively, for all TRBL techniques. The average
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Table II: Prediction performance of each classifier on six projects against five bug localization techniques

Project
Lucene BugLocaor Bluir AmaLgam Blizzard

A P R F A P R F A P R F A P R F A P R F

Aspectj

J48 0.564 0.564 0.564 0.564 0.648 0.651 0.648 0.648 0.614 0.613 0.614 0.613 0.704 0.704 0.704 0.703 0.619 0.614 0.619 0.616

RF 0.698 0.698 0.698 0.696 0.770 0.773 0.770 0.768 0.710 0.713 0.710 0.701 0.849 0.849 0.849 0.849 0.733 0.738 0.733 0.721

NB 0.628 0.666 0.628 0.595 0.531 0.578 0.531 0.487 0.557 0.545 0.557 0.542 0.581 0.605 0.581 0.542 0.599 0.597 0.599 0.598

SVM 0.676 0.676 0.676 0.675 0.587 0.588 0.587 0.587 0.566 0.551 0.566 0.541 0.650 0.653 0.650 0.646 0.670 0.668 0.670 0.652

LR 0.624 0.624 0.624 0.624 0.562 0.562 0.562 0.562 0.549 0.545 0.549 0.546 0.642 0.642 0.642 0.642 0.587 0.583 0.587 0.585

Tomcat

J48 0.745 0.745 0.745 0.745 0.794 0.794 0.794 0.794 0.615 0.616 0.615 0.616 0.796 0.796 0.796 0.796 0.776 0.776 0.776 0.776

RF 0.868 0.868 0.868 0.868 0.937 0.939 0.937 0.937 0.760 0.761 0.760 0.759 0.946 0.946 0.946 0.946 0.924 0.926 0.924 0.924

NB 0.686 0.689 0.686 0.686 0.569 0.623 0.569 0.526 0.535 0.544 0.535 0.525 0.596 0.636 0.596 0.554 0.567 0.622 0.567 0.517

SVM 0.723 0.725 0.723 0.724 0.646 0.647 0.646 0.645 0.554 0.554 0.554 0.554 0.644 0.646 0.644 0.641 0.630 0.633 0.630 0.629

LR 0.701 0.701 0.701 0.701 0.654 0.654 0.654 0.654 0.550 0.550 0.550 0.549 0.638 0.638 0.638 0.637 0.636 0.636 0.636 0.636

OpenJPA

J48 0.736 0.736 0.736 0.736 0.700 0.696 0.696 0.696 0.765 0.766 0.765 0.765 0.762 0.762 0.762 0.762 0.618 0.618 0.618 0.618

RF 0.847 0.847 0.847 0.847 0.840 0.841 0.840 0.840 0.901 0.904 0.901 0.901 0.876 0.876 0.876 0.876 0.751 0.752 0.751 0.749

NB 0.684 0.686 0.684 0.684 0.638 0.655 0.638 0.629 0.622 0.655 0.622 0.602 0.641 0.657 0.641 0.631 0.565 0.565 0.565 0.565

SVM 0.790 0.790 0.790 0.790 0.648 0.655 0.648 0.645 0.709 0.716 0.709 0.707 0.680 0.686 0.680 0.677 0.593 0.592 0.593 0.592

LR 0.728 0.728 0.728 0.728 0.614 0.614 0.614 0.614 0.702 0.702 0.702 0.702 0.653 0.654 0.653 0.653 0.583 0.582 0.583 0.582

Hibernate ORM

J48 0.684 0.683 0.684 0.683 0.704 0.704 0.704 0.704 0.628 0.626 0.628 0.627 0.736 0.737 0.736 0.736 0.638 0.638 0.638 0.638

RF 0.806 0.806 0.806 0.805 0.843 0.851 0.843 0.842 0.707 0.710 0.707 0.683 0.882 0.886 0.882 0.882 0.756 0.759 0.756 0.755

NB 0.636 0.635 0.636 0.626 0.537 0.602 0.537 0.475 0.624 0.506 0.574 0.498 0.575 0.619 0.575 0.523 0.504 0.539 0.504 0.422

SVM 0.719 0.718 0.719 0.717 0.608 0.608 0.608 0.608 0.639 0.629 0.639 0.579 0.619 0.619 0.619 0.617 0.561 0.560 0.561 0.560

LR 0.720 0.720 0.720 0.720 0.609 0.608 0.609 0.609 0.596 0.577 0.596 0.58 0.623 0.623 0.623 0.623 0.556 0.555 0.556 0.555

Lucene

J48 0.811 0.810 0.811 0.810 0.843 0.843 0.843 0.843 0.694 0.695 0.694 0.694 0.851 0.851 0.851 0.851 0.833 0.833 0.833 0.833

RF 0.907 0.907 0.907 0.907 0.954 0.955 0.954 0.954 0.856 0.862 0.856 0.855 0.969 0.971 0.969 0.969 0.964 0.965 0.964 0.964

NB 0.661 0.722 0.661 0.645 0.611 0.648 0.611 0.591 0.566 0.591 0.566 0.542 0.590 0.643 0.590 0.556 0.635 0.643 0.635 0.631

SVM 0.785 0.787 0.785 0.784 0.695 0.697 0.695 0.695 0.603 0.604 0.603 0.603 0.684 0.685 0.684 0.684 0.669 0.672 0.669 0.669

LR 0.772 0.772 0.772 0.772 0.687 0.687 0.687 0.687 0.593 0.593 0.593 0.593 0.681 0.681 0.681 0.681 0.660 0.660 0.660 0.660

ZooKeeper

J48 0.794 0.796 0.794 0.794 0.850 0.852 0.850 0.850 0.734 0.736 0.734 0.735 0.886 0.887 0.886 0.886 0.825 0.825 0.825 0.825

RF 0.946 0.946 0.946 0.946 0.976 0.976 0.976 0.976 0.893 0.893 0.893 0.893 0.983 0.983 0.983 0.983 0.967 0.967 0.967 0.967

NB 0.766 0.767 0.766 0.766 0.715 0.718 0.715 0.714 0.636 0.662 0.636 0.630 0.771 0.778 0.771 0.769 0.722 0.758 0.772 0.712

SVM 0.828 0.832 0.828 0.828 0.800 0.807 0.800 0.799 0.652 0.653 0.653 0.653 0.854 0.864 0.854 0.853 0.808 0.814 0.808 0.808

LR 0.798 0.798 0.798 0.798 0.789 0.789 0.789 0.789 0.651 0.650 0.651 0.650 0.818 0.818 0.818 0.818 0.796 0.796 0.796 0.796

#A represents Accuracy. P represents Precision. R represents Recall. F represents F1-Sore.

A, P, R, and F1 score values are all larger than 0.8, which
means our approach is promising in predicting whether a
bug report query would lead to a good retrieval result list
for various TRBL techniques.

Finding 2.Random Forest Classifiers could achieve an
average accuracy of 72.6 ∼ 91.8% and the average F1
score of 71.5 ∼ 91.8% for the five TRBL techniques
over six projects.

Performance Improvement over Q2P. To understand
whether and how much our approach outperforms existing
approaches, we further compare the performance values of
our RF model with Q2P [27] which also conducts query
quality prediction. From the Table, we can find that the
largest/smallest improvements in accuracy A, precision
P, recall R, and F1 score for five TRBL techniques are
11.4/6.0, 11.5/6.6, 11.4/6.0 and 11.5/4.1 percent respec-
tively. And the average improvements of A, P, R, F1 Score
are all larger than 8 percent, which indicates our methods
are indeed more effective than Q2P.

Finding 3.Our RF models could generally outperform
the state-of-the-art Q2P, by achieving an average im-
provement of 6.0 ∼ 10.6 percent in terms of accuracy,
and 5.3 ∼ 11.1 percent in terms of F1 scores for the
five TRBL techniques over six projects.

RQ2. How effective are the prediction models built on
all features compared to that built on subset features?
In this RQ, we try to understand how individual feature
subsets would impact the prediction performance. We con-
duct two comparisons, one is to compare the performance
of pre-retrieval features with post-retrieval features, and
the other one is to compare the performance of existing
features used by Q2P (noted as Base) with newly added
features by us (noted as Our). Doing these comparisons, on
one hand, can help developers do better decisions in tool
adoption, for example whether to use all features to get the
probably best performance or just use some of them to get
acceptable performance and on the other hand can validate
how useful our newly added features are (which may help
lay a better basis for query quality prediction tasks). Like
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Table III: Performance improvement of our method compared to Q2P in six projects with five techniques

Project
Lucene BugLocaor Bluir AmaLgam Blizzard

A P R F A P R F A P R F A P R F A P R F

Aspectj 9.2 9.0 9.2 9.6 10.0 10.2 10.0 10.0 6.0 6.6 6.0 5.5 10.7 10.5 10.6 10.6 6.0 7.0 6.0 6.1

Tomcat 9.8 9.8 9.8 9.8 10.1 10.2 10.0 10.0 9.9 9.8 9.9 10.0 11.4 11.4 11.4 11.5 11.3 11.5 11.3 11.3

OpenJPA 9.5 9.4 9.5 9.5 9.7 9.7 9.7 9.7 9.8 10.1 9.8 9.8 7.2 7.0 7.2 7.3 6.7 6.8 6.7 6.8

Hibernate ORM 8.9 8.7 8.9 9.3 10.6 11.2 10.6 10.7 6.1 7.0 6.1 4.1 9.5 9.9 9.5 9.5 10.3 9.9 10.3 10.3

Lucene 7.1 6.9 7.1 7.1 9.3 9.3 9.4 9.4 10.8 11.0 10.8 10.8 8.2 8.4 8.2 8.2 10.4 10.4 10.4 10.4

ZooKeeper 9.3 9.2 9.3 9.3 8.8 8.4 8.8 8.8 7.6 7.0 7.6 7.6 7.3 7.3 7.3 7.3 7.9 7.7 7.9 7.9

Avg-Improved 9.0 8.8 9.0 9.1 9.8 9.8 9.8 9.8 8.4 8.6 8.4 8.0 9.1 9.1 9.3 9.7 8.8 8.9 8.8 8.8

#A represents Accuracy. P represents Precision. R represents Recall. F represents F1-Sore.
RQ1, we also do 10-fold cross-validation over the datasets.
The difference is that now our instances only have Pre/Post
or Base/Our features. The best-performed RF classifier (in
RQ1) is employed during model building.
Pre/Post Performance. Fig.2 shows the performance of
models built on Pre and Post feature groups respectively
over five TRBL techniques. In the figure, Luc, Bug, Blu,
Ama, and Bli represent the five TRBL techniques Lucene,
BugLocator, Bluir, AmaLgam, and Blizzard. A, P, R, F
represents accuracy, precision, recall, F1 score. Hence,
for example, BugA means the accuracy of a model in
predicting query quality for BugLocator. The dashed black
line in the boxplot represents the average line. From
Fig.2(a) and Fig.2(b), we can find that all five TRBL
techniques except Bluir and Blizzard could obtain an
average A, P, R, F of 75% ∼ 80% (about 70% for Bluir
and Blizzard). And the ranges of the 1st to 3rd quartile
values of A, P, R, and F mostly fall into the range of 65%
∼ 85%. As for the model performance on Post feature
group (Fig.2(c)), we can find that the performance of Post
group is similar to or slightly higher than (by up to 1 ∼
2 percent on average) that of Pre group.

Finding 4. Our RF models separately built on pre-
retrieval and post-retrieval features could also achieve
promising prediction results for different TRBL tech-
niques. The average A, P, R, F of models over Pre
or Post groups could reach about 70% ∼ 80% under
different TRBL techniques.

Our/Base Performance. Similar to Pre/Post analysis, we
also draw some boxplots to show the performance of our
models on Our and Base features in Fig.3. For Our group
results in Fig.3(a), we can find that except for Bluir which
obtains an average performance of about 70% in terms of
A, P, R, F, all other four techniques could obtain an average
A, P, R, F of 75% ∼ 80%. And the 1st-3rd quartile range
of A, P, R, and F mostly falls into the range of 70% ∼
85% (with the 1st quartile valus of Bluir and Blizzard
slightly lower than 70%, and the 3rd quartile values of
BugLocator and AmaLgam slightly higher than 85%). As
for Base group results shown in Fig.3(b)), we can find that
the performance of the Base group is, on the whole, worse
than that of Our group by about 2 ∼ 3 percent on average

(a) Pre

(b) Post

(c) Post - Pre

Fig. 2: Pre vs Post in different TRBL techniques

in terms of A, P, R, F.

Finding 5. Our RF models separately built on Our and
Base feature groups could obtain promising prediction
performance for different TRBL techniques, with the
average A, P, R, F being around 75 ∼ 80% for Our
group and 70 ∼ 75% for Base group.

RQ3. Which features are most important in indicating
the query quality of a bug report?
In this RQ, we analyze the importance of individual
features for prediction performance. To identify impor-
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(a) Our

(b) Base

(c) Our - Base

Fig. 3: Our vs Base in different TRBL techniques

tant features, we first remove redundant features using
correlation analysis and redundancy analysis by following
existing studies [26]. After reducing the feature set, we
build random forest models with 10 cross-validation and
assess feature importance. After that, we collect the top 10
most important features based on the importance scores in
each project for different TRBL techniques. As mentioned
previously in Section II-D, the description and calculation
of these features could be found in our shared document
at https://goo.su/kHcnCT.
Fig.4 show the distribution of the top 10 most important
features over different TRBL techniques. In the figures,
the x axis represents the top 10 most important features,
the y axis on the left (Rank) means the exact rank of a
feature while the y axis on the right (Count) means how
many times a feature appeared in the top 10 important
feature list for a given TRBL technique over all projects.
The boxplot shows the rank distribution of a feature while
the blue line indicates the count values.
From the figure, we can find that there are 22 features
in total that ever appeared in the top 10 most important
feature lists on certain projects. Among these features,
there are six features that appeared in 4 out of 5 TRBL
techniques, they are dev-ro, avg-idf, sac, rs, avg-fts and

(a) TRBL = Lucene

(b) TRBL = BugLocator

(c) TRBL = Bluir

(d) TRBL= AmaLgam

(e) TRBL = Blizzard

Fig. 4: Top-10 most important features under different
TRBL techniques

avg-polysemy-value. The Count range (and average Rank)
for these features are 2 ∼ 4 (5.3), 2 ∼ 3 (5.3), 2 ∼ 5 (5.1),
2 ∼ 5 (4.9), 2 ∼ 5 (5.7) and 2 ∼ 2 (4.8) respectively.
Three features namely min-ro, var-method-num, and med-
fts, appeared in three TRBL techniques, with the Count

https://goo.su/kHcnCT
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range (and average Rank) being 2 ∼ 5 (4), 2 ∼ 3 (4), 2 ∼
3 (3), respectively. In other words, on the whole, there are
9 features that commonly appeared (appearing > 3 out of
5 TRBL techniques) in different TRBL techniques and 7
out of the 9 features have an average rank that lies in the
first half of the top 10 lists (<=5).
We analyze which feature group contributes more top-10
most important features over different TRBL techniques.
We also find that Post feature group contribute more (or
same) top-10 most important feature than that of Pre
group, the Count range (and average Count) of top 10
most important features from Pre and Post groups are 3 ∼
5 (3.6) and 5 ∼ 7 (6.4). While for the Our/Base groups,
we can observe that Our group contributes more top-10
most important features than Base group, the Count range
(and average Count) for Our and Base groups are 5 ∼ 7
(5.8) and 3 ∼ 5 (4.2).

Finding 6.There are 9 features that commonly appeared
in the top-10 most important features on experimental
projects over different TRBL techniques, they are dev-
ro, avg-idf, sac, rs, avg-fts, avg-polysemy-value, min-
ro, var-method-num, and med-fts. Moreover, Post group
and Our group contribute more top-10 most important
features for the five TRBL techniques than that of Pre
and Base groups separately.

V. RELATED WORK

1. Query Quality Prediction

Query quality prediction aims to predict the retrieval qual-
ity of a query based on the quality of documents returned
by a retrieval method against the query. In the field of
information retrieval, many query quality estimators have
been proposed. These methods can be divided into pre-
retrieval methods and post-retrieval methods. Pre-retrieval
methods usually predict the retrieval quality of a query
before executing it[8][12][11]. Post-retrieval methods usu-
ally need to execute the query to obtain an initial result
list such as SAC, NCQ [20][21][22].
Within bug localization, the quality of bug reports has
attracted many researchers’ attention [13] [18]. For ex-
ample, [42] indicates that bug reports written by even
experienced developers can have problems. Some studies
measure the quality of bug reports by extracting relevant
information from bug reports (such as stack information,
code examples, etc.) [1][5]. The mostly related study to
ours is Q2P [27], which used 21 pre-retrieval and 7 post-
retrieval query features to predict query quality. Based on
their features, we integrate more domain-specific features
of TRBL tasks and test the generalizability of our approach
over different TRBL techniques.

2. Text Retrieval-based Bug Localization

Text retrieval-based bug localization (TRBL) plays a cen-
tral role in existing approaches to fault localization. Exist-
ing TRBL studies have the following four main research

directions: replacing a retrieval model with another one to
find the model most suitable for bug location, extracting
more relevant features to improve model performance, re-
constructing low-quality bug reports to further improve the
model performance, and applying deep learning methods
to facilitate bug location.
For exploring which text retrieval model is suitable for
bug localization, there has been a list of studies tested the
performance of various text retrieval models such as vector
space model (VSM) [1, 2], latent semantic index (LSI)
[36, 37], latent Dirichlet allocation (LDA) [34, 35]. As for
extracting more relevant features besides textual similarity
to improve model performance, BugLocator[2] suggested
to use historical bug reports for bug localization. Bluir[5]
proposed to consider code structure. Brtracer[1] proposes
to make use of exception information. AmaLgam[7] indi-
cates that files that recently caused bugs are likely to cause
other errors in the near future. For methods that use query
refactoring to improve model performance, Chaparro et
al.[32] find that using observed behavior directly instead
of a full bug report is effective in finding bugs. Sisman et
al.[33] propose a query expansion strategy, which obtains
an initial ranking list of code files first by running the
location method, and then extracts related terms with
higher ranks from the list to expand the bug report. With
the continuous development of deep learning technologies,
Lam et al.[30] propose an approach that combines a deep
neural network with rVSM to extract semantic information
from bug reports and source code files. Xiao et al.[31]
propose a deep learning method at the character level,
where code files and bug reports are represented by
characters first, then are passed to CNN for convolution
operation, and finally to RNN code for bug location.

VI. THREATS TO VALIDITY

Internal Threats. In data preparation phase, we use some
manually summarized heuristic rules to link a bug report
to its corresponding buggy files. We have to admit that the
rules may be not 100% correct. To avoid the potential bias,
we have tried to manually check the linked data carefully
and filtered out wrongly linked bug reports. Another threat
is that we re-implemented the Q2P approach based on its
description from the original paper [27]. We cannot guar-
antee that we have 100% correctly implemented Q2P for
performance comparison. To avoid the potential threats,
we conduct several rounds of code review about Q2P.
External Threats. In this study, all experiments and
corresponding analysis are conducted on six open source
software (OSS) projects programmed in Java. We cannot
guarantee that the arrived conclusions or findings could
be applicable to other OSS or industry projects written
in Java or other languages. However, considering that
these projects are well-known and widely-used projects
in practice, plus that they come from different domains
and are of different sizes, we believe our experiments on
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these projects still shed some light on the capability of our
approach in the real world.

VII. CONCLUSION AND FUTURE WORK

In this paper, We propose an automated method to predict
the query quality of bug reports in information retrieval-
based bug localization. We classify bug reports into high-
quality and low-quality categories based on whether they
can be correctly located by TRBL techniques. Our ap-
proach utilizes pre/post-retrieval features from both the
general text retrieval domain and the TRBL domain-
specific area. By employing a random forest machine
learning model, we demonstrate the effectiveness of our
approach across different TRBL techniques. Additionally,
we investigate the utility of different feature groups in
predicting query quality. Last, we identify several common
important features that are indicative in predicting the
query quality of bug reports. In the future, we plan to
develop some reformulation tools for low-quality bug
reports once identified by our model.
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