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Abstract—During the process of software development and
maintenance, developers would regularly refactor existing source
code to improve efficiency and maintainability. Among various
code refactoring activities, method renaming often happens
within the whole project evolution process. To perform method
renaming, developers should first identify the exact methods
that should be renamed, which is generally tedious and error-
prone through manual analysis. Towards this end, researchers
have proposed some approaches to automatically recommend
candidate methods for renaming. To further improve the per-
formance of existing techniques, in this paper, we propose
a novel approach that fully leverages historical code changes
and overlapping relationships among code entities to identify
renaming opportunities for methods. Specifically, we first embed
methods into vectors and incorporate overlapping relationships
among code entities by using different attention heads in a
deep learning network. Then, we apply these obtained vectors
to train a classifier to predict potential renaming opportunities
for methods. Finally, we utilize historical renaming activities
of related code entities to further refine the predicted results.
Experimental results on 114,398 methods from 10 open source
Java projects show that our approach could outperform the
state-of-the-art approach by achieving an average F-measure of
80.02%. To better validate the effectiveness of our approach,
we also explore the performance of some major components of
our approach. For example, we find that employing related code
entities help to improve the performance of our approach by
40.40% in terms of the average F-measure.

Index Terms—Software Refactoring, Renaming Opportunities,
Code Change History, Representation Learning

I. INTRODUCTION

Code refactoring is the process of restructuring existing
internal source code without changing the external software
behaviors. The aim of code refactoring is to improve the
non-functional attributes of source code, e.g., design and
implementation, while preserving the main function of the
software. In the practical software development process, devel-
opers frequently perform code refactoring activities [1], [2] to
improve code readability and reduce code complexity [2]–[6].

Among the various types of code refactoring, code-entity
(e.g., methods, variables) renaming is one of the most impor-
tant and common code refactoring activities [7], [8], which
mainly aims to make the literal meanings of code entities
consistent with the corresponding semantic functions [2], [5],
[9]. Among various code-entity renamings, method renaming
is of particular importance given that methods are generally
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taken as basic function units of source code but are frequently
reported to show inconsistencies with method implementations
by existing studies [5], [10]–[13]. One of the key issues for
method renaming is to identify method renaming opportu-
nities, i.e., identifying the exact methods which need to be
renamed. Manually identifying method renaming opportunities
is time-consuming and error-prone. For example, method
renaming often occurs in the maintenance phase, especially
in the version upgrade. A developer may spend a lot of time
to understand the program if he/she tries to do such method
renamings for the first time. Moreover, in large projects with
complex code-entity relationships, method renaming may be
interlocking and missing any renaming would make the well-
running program fail to behave correctly. Therefore, it is nec-
essary and worthwhile to detect method renaming opportunity.

To help developers better perform method renaming refac-
torings, some researchers have proposed several approaches
to automatically identify potential method renaming oppor-
tunities [5], [10]–[12], among which the technique proposed
by Liu et al. [10] is the state-of-the-art one. The approach
proposed by Liu et al. [10] identify renaming opportunities by
leveraging conducted renaming activities. Once a renaming
activity is conducted manually or with tool support, the pro-
posed approach recommends to rename closely related code
entities whose names are similar to that of the renamed entity.
However, there is still much room for improvement in the
following two aspects.

First, we empirically find that refactoring activities are
related to each other. However, the approach proposed by Liu
et al. [10] only relies on a single initial refactoring activity
and propagates it to the other related code entities without
considering the other refactoring activities. The performance
of renaming opportunity identification can be further improved
if the historical refactoring activities of all the related code
entities can be fully leveraged. Second, the approach proposed
by Liu et al. [10] lacks deep semantic understanding to the
source code, especially the semantic overlapping relationship
between code entities. The overlapping relationships among
code entities mean that one code entity may participate in
multiple relationships in the same method implementation
[14]. For example, Fig. 1 shows a real-world example, which
is a method that returns the maximum value. For this method,
the method name getMaxInteger has a call relationship with
the code entity println method. For another example, it



Fig. 1. An example to show overlapping relationships among code entities.

also has a constraint relationship with the code entity int.
During the semantic analysis of the code, the overlapping
relationships can be beneficial for the detection of method
renaming opportunities. Hence, the overlapping relationships
among code entities should be better utilized for improving the
semantic understanding of source code and further improving
the performance of identifying renaming opportunities.

In order to better identify method renaming opportunities,
we propose a novel approach using the pre-trained model Bidi-
rectional Encoder Representations from Transformers (BERT)
and text Convolutional Neural Network (textCNN), equipped
with a prediction result adjusting component through historical
renaming activities analysis [15], [16]. Specifically, consider-
ing that BERT has its natural advantage in capturing the deep
context semantics of textual contents [8], [15], [17]–[20], we
decide to use BERT to capture the lexical and overlapping
relationships among code entities. More detailedly, we first
employ BERT to embed method implementations into numeric
embedding vectors, and then use textCNN to further enhance
these embedding representations. Based on these enhanced
representations, we train a classifier to predict potential re-
naming opportunities. After obtaining the initial renaming
opportunities, we leverage the historical renaming activities
of related code entities to further refine the prediction results.

Experimental results on 114,398 methods from 10 open
source Java projects show that our approach achieves an
average F-measure of 80.02%, which outperforms the state-
of-the-art approach by 4.94% on average. Further, we find
that historical renaming activities could greatly refine the pre-
diction results by improving the whole F-measure by 40.40%.
We also investigate the influence of the size of the training
corpus on the performance of our approach, we find that along
with the increase of the size of training corpus, our approach
achieves better results generally. In addition, we also find that
even relying on a small training corpus, our approach could
also achieve comparable good results.

Our major contributions are as follows.

• We propose a novel approach that fully leverages his-
torical renaming activities and overlapping relationships
among code entities to help identify method renaming
opportunities.

• We conduct extensive experiments to show the effec-
tiveness of our approach. Experimental results demon-
strate that our approach outperforms the state-of-the-art

approach.
• We open source our technique and share the experimental

datasets to the public1 for reproduction and inspiring
further research in method renaming identification.

The remaining part of this paper is structured as follows.
In Section II, we describe the background knowledge of some
techniques used in this study. Next, we illustrate our approach
in Section III. Then, we detail the experimental setup and
experimental results in Sections IV and V respectively. We
discuss the threats to validity and related work in Sections VI
and VII. Finally, we summarize our work in Section VIII.

II. BACKGROUND

In this section, we provide a brief introduction about the
word embedding technique and the BERT language model
used within our approach as follows.

A. Wording Embedding

Word embedding is a technique that encodes words and
sentences into dense vectors with a fixed length. The core
idea of the word embedding technique is to train a Neural
Network Language Model (NNLM) that predicts the masked
word based on its Context-Before and Context-After contents
and take word vectors as its incidental outputs [21]–[23]. In
this study, we mainly employ the word embedding technique
within the state-of-the-art language model BERT [15] to
transform code entities into vectors.

B. BERT Language Model

BERT is a language model that uses a bi-directional
transformer encoder to generate deep bi-directional language
representations [15]. The pre-processed data is used as the
original input of BERT, and the input of the BERT encoding
layer is the sum of the three embeddings learned from the
three embedding layers. As the key part of BERT, transformer
[24] includes an encoder and a decoder. The decoder is with
an additional sub-layer of attention compared against LSTM
[25]. Since BERT could well capture the context semantics of
terms [26], we decide to use BERT to capture the semantic
features (e.g., the overlapping relationships of code entities)
of methods to help us identify method renaming opportunities
in this paper.

III. METHODOLOGY

In this section, we mainly describe the framework of our
approach for identifying method renaming opportunities. In
a word, as shown in Fig. 2, we regard the identification
of method renaming opportunities as a classification task,
which includes three parts, namely data pre-processing, model
training, and method renaming prediction&correction. More
details are as follows.

1https://github.com/konL/MethodRenamePrediction



Fig. 2. The workflow of our approach to identify renaming opportunities.

A. Data Pre-processing

As mentioned in the Introduction section, we adopt BERT
to capture the semantic features of methods. Before applying
BERT, we need to first preprocess the raw method data to make
them work as suitable inputs for BERT. Since the number
of methods needed for renaming is generally much smaller
than that with no renaming needed, to get a well-performed
prediction model, we employ an under-sampling strategy to
handle the imbalanced class problem. After obtaining the
sampled methods, we perform tokenization and towards them
to get the final input for BERT. The details of sampling and
tokenization are as follows.

1) Under-Sampling: We adopt the random under-sampling
strategy2 to solve the imbalanced class problem. In random
under-sampling process, instances of the majority class (i.e.,
methods without renaming) would be repeatedly filtered out
till that the number of majority class is equal to that of the
minority class (i.e., methods with renaming performed). By
using the random under-sampling strategy, all information in
the minority class could be reserved, meanwhile, the weights
of the majority class could be relatively weakened. Since
the minority class is much more of our interest than the
majority class, we believe that the adoption of under-sampling
is reasonable in our experimental settings.

2) Tokenization: For each sampled method, we retrieve its
code as a string and use spaces and punctuation to split it
into a list of tokens. Meanwhile, for those tokens in camel
case, we further split them by the capital characters (e.g.,

2https://imbalanced-learn.org/stable/under sampling.html

the token ’getMax’ is split into two tokens, i.e., ’get’ and
’Max’). All tokens would be converted into lower case for
further processing.

B. Model Training

The model training part mainly includes three components,
namely training dataset construction, method semantic rep-
resentation, and Multiple Layer Perception (MLP) classifier
application.

1) Training Dataset Construction: Before training a
method-renaming classifier, we need to first retrieve relevant
methods from software projects to construct a dataset for
model building. Specifically, we first collect the historical and
current versions (i.e., code versions before and after method
renaming) of all files with methods ever renamed. Then, we
use JavaParser3 to extract the method name and method body
in the files from the historical and current versions respectively,
with extracted two versions of methods being a method pair.
For each method pair, we check whether the methods have
ever been renamed by analyzing the historical and current
versions of methods. In other words, if the old (historical)
method name and new (current) method name are the same, it
means that the method name has not been changed; while if
two method names are not exactly the same, it indicates that
the method name has been changed (renamed). In this way, we
can determine the class label (i.e., renamed or not) for each
method in the training dataset.

3https://github.com/javaparser/javaparser



2) Method Semantic Representation: After collecting rele-
vant methods, we apply the pre-trained BERT language model
[15] and textCNN [16] to capture the semantics of methods.
Detailedly, as mentioned in Section II, the BERT network
would use three embedding layers, namely token embedding,
segment embedding, and position embedding, to capture the
semantics of methods from different aspects. After obtaining
the three embeddings, BERT would use the following formula
to merge them into a new embedding vector (in the formula,
token, segment, and position represents token embedding
vector, segment embedding vector, and position embedding
vector respectively).

Z = Dtoken +Dsegment +Dposition (1)

The embedding representation Z would be further passed
to the encoder of the transformer component of BERT, and
generate a new embedding vector through the decoder of the
transformer. Further, we apply textCNN towards the embed-
ding outputs of BERT to better capture the semantic features of
methods. After applying textCNN, we then get the embedding
vectors of methods based on which a classifier could be built.

3) MLP Classifier Application: After we obtain the se-
mantic features of methods represented in numeric embedding
vectors, we start to build a MLP model (a classic feedforward
artificial neural network) based on the embedding vector
dataset for method renaming prediction. A MLP model would
generally contain an input layer, a hidden layer and an output
layer. In our approach, the embedding vectors of methods are
fed into the input layer. Then, we use a fully-connected hidden
layer with 512 nodes to further retrieve high-level semantics
of the inputs. Last, we use the logistic classifier as the output
layer to predict the renaming label for a given method, with
Softmax as the activation function.

C. Method Renaming Prediction & Correction

This part includes two components, i.e., potential renaming
opportunities prediction and renaming opportunities correc-
tion. The potential renaming opportunities identification com-
ponent aims to use the trained model to predict whether a given
method (represented in a numeric embedding vector) needs
to be renamed (i.e., the initial prediction results); while the
renaming opportunities correction component aims to leverage
historical renaming activities of related code entities to refine
the initial prediction results.

1) Potential Renaming Opportunities Prediction: For a
given new method m, we can obtain the word index sequence
and segment sequence [27] of its historical and current imple-
mentations (i.e., the versions before and after renaming) after
data pre-processing. Then, these sequences are fed into the
BERT model to generate embeddings representing the seman-
tic relationships among code entities by using the following
formula:

V = BERT enhanced(m) (2)

where BERT enhanced(∗) is the function to obtain the final
embedding representation V for the method. We take the
embedding V of the given method m as the input to the MLP
classifier. The MLP classifier would output the class label for
the method as follows:

prediction = classifier(V ) (3)

where classifier(∗) is a binary classifier. If the output is true,
then it means the method need renaming. Otherwise, there is
no need for renaming of this method.

2) Renaming Opportunities Correction: After we obtain a
list of methods predicted as needing renaming, we attempt
to leverage the historical renaming activities of code entities
related to the methods for further prediction results refinement.
The historical code entity relationships are used as interme-
diate information to filter out historical renaming activity.
Such a design could avoid the analysis of complex code
relationships and uses a simpler form (e.g., rules) to obtain
the key information needed for classification. Here, for a given
method, its related code entities include the class it belongs
to, its caller methods in the same file, and those methods
called within the method body. Specifically, if a method is
predicted as needing renaming by the trained model, we would
check whether its related code entities have ever been renamed
before. If those code entities have never been renamed in code
revision history, then we determine that there is no need to
rename the target method. Otherwise, the target method would
be output as renaming candidates for refactoring.

IV. EXPERIMENTAL SETUP

In the experimental setup section, we mainly introduce the
process of data collection, the baseline approach which our
technique is compared against, the evaluation method, and the
evaluation metrics in details.

A. Data Collection

We collect the experimental dataset from 10 open-source
Java projects with the highest number of stars hosted in
the Apache community. Those projects are popular among
users/developers; they are from different domains, of different
code-scales and have a sufficient number of commit messages.
Such characteristics make us believe that the performance
of our approach on these projects would project valuable
insights into the application of our approach in real software
development practice to a certain extent. Table I provides
more details of our experimental projects. The main data
collection procedures include identifying historical renamed
methods from these 10 projects and collecting and filtering
renamed methods (with implementations) for experiments.

1) Identifying Historical Renamed Methods: First, we
employ JavaParser and the git log command git log -L
start,end:file to obtain the change history of methods based
on their start and end line number. An example of the git
log command is shown in Fig. 3. The boxes in Fig. 3 give
examples of the detailed code change information. Then, we
iterate over all the commits chronologically. If the similarity



TABLE I
THE MAIN CHARACTERISTICS OF THE SELECTED PROJECTS RANKED BY STARS.

Project Git SHA Stars (K) Files All methods Filtered methods Ave. token length Positive methods Negative methods
dubbo 7dd685 35.7 680 568 122 72.04 20 102
flink 03ca39 16.6 11,730 5,140 786 66.23 102 684

cassandra dbf6e6 6.7 2,993 9,963 744 72.81 228 516
storm 3f96c2 6.3 2,418 159,496 83,944 83.08 143 83,801
tomcat 5ae107 5.4 2,513 67,151 5,803 31.03 2,800 3,003
jmeter 3bd28d 5.4 1,386 5,413 744 72.61 258 486

zeppelin 985bb0 5.3 947 21,574 11,871 70.82 163 11,708
beam b9bb2a 4.9 4,790 6,883 1,634 66.43 295 1,339
hbase 9d5004 4.1 4,361 96,958 6,336 73.33 722 5,614
camel 110071 3.8 19,991 19,050 2,414 66.77 633 1,781

Fig. 3. An example of the git log command.

between the current statement and the historical statement is
greater than a threshold value (0.85 in this paper) and the
method names contained in both statements are not the same,
we determine that it is indeed a refactoring activity. In this
study, we use Levenshtein distance to calculate the similarity,
which is also used in Sheneamer’s study [28] to detect the sim-
ilarity between two blocks of code. The similarity threshold is
set following the parameters setting proposed by Sheneamer et
al. [28]. For each iteration, we obtain the historical information
(e.g. historical statement and historical method name) in the
commit message. Then, we regard the historical statement as
the current statement and repeat the above steps until all the
commits are checked. Finally, we could obtain those methods
which have ever been renamed after we finish checking the
historical changes for all methods.

2) Collecting and Filtering Renamed Methods: In the pre-
vious subsection, we could identify methods with renaming ac-
tivities. For each renamed method, with the help of JavaParser,
we further download two versions of source code files that

contain the method, namely the files before and after renaming
the method. All the method implementations from those code
files are then collected as a method corpus for further filtering.
In this step, we collect a total of 392,196 methods from ten
experimental projects.

Given that our approach heavily relies on token-related in-
formation in method implementations, we filter those methods
with empty method body out from our dataset. Meanwhile,
we also remove those methods whose implementations have
never been changed along with the project evolution. Finally,
114,398 methods from ten projects are left for experiments.

B. Baseline

There have been some studies aiming to identify renaming
opportunities, e.g., Liu et al. [10], Allamanis et al. [11] and
Suzuki et al. [29]. Among these approaches, the tool Rename-
Expander proposed by Liu et al. [10] is the state-of-the-art
approach and achieves the best results. Hence, we employ
RenameExpander as the baseline approach for comparison.
RenameExpander consists of three modules, i.e., a renaming
analyzer, a search engine, and a recommender. The renaming
analyzer uses a background monitor (an IDE’s refactoring tool,
e.g., the Eclipse refactoring plugin) to capture and analyze
those renaming activities of a code entity e and generate a
transformation script. Then, the search engine searches code
entities that are related to e and computes their similarity
with the entity e based on the transformation script. If a code
entity is similar enough with e, then it would be considered
as a candidate for renaming. Finally, the recommender ranks
these code entities based on their similarity score with e and
outputs those with the highest similarity scores as renaming
opportunities.

C. Evaluation Method

While preparing experimental datasets, we find that there
are many identical method names within these selected Java
projects, which are partially because of the widely use of
overloading, overriding, and code clone in Java code. Such
a phenomenon would easily cause the data leakage problem,
in that once a method has been renamed, other methods with
the same name would have higher probabilities to be renamed.
Hence, in order to prevent data leakage within a project and
to ensure the evaluation reliability of different approaches,



TABLE II
DETAILED RESULTS OF OUR APPROACH AGAINST THE BASELINE.

Project Precision(%) Recall(%) F-measure(%)
Ours Baseline Ours Baseline Ours Baseline

dubbo 90.81 92.59 99.00 89.28 94.72 90.90
flink 65.35 93.38 98.13 92.62 78.45 93.00

cassandra 73.80 87.27 94.25 47.64 82.73 61.63
storm 89.86 85.15 91.95 91.21 91.74 88.08
tomcat 55.47 46.23 96.90 49.77 70.54 47.94
jmeter 61.41 75.07 97.28 77.67 75.28 76.35

zeppelin 65.34 83.87 86.13 81.25 74.09 82.53
beam 62.10 72.31 94.60 74.20 74.96 73.24
hbase 81.45 83.64 97.47 84.03 88.37 83.84
camel 54.63 80.56 94.76 39.83 69.29 53.30

we decided to perform cross-project prediction for method
renaming. Specifically, for ten experimental projects, we use
each project as the testing set while the remained nine projects
as the training set for prediction model building. By repeating
the model building and prediction for ten times, we take the
average results of individual predictions as the final results to
evaluate the performance of different approaches.

D. Evaluation Metrics

In this study, we employ three commonly-used metrics, i.e.,
precision, recall, and F-measure to evaluate the effectiveness of
different approaches. Precision represents the ratio of relevant
items (i.e., truly method renaming opportunities) among the
retrieved items (i.e., potential method renaming opportunities
predicted by a model), which can be computed as follows.

Precision =
# correctly identified opportunities

# predicted opportunities
(4)

Recall represents the ratio of relevant items that are re-
trieved over all relevant items, i.e., the retrieved truly method
renaming opportunities among all truly method renaming
opportunities, which can be computed as follows.

Recall =
# correctly identified opportunities

# actual opportunities
(5)

F-measure is a weighted summed average of precision and
recall, which can be computed as follows.

F −measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(6)

V. EXPERIMENTAL RESULTS

In this section, we try to evaluate the performance of
our approach by answering the following Research Questions
(RQs).

A. Performance Evaluation

RQ1: Can our approach outperform the state-of-the-art
approach in identifying method renaming opportunities?

Motivation. Liu et al. proposed an approach of identifying
method renaming opportunities, i.e., RenameExpander [10].
This approach is the state-of-the-art approach. Hence, we
employ this approach as the baseline approach for comparison.

Fig. 4. Average results of our approach against the baseline.

To validate whether our approach is superior to Rename-
Expander and to what extent our approach can outperform
RenameExpander, we set up this RQ.

Approach. Since Liu et al. do not open the source code
and the experimental dataset of RenameExpander to the public
[10], and their provided plugin of RenameExpander is not well
applicable to a large scale of test data, we decide to imple-
ment it according to its workflow and details by ourselves.
During algorithm implementation, we conduct several rounds
of code review and relevant discussions to guarantee that our
replication of RenameExpander is correct. Both our approach
and RenameExpander are evaluated and compared against the
same dataset described in Section IV.

Results. Table II shows the detailed results of our ap-
proach against RenameExpander and Fig. 4 shows the average
comparison results, where ours stands for our approach and
baseline stands for the state-of-the-art baseline approach Re-
nameExpander. As shown in Table II, both of our approach
and RenameExpander have different performance in different
projects. For example, our approach achieves the precision of
90.81% in the dubbo project while it only achieves 54.63%
in the camel project. Similar trends can also be observed in
RenameExpander. The reasons behind those results maybe
that different projects have different characteristics (as shown
in Table I) and different approaches focus on and capture
different aspects of different projects thus achieve different
results.

When comparing our approach against RenameExpander,
we can see that our approach achieves better results than
RenameExpander in terms of recall and F-measure but un-
derperformed in precision results. As shown in Table II, for
the precision metric, despite our approach achieves not bad
precision (ranging from 54.63% to 90.81%), RenameExpander
outperforms our approach in 8 out of 10 projects, with
precision being between 46.23% and 93.38%. For the recall
metric, it is noteworthy that the recall of RenameExpander is
between 39.83% and 92.62%, while that of our approach is
between 86.13% and 99.00%. Our approach achieves a recall
of > 90% in 9 projects and outperforms RenameExpander in
all the 10 projects. In terms of F-measure, the F-measure of
our approach on 10 projects are between 69.29% and 94.72%,



TABLE III
DETAILED RESULTS OF OUR APPROACH AND ITS VARIANT WITHOUT

RELATED CODE ENTITIES.

Project Precision(%) Recall(%) F-measure(%)
Ours Variant Ours Variant Ours Variant

dubbo 90.81 16.51 99.00 99.00 94.72 28.30
flink 65.35 13.02 98.13 98.13 78.45 22.99

cassandra 73.80 29.88 94.25 94.25 82.73 45.37
storm 89.86 4.09 91.95 91.95 91.74 7.82
tomcat 55.47 48.66 96.90 96.90 70.54 64.78
jmeter 61.41 35.13 97.28 97.67 75.28 51.66

zeppelin 65.34 14.24 86.13 86.13 74.09 24.39
beam 62.10 17.99 94.60 97.31 74.96 30.37
hbase 81.45 69.72 97.47 97.47 88.37 79.94
camel 54.63 25.82 94.76 94.76 69.29 40.58

which is generally larger than that of RenameExpander (with
F-measure between 47.94% and 93.00%). In 7 out of 10
projects, our approach achieves better F-measure values than
RenameExpander.

In terms of the average precision, the average precision in
the 10 projects achieved by our approach (70.02%) is smaller
than RenameExpander (80.00%). However, when considering
recall, we can see that our approach achieves significantly
better average recall than RenameExpander. On average, our
approach achieves the average recall of 95.04%, while Re-
nameExpander only achieves 72.75%. It means that our ap-
proach considerably outperforms RenamExpander by 22.29%
in terms of recall. That is to say, our approach can identify
renaming opportunities for methods as many as possible.
In addition, our approach achieves the average F-measure
of 80.02%, which is better than that of RenameExpander
(75.08%).

Conclusion. Our approach is superior to the state-of-the-art
baseline approach in terms of the average recall by 22.29%
and the average F-measure by 4.94%.

B. Evaluation of Employing Related Code Entities

RQ2: How helpful are related code entities in improving
the performance of our approach?

Motivation. As mentioned in section III, after we obtain the
initial prediction results, we further make use of related code
entities to correct and refine the potential method renaming
opportunities. This RQ aims to validate the contribution of
related code entities to our approach.

Approach. We develop a variant of our approach by re-
moving the part of using related code entities for prediction
results refinement. This means the variant only relies on the
classifier obtained from the training phase (as shown in Fig.
2). By comparing our original approach against its variant, we
can know how much employing related code entities can help
to improve the performance of our approach.

Results. The detailed results of our approach and its variant
are shown in Table III and the average results are presented in
Fig. 5. From Table III, we can find that, the precision of our
approach ranges from 54.63% to 90.81% in 10 projects, which
substantially outperforms its variant whose precision ranges
from 4.09% to 69.72%. In terms of recall, our approach is

Fig. 5. Average results of our approach and its variant without related code
entities.

comparable to its variant with similar recall value in all the
10 projects (our approach achieves the same recall value with
its variant in 8 out of 10 projects). In addition, our approach
also achieves much better results on 10 projects than its variant
in terms of the F-measure. The F-measure of our approach is
between 69.29% and 94.72%, while its variant is only between
7.82% and 79.94%. These results show that our approach
integrating with related code entities could largely improve
the precision and F-measure but preserve similar recall with
its variant.

Furthermore, from Fig. 5, we can observe that the average
precision of our approach is 70.02%, while that of its variant
is only 27.51%. The average recall achieved by our approach
is comparable good with that of its variant. For instance,
the disparity of the average recall achieved by our approach
and its variant is small, i.e., 95.04% and 95.35%. In terms
of F-measure, we can also find that the performance of our
approach is obviously better than that of its variant. The
average F-measure achieved by our approach is 80.02%, while
its variant only achieves 39.62%. These results demonstrate the
effectiveness of using related code entities in prediction result
adjustment in our approach.

Conclusion. Employing related code entities can (without
a loss of recall) effectively improve the performance of our
approach in terms of the average precision and the average
F-measure by 42.51% and 40.40% respectively.

C. Influence of the Size of Training Corpus

RQ3: How would the training-set scale affect the per-
formance of our approach?

Motivation. Our approach relies on a training set to
identify renaming opportunities. To understand how exactly
the training-set scale would affect the performance of our
approach, we set up this RQ.

Approach. As mentioned in Section IV-C, we conduct
cross-project prediction in identifying method renaming oppor-
tunities, with 9 projects as the training set and the remaining
one as the test set. To answer this RQ, we changed the sizes
of the training set by only including the first 1, 3, 5, 7, 9
projects (ordered by the star number) and taking each project
as the test set. If the test project happens to be in the first k



TABLE IV
DETAILED RESULTS OF OUR APPROACH WITH DIFFERENT SIZES OF THE TRAINING CORPUS.

Project Precision(%) Recall(%) F-measure(%)
K=1 K=3 K=5 K=7 K=9 K=1 K=3 K=5 K=7 K=9 K=1 K=3 K=5 K=7 K=9

dubbo 93.09 90.85 90.05 90.72 90.81 70.50 99.50 94.00 98.00 99.00 79.54 91.44 94.97 94.19 94.72
flink 72.05 65.34 62.25 65.64 65.35 75.58 98.03 97.64 99.31 98.13 72.29 78.41 78.22 79.04 78.45

cassandra 82.88 76.64 73.09 73.57 73.80 63.37 91.96 93.37 90.94 94.25 71.67 82.33 81.95 81.27 82.73
storm 25.94 12.44 9.24 87.32 89.86 84.82 76.49 47.12 57.74 91.95 39.65 21.41 13.55 67.33 91.74
tomcat 54.34 60.65 55.40 55.32 55.47 72.33 76.28 98.12 96.40 96.90 62.01 66.33 70.82 70.32 70.54
jmeter 76.37 78.80 61.84 61.55 61.41 56.93 62.74 99.29 97.63 97.28 64.36 68.56 76.22 75.48 75.28

zeppelin 13.60 13.60 38.71 36.86 65.34 79.68 79.68 73.37 86.13 82.13 24.30 23.17 50.63 47.60 74.09
beam 67.90 69.47 62.11 61.80 62.10 78.44 64.97 95.55 94.36 94.60 72.48 66.28 75.28 74.68 74.96
hbase 74.87 57.73 77.38 78.23 81.45 77.39 71.06 81.27 94.66 97.47 75.75 63.01 78.40 85.09 88.37
camel 60.85 62.73 55.54 55.15 54.63 80.81 82.60 98.14 94.23 94.76 69.29 70.26 70.93 70.80 69.47

Fig. 6. Average results of our approach with different sizes of the training
corpus.

training projects, we then modify the training set by replacing
the project with its subsequent project. All projects are used
individually as the test set and we take the average results as
the final performance results to investigate this RQ.

Results. Table IV and Fig. 6 show the detailed and average
results of our approach with different sizes of the training set.
We can see that along with the increase of the training-set
size, the performance of our approach shows upward trends
on the whole. For example, in the hbase project, our approach
achieves the best results in terms of precision, recall, and F-
measure, when 9 projects are used as the training set. Note that
there are still some exceptions which do not absolutely follow
such a trend. As shown in Table IV, compared with large
training sets (k is large), our approach in the camel project
can also achieve comparable results when only one project is
used in the training set. For example, when k=1, our approach
achieves the F-measure of 69.29% in the camel project. In
contrast, when k=9, our approach achieves comparable F-
measure of 69.47%. Similarly, our approach can achieve
comparable or even the best results in the dubbo, flink, tomcat,
jmeter, beam projects, when there are fewer than 9 projects
working as training sets. It means that even with relatively
small training sets, our approach can also achieve satisfactory
results in some projects.

In terms of the average results shown in Fig. 6, our approach
still shows upward trends on the whole along with the increase

of the training-set scale. For example, when there is only one
project in the training set (k=1), our approach achieves the
average precision, recall, and F-measure of 62.26%, 74.23%,
and 62.92%. When k increases to 5, the three evaluation
metrics achieved by our approach increase to 58.85%, 87.91%,
and 68.78%. In addition, when we regard the rest 9 projects
as the training set (k=9), our approach achieves the average
precision, recall, and F-measure of 70.02%, 95.04%, and
80.02%.

Conclusion. On the whole, our approach generally performs
better along with the increase of the training-set scale. Mean-
while, our approach can still achieve satisfactory results when
the size of the training set is relatively small in some projects.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to validity in the
approach, including threats to internal validity and threats to
external validity.

Threats to Internal Validity. In this paper, we assume
that there are functional overlapping relationships between
related code entities (as shown in Fig. 1, the method name
getMaxInteger and invoked method println are related entities
that have functional relationships). The correction process of
our approach heavily relies on related code entities, i.e., a
method is identified to be renamed only if its related code
entities have been renamed. However, this assumption may be
inaccurate in practice, which may threaten the validity of our
approach.

Threats to External Validity. In this paper, we validate
our approach on 10 open source Java projects with 114,398
methods. We cannot guarantee that our conclusions could be
applicable to other projects. However, considering that the
selected 10 projects are all popular projects that are well-
maintained, we believe that our observations could still provide
some hints on the effectiveness of our approach in practice. We
plan to further alleviate this threat by validating our approach
on more diverse projects in the future.

VII. RELATED WORK

There have been a number of studies on code entity renam-
ing. Most of these studies predict renaming by investigating
the constitutive tokens, their orders, and their types in code



entities. Caprile and Tonella [30], [31] proposed a lexicon-
based approach that identified code entities not in standard
dictionaries (e.g., keywords of programming languages) as
renaming opportunities. Reiss [32], Allamanis et al. [33], and
Suzuki et al. [29] proposed the statistical language model to
model naming conventions and used probabilistic evaluation
to identify renaming opportunities.

To address the limitation of lexical information and take
advantage of the machine learning technique, some researchers
recently tried to integrate semantic features of code entities to
better identify code-entity renaming opportunities. Allamanis
et al. [11] proposed a log-linear context model, in which
field vectors with similar semantics would be assigned with
similar positions and those field vectors not similar to their
contexts would be taken as renaming candidates. Anh et al.
[12] proposed a statistical model APIREC, which captured
frequent fine-grained code changes to infer the next code
change for renaming. Liu et al. [10] proposed an approach to
extend historical renaming to identify renaming opportunities.
Liu et al. [13] used paragraph vectors and textCNN to extract
semantic features of method names and bodies to identify their
inconsistency as renaming opportunities.

Our approach is different from those approaches in the
following two aspects. On one hand, we employed BERT
to capture the overlapping relationships of code entities to
better represent the semantics of methods. On the other hand,
we leveraged historical renaming activities of related code
entities to refine the classification results for method renaming
identification. This makes our approach greatly outperform the
state-of-the-art approach in method renaming identification.

VIII. CONCLUSION AND FUTURE WORK

As an important type of code refactoring, renaming plays
a key role in program comprehension and software defect
detection. However, identifying renaming opportunities still
remains a challenging research task, especially for methods.
In this study, we propose a novel approach to identify method
renaming opportunities by fully leveraging historical code
changes and overlapping relationships among code entities.
Experimental results on 10 open source Java projects with a
total of 114,398 methods show that our proposed approach
achieves an average F-measure of 80.02% in identifying
renaming opportunities and improves the state-of-the-art ap-
proach by 4.94% on average.

In the future, we plan to validate our approach on projects
from diverse domains and with different scales. We also plan
to extend our approach to identify renaming opportunities for
other code entities such as field names and local variables.
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