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Abstract—With the wide-spread use of Android applications in
people’s daily life, it becomes more and more important to timely
identify the security problems of these applications. To enrich
existing studies in guarding the security and privacy of Android
applications, we attempted to predict the security risk levels
of Android applications. Specifically, we proposed an approach
that incorporated Android code smells into traditional Java code
metrics to predict how secure an Android application is. With
an evaluation of our technique on 3,680 Android applications,
we found that: (1) Android code smells could help improve the
performance of security risk prediction of Android applications;
(2) By building a Random Forest model based on Android code
smells and Java code metrics, we could achieve an Area Under
Curve (AUC) of 0.97; (3) Android code smells such as member
ignoring method (MIM) and leaking inner class (LIC) have a
relatively-large influence on Android security risk prediction,
to which developers should pay more attention during their
application development.

Index Terms—Android code smells, Java code metrics, Android
security

I. INTRODUCTION

OVer the past decade, we have seen a tremendous rise in

mobile applications. These applications are widely used

in almost every aspect of people’s daily life, from gaming,

studying, to shopping, working, etc. One fatal problem related

to such great popularity of mobile applications is that, once

a mobile application has security problems, it may make a

large number of users’ life suffering. Based on our knowledge,

however, it is not rare that mobile applications are of potential

security problems. As stated by a report from Qihoo1 (the

biggest Internet Security Company in China), 99.5% of 18,000

Android mainstream applications are at risk of threats, with an

average of 38.6 threats per application. Thus, it is significant

to timely predict/identify and resolve security problems related

to mobile applications.

Researchers have done much work to help solve problems

related to application permission [1], application security [2],

[3], system security [4], malware detection [5], [6], user

Ai Gong and Yi Zhong contributed equally to this work.
1https://research.360.cn/2015/reportlist.html?list=1

privacy [7], [8], and malicious attack [9], etc. Our study also

focuses on the topic of application security. In the area of

application security, many studies have been done on guarding

the security and privacy of Android applications [3], [10],

[11]. In this paper, we mainly aim to predict the security risk

levels of Android applications, to help developers assess and

understand how secure their Android applications are [3].

To build a prediction model with good performance, finding

useful predictors or features is full of importance. Previous

studies mainly utilized Java static code metrics to predict

security risks of Android applications, as these applications

were primarily developed in Object-oriented (OO) program-

ming languages such as Java or Objective-C. Android-related

metrics that reflect Android-specific features, however, are

rarely used to help facilitate the performance of security

prediction models.

Unlike traditional Java applications, Android applications

have their characteristics. They are developed in different

programming paradigms, using different libraries and always

running under limited resources. For example, GUIs on An-

droid are declared via XML, and Android applications have

no particular main methods (Android entry points are handled

by event-handlers). For another instance, many APIs are

specifically designed for implementing some mobile features

(including Contacts, Power Management, Graphics, etc.). Re-

lated to these Android-specific features, Reimann et al. [12]

summarised a set of peculiarly bad programming practices

of Android developers (e.g., a non-static inner class holds a

reference to an outer class), namely Android-specific smells

in this paper. These Android-specific smells threatened the

security, data integrity, and source code quality of mobile apps

[12], [13]. Inspired by existing findings of Android-specific

code smells, we decided to explore the effect of Android code

smells in predicting the security risks of Android applications.

Specifically, we proposed to integrate Android code smells

into existing Java code metrics to aid security risk prediction

for Android applications. We first investigated the correlation

between Java code metrics and Android code smells. We found

that most Android code smells were independent with each
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other, and they had a moderate correlation with Java code

metrics. Then, we built a list of security risk prediction models

by applying various popular machine learning methods to

those Android code smells together with Java code metrics.

A dataset with 3,680 real-world Android applications from

Github was constructed to evaluate our models. The results

showed that Android code smells could improve security risk

prediction; and the learning method Random Forest (RF) [14]

could outperform other learning methods by achieving the best

Area Under Curve (AUC) of 0.97. Last, we investigated the

importance of each Android code smell in helping predict the

security risks of Android applications; and highlighted several

Android-specific code smells to which developers should pay

more attention during their Android application development.

Our major contributions are as follows:

• We are the first to consider incorporating Android-

specific code smells into Java code metrics for security

risk prediction of Android applications.

• We compared various prediction models built by applying

different learning methods to these Android code smells

and Java code metrics; As a result, we find that Random

Forest could obtain the best prediction results, with an

AUC of 0.97.

• We studied the importance of individual Android code

smells in predicting the security risks of Android appli-

cations. The results provided a guide for developers in

solving security problems related to Android code smells.

This paper is organized as follows. Section 2 presents

our approach. Section 3 depicts the experiments. Section 4

presents results and analysis. Section 5 introduces related

work, and Section 6 concludes our work.

II. METHODOLOGY

As shown in Figure 1, we adopt a three-step approach to

build a security risk level prediction model. First, we extract

Java static code metrics and Android code smells from An-

droid applications. Then we calculate a security risk level for

each application with manual help. Last, we apply main-stream

machine learning algorithms to Android applications (with

extracted code metrics and smells as features and security risk

levels as class labels) to build a prediction model. The details

are as follows.

A. Code Metrics Extraction

This subsection mainly describes the process of extracting

code metrics in our work, including Java static code metrics

and Android code smells.

1) Java Static Code Metrics: Existing studies have found

that some Java static code metrics like bad coding prac-

tices, duplications, and OOP (Object Oriented Programming)

attributes are promising in predicting the security risk of

Android applications [3], [15]. We also use those metrics used

in the previous studies [3], [15] to help predict the security risk

of Android applications. There are a total of 21 Java static code

metrics used in our study (details in Table I). These metrics

are retrieved from each Android application with the help of a

TABLE I
JAVA STATIC CODE METRICS

Metric Description
#lines The number of code lines.
#functions The number of functions.
#classes The number of classes.
#files The number of Java files.
#directories The number of directories within a project.
function complexity The average complexity of all functions.
class complexity The average complexity of all classes.
file complexity The average complexity of all files.
complexity Cyclomatic complexity.
#comment lines The number of lines containing comments.
#ncloc The number of non-commenting code lines.
comment lines density The ratio of comment lines.
#blocker violations The number of issues with blocker severity.
#critical violations The number of issues with critical severity.
#major violations The number of issues with major severity.
#minor violations The number of issues with minor severity.
#violations The number of issues of all severity levels.
#duplicated blocks The number of duplicated code blocks.
#duplicated files The number of duplicated files.
#duplicated lines The number of duplicated code lines.
duplicated lines density The ratio of duplicated code lines.

tool called SonarQube2 (SonarQube is an open-source tool for

continuous analysis and code quality evaluation. It can detect

duplicated code, potential bugs, code style problems, and other

issues of a project.)

2) Android Code Smells: As mentioned in Section I, An-

droid code smells may threaten non-functional attributes of

Android applications and may help improve the effectiveness

of Android security and risk prediction [12]. In this paper,

we particularly studied the effect of 15 Android code smells

(presented in Table II) in predicting the security risk of

Android applications. These Android-specific code smells are

retrieved by using aDoctor [16], a lightweight code smells

detection tool with an average precision of 98% and an average

recall of 98%.

B. Risk Levels Calculation

Before we build a machine learning model, we should first

construct a dataset with knowing each instance’s features and

labels. Section II-A has described the way to get features for

each instance (i.e., an Android application). In this section, we

would detailedly introduce how to decide the class label (i.e.,

the security risk level) for each instance. Our labeling process

includes two parts. First, we would try to obtain an initial risk

score; then we use this score to get the final security risk level

(Figure 2 describes the details).

1) Calculating Risk Scores: In this part, we first used

Androrisk3 to obtain an initial risk analysis of an application;

then we manually checked and adjusted (when necessary) the

analysis results to obtain the final risk score for the Android

application. Androguard is an open-source tool. We can use

it to extract some information from Android applications,

2http://www.sonarqube.org
3https://code.google.com/p/androguard

31



Fig. 1. The framework of security risk level prediction for Android applications.

TABLE II
ANDROID CODE SMELLS

Metric Description

DTWC Data transmission without compression.

DR Debuggable Release: An app is set to be debuggable in
Android Manifest.xml.

DW Durable Wakelock: A Wakelock is not released finally.

IDFP Inefficient Data Format and Parser: Inefficient parsers are used
to parse files.

IDS Inefficient Data Structure: Inefficient data structures are used
to map integers.

ISQLQ Inefficient SQL Query: An inefficient SQL is sent to the
server to query the data.

IGS Internal Getter and Setter: Use getters and setters to access
internal fields.

LIC Leaking Inner Class: A non-static nested class holds a refer-
ence to an outer class.

LT Leaking Thread: A thread is not adequately stopped.

MIM Member Ignoring Method: Methods not accessing internal
properties are not made static.

NLMR No Low Memory Resolver: No methods are used to clean
unnecessary resources.

PD Public Data: Private data are exposed to other applications.

RAM Rigid Alarm Manager: An Alarm Manager-triggered opera-
tion wakes up the phone.

SL Slow Loop: An enhanced version of a for loop is not used.

UC Unclosed Closable: A Closeable class do not call the close
method.

including ZIP files, APK files, DEX files, XML files, and so

on. Androrisk is one of the Androguard modules, which is

a widely-used risk assessment tool [3], [15]. It has two risk

assessment modules. These two modules are used to analyze

APK files and XML files, respectively. After we obtained the

analysis result of each module, we manually checked the result

and modified the code of the Androrisk to get a relatively fair

risky score.

For the analysis of APK files, Androrisk calculates the

Fig. 2. The process of calculating risk levels

risk score based on the presence of files including ZIP files,

shell scripts, and DEX files. Within Androrisk, these files are

believed to be easy to be exploited by hackers. However, the

presence of these files does not mean an APK is definitely

risky. If an APK itself has a pre-coded checking mechanism

in handling potential risks of these files, then the APK could

also be free of security threats. Hence, to avoid possible

false positive warnings from Androrisk, we manually checked

each APK to see whether they have corresponding checks.

Specifically, for ZIP files, we mainly checked whether an

APK checked if the ZIP file names have a special string
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like “../” (“../” may cause the decompressed files to overwrite

files in other directories, eventually leading to arbitrary code

execution). For shell scripts, we mainly checked whether an

APK conducted checks on external parameters passed to shell

scripts. For DEX files, we mainly checked when an APK tried

to load a DEX file, whether this APK checked the integrity

(through CRC32 or hash code) of this DEX file. Only those

APKs which lack necessary checks in our study are considered

as risky.

For the analysis of XML files, Androrisk assigns a weight

to each permission based on its sensitivity and risk (i.e., access

to the Internet, manipulate SMS or manipulate your location).

However, it is unreliable to only analyze sensitive permissions

of applications to evaluate the security of applications, as

many sensitive permissions are used by many benign appli-

cations. To reduce false-positive errors, we manually checked

Androrisk’s analysis of permissions. More specifically, we

manually checked whether there is a difference between the

application description and its permissions, and took unneces-

sary permission as a risk.

2) Calculating Risk Levels: After we obtained risk scores

of individual applications in Section II-B1, we further dis-

cretized these continuous numeric values to get their risk levels

as their final class labels. In order to discretize the continuous

risk scores, we apply K-means clustering [17] on risk scores

of Android applications. The input to the k-means clustering

includes the number of clusters k and n data objects. In our

study, the risk scores of the 3,680 Android applications are

used as the data to create the clusters. The number of clusters

k is determined by using the Elbow method [17]. Elbow would

run k-means clustering on the dataset for a range of values for

k. For each k, Elbow would calculate the sum of squared errors

(SSE) of prediction results. SSE is the clustering error of all

data points. The lower SSE is, the better the clustering quality

is. The way to compute SSE is as follows:

SSE =

K∑

i=1

∑

p∈Ci

|p−mi|2 (1)

Ci represents the ith cluster; p is one sample point in Ci;

mi is the centroid of Ci (the mean value of all samples in Ci).

When k is smaller than the actual number of clusters,

increasing k would greatly increase the degree of aggregation

of each cluster, and further largely decrease the whole SSE.

While k reaches the number of real clusters, the increment of

the degree of aggregation obtained by increasing k will rapidly

become smaller; the decline of SSE will also become slower

and tend to be flat as k continues to increase. That is, the

relationship between SSE and k is the shape of an elbow, and

the elbow corresponds to the k value is the actual number of

clusters of a dataset.

C. Model Building

After we get the original features (i.e., Java code metrics

and Android code smells) and class labels (security risk

levels) of individual instances (Android applications), we

can theoretically build a machine learning model on them.

However, given that the values of extracted features in our

study are quite different in their scales, and there may exist

a multicollinearity problem among those features, we decide

to do some preprocessing on those features first, to avoid the

relevant negative effect on model building. Besides, we also

observe that our dataset is quite imbalanced, i.e., the numbers

of instances of different classes are quite different, such an

imbalanced-classes problem should also be resolved during

model building as it would greatly affect the performance of

a machine learning model [18]. After the above steps, we

could then apply typical machine learning algorithms to build

prediction models. Below are the details.

1) Feature Standardization: In our study, the numerical

values of our instance features (i.e., Java code metrics and

Android code smells) are quite different in their range scales.

For example, some Android code smells metrics are within

the range of 0 to 10, while code line metrics are as large

as several thousand. Without handling the scale problem, the

predicted results might be dominated by some features with

large values; and it would also affect the rational comparison

of individual features and the training speed. To overcome

the scale problem, we decided to standardize features during

model building. There are usually two ways to standardize

features. One is called Min-max standardization, which limits

all features to a scale of 0 to 1. Another one is called z-score

standardization. It is based on the mean and standard deviation

of the original features for data standardization. In this paper,

we decided to adopt the z-score standardization way. By

applying z-score standardization, the standard deviation of

features of each dimension would be 1 and the mean value

would be 0. This could help us avoid the problem of predicted

results being dominated by some features with large value

ranges.

2) Metric Independence and Dimension Reduction: Gener-

ally speaking, it is not uncommon that some instance features

may correlate with some other features (so does our case). For

example, Android application with a larger number of lines of

code tends to have a higher complexity. A prediction model

that does not fully deal with the multicollinearity problem

among features may increase the variability of dependent

variables and thus reduce its performance [19]. In this paper,

we used PCA (Principal Component Analysis) [20] to solve

the multicollinearity problem. The features generated from

PCA are not related to each other. With PCA, we could not

only reduce the feature dimension but also achieve competitive

prediction performance.

3) Imbalanced classes: In our study, the numbers of in-

stances of risk level classes are imbalanced. Learning algo-

rithms that do not take account of class imbalance are often

overwhelmed by the majority class and ignore the minority

class. For example, a learning algorithm that minimizes error

rates may classify all examples into the majority class. In this

way, all examples of minority classes will be misclassified. In

order to obtain a well-performed prediction model, the class

imbalance problem should be carefully handled.
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There are two widely-used solutions to address the class

imbalance problem, i.e., oversampling and undersampling.

Oversampling tries to balance classes by adding multiple

copies of some instances of the minority classes; while under-

sampling tries to balance classes by discards some instances

of the majority classes. Considering that the number of our

minority class is relatively small, we decide to use the over-

sampling approach in our study (By using undersampling, our

training dataset may be too small to build a good prediction

model). Related to the oversampling approach, we did not use

the original random oversampling approach as it is easy to

introduce over-fitting problems. Instead, we used an improved

oversampling method, i.e., SMOTE [21], together with Wil-

son’s Edited Nearest Neighbor Rule (ENN) [22] to solve the

class imbalance problem (SMOTE could help us avoid the

over-fitting problems, ENN could remove any example that is

misclassified by its three nearest neighbors).

4) Applying Machine Learning Algorithms: Different ma-

chine learning methods are very likely to have different

performances in predicting security risk levels of Android

applications. To understand how far we can go correctly

predicting how secure an Android application is by incor-

porating Android-specific code smells and Java static code

metrics, we compared a variety of typical machine learning

algorithms in our study. They are Naive Bayes (NB), k-nearest

neighbor (KNN), Logistic regression (LR), Random Forest

(RF), Decision Tree (DT), SVM (SVM), gradient enhanced

Decision Tree (GBDT), multilayer perceptron (MLP), and

Convolution neural network (CNN).

III. EXPERIMENT

A. Dataset Preparing

Our experimental projects are crawled from GitHub4.

Specifically, we first searched a list of projects from GitHub

through keyword ”Android application” as candidate projects.

Then from those candidate projects, we took those which

are developed mainly in Java as our experimental projects.

3,680 Android applications are used in our experiments. These

applications are from various domains and are of different

sizes. For each Android application, we then used the tool

SonarQube to collect Java code metrics and the tool aDoctor

to collect Android code smells, respectively.

As described in Section II-B, we used the elbow method to

determine the number of clusters 3,680 Android applications

belonging to. We calculated the SSE values of K ranging

from 1 to 9, and found that when K ranged from 1 to

3, the change of the SSE was the greatest, which means

3 is an optimal number for clustering these applications.

Hence we set k as 3 and used k-means to divide 3,680

applications into 3 clusters. We assigned three risk labels to

these three clusters, i.e., low risk (L), medium risk (M) and

high risk (H). The centroids of three clusters were 0.15715467,

50.90121676 and 92.89716516, respectively. The numbers of

4http://github.com

Android applications with low risk, medium risk, and high risk

were 1209, 2118, and 353, respectively.

B. Evaluation Metrics and Settings

We used four metrics namely accuracy, precision, recall and

F1 score to evaluate the effectiveness of different classifiers.

They are defined as follows.

• Accuracy is an intuitive performance metric that is

defined as the ratio of samples correctly classified by the

classifier over the total number of samples. The formula

is as follows.

A(M) =
TN + TP

TN + FP + FN + TP
(2)

• Precision is defined as the number of true positives (TP)

over the number of true positives plus the number of false

positives (FP). The formula is as follows.

P (M) =
TP

TP + FP
(3)

• Recall is defined as the number of true positives (TP)

over the number of true positives plus the number of

false negatives (FN). The formula is as follows.

R(M) =
TP

TP + FN
(4)

• F1 score can be interpreted as a harmonic mean of

precision and recall. The formula is as follows.

F1 =
2TP

2TP + FP + FN
(5)

In the above formulas, FN (False Negative) represents the

number of samples which are actually positive samples but are

judged as negative samples. FP (False Positive) represents the

number of samples which are actually negative samples but are

judged as positive samples. TN (True Negative) represents the

number of samples which are in fact negative sample and are

also judged as negative samples. TP (True Positive) represents

the number of samples that are in fact positive samples and

are also judged as positive samples. For the multi-classification

problem in this paper, while calculating the above-mentioned

four evaluation metrics, each risk level is treated as ”positive”

alone, and all other risk levels are considered as ”negative”.

In this paper, we also use ROC (Receiver Operating Charac-

teristic) to evaluate the performance of the classifier. ROC is a

good measurement to reveal the accuracy of a classifier [23]. In

ROC space, the x-axis corresponds to the FPR (False Positive

Rate) and the y-axis corresponds to the TPR (True Positive

Rate). ROC depicts a trade-off between TP (True Positive)

and FP (False Positive). TPR and FPR are defined as follows.

• True Positive Rate (TPR) represents the proportion of

positive cases that are correctly identified. Its calculation

is the same as the way to compute recall in formula (4).

• False Positive Rate (FPR) represents the proportion of

negative cases incorrectly identified as positive cases. The

formula is as follows.

FPR =
FP

FP + TN
(6)
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TABLE III
SPEARMAN’S CORRELATION AND CORRELATION LEVEL

Correlation Coefficient Correlation Level
0.0 - 0.1 None
0.1 - 0.3 Small
0.3 - 0.5 Moderate
0.5 - 0.7 High
0.7 - 0.9 Very High
0.9 - 1.0 Perfect

In order to minimize the randomness of experimental re-

sults, we repeated 10-fold cross-validation 10 times. During

each 10-fold cross-validation process, we randomly partition

the data into 10 folds, with 9 folds as the training data and 1

fold as the testing data. After repeating the process 10 times,

we aggregate the results and take their average results as the

final results to evaluate the performance of the prediction

model. All experiments are conducted on an Ubuntu 64-bit

system with 32 GB RAM and 2.5 GHz Intel Xeon CPU.

C. Research Questions

In this paper, we mainly try to answer the following three

research questions.

RQ1: Are there any correlations among the Java static
code metrics and Android code smells?

RQ2: How effective our approach is in predicting the
risk level of Android applications?

RQ3: Which features are more important in predicting
the security risk level of Android applications?

RQ1 aims to understand whether there is an interactive

relationship between Java static code metrics and Android

code smells. RQ2 aims to investigate how helpful the proposed

metrics are at risk level prediction. To better answer this

research question, we tested several typical machine learning

methods. RQ3 aims to check whether all metrics especially

those Android code smells share the same importance for risk

prediction. By knowing this could help developers better avoid

some bad development practice.

IV. RESULTS AND ANALYSIS

A. Results for RQ1

We used Spearman’s Rank Correlation Coefficient to ex-

plore the correlation between hybrid metrics (i.e., Java static

code metrics and Android code smells in the paper) [24]. We

chose Spearman correlation since it has no strict requirement

for data conditions, and it can be used to study both variables

regardless of their overall distribution and sample size. Table

III presents the correlation coefficients and their corresponding

correlation levels according to [25].

Figure 3 shows the heatmap of Spearman rank correlations.

From Figure 3, we can find that the Spearman coefficients

between Java code metrics range from 0.8 to 1, which indicates

a high to perfect correlation (according to Table III). This

means some Java static code metrics used in this paper to

a large extent are redundant with some other Java static

code metrics in building a prediction model, and this is one

Fig. 3. The correlation between hybrid metrics (i.e., Java static code metrics
and Android code smells).

major reason that we performed PCA processing towards these

metrics in model building.

As related to Android code smells, we can find that from

Figure 3, the coefficients between the Android code smells

range from 0.0 to 0.2, which shows none to small correlation.

Further, the correlation coefficients between Java metrics and

Android code smells are around 0.4, which means that the

correlation between them is moderate. The none-to-small

correlation among Android code smells and the moderate

correlation between Android code smells and Java static

code metrics makes us believe that, by adding Android code

smells into Java static code metrics would lead to a better

performance in predicting the security risk levels of android

applications.

Figure 3 also shows that the total number of smells in an

Android application is related to the number of lines, the

number of files, and the number of classes, which is also

observed in [26], [27]. However, among those code smells

(which mostly are independent with each other), only a few

smells (i.e., internal getter and setter (IGS), leaking inner

class (LIC), leaking thread (LT), and member ignoring method

(MIM)) are related to code size.

Answer to RQ1: Most Android code smells are independent

with each other; the correlations between Android code

smells and Java static code metrics are moderate, and some

Java static code metrics are highly correlated with some

other Java static code metrics.

B. Results for RQ2

To answer RQ2, we constructed a series of prediction

models by applying nine machine learning algorithms (as
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mentioned in Section II), to a data set with 3,680 Android

applications.

The original risk level distribution of 3,680 Android appli-

cations is 1209 for L (Low-risk level), 2118 for M (Medium-

risk level), and 353 for H (High-risk level). After balancing

three classes of risk levels with SMOTEENN, the numbers

of applications that belong to L, M, H are 1131, 609, and

1766 respectively. For each application, we applied z-score
standardization and PCA algorithm to process its features

(i.e., Java static code metrics and Android code smells). After

using z-score standardization, the standard deviation and

corresponding mean of each feature are 1 and 0, respectively.

To better understand the effects of Android code smells and

Java static code metrics in predicting the security risk level

of Android applications, we attempted to test each machine

learning algorithm on three data sets with different instance

features, i.e., only Android code smells, only Java static code

metrics, and their combination. All instance features were

preprocessed by using PCA during each model’s building.

Finally, after applying PCA, the original 15 Android code

smells were reduced to 10 features, original 21 Java static

code metrics were reduced to 12 features, and the 36 hybrid

metrics (Java static code metrics plus Android code smells)

were reduced to 20 dimensions, respectively.

After the above-mentioned preprocessing steps, we applied

relevant machine learning methods to build prediction models.

To obtain the performance of each prediction model, we

used the functions precision score(), recall score() and

f1 score() in Sklearn library to calculate precision, recall
and F1 score respectively, with setting function parameter

average= ”weighted”. Table IV shows the evaluation results.

According to Table IV, we can find that those machine

learning methods based on Java code metrics and Android

code smells have similar performance in terms of precision,

recall, F1-score, and accuracy. This means that Android code

smells are as important as Java code metrics for predicting

risk levels. Furthermore, as shown in Table IV, all machine

learning methods except Naive Bayes achieved the best per-

formance by combining Java static code metrics and Android

code smells. Among them, the average values of precision,

recall F1-score, and accuracy are 0.70, 0.75, 0.70, and 0.80

respectively. This indicates that Java code metrics and Android

code smells are complementary to each other in predicting risk

levels of Android applications.

As explained in Section III-B, to better explore the pre-

diction ability of different classification algorithms, we fur-

ther examined the ROC curves of each prediction model in

Figure 4. There are two kinds of ROC curves for multi-

classification problems. In the first case, for each category, we

can calculate the probability that the test samples belong to that

category. Then, for n categories, we can draw corresponding

n ROC curves, and get the average value of n ROC curves.

In the second case, for each test sample, the label consists

of only 0 or 1, 1 indicating its category, 0 indicating other

categories. In order to evaluate ROC curves better, we invoke

the sklearn.metrics.roc auc score() function to calculate the

AUC value in Python. The first case corresponds to the

parameter average= ”macro”, and the second case corresponds

to the parameter average= ”micro”. In addition, these Figures

also show ROC curves for each category (i.e., low, medium,

and high risk level).

As shown in Figure 4, We described the ROC curves

corresponding to each risk level and the ROC curves under

multi-classification problems. In addition, the area under the

ROC curve (AUC) is calculated separately. From Figure 4, we

can observe that our proposed techniques have high predictive

power for Android applications with high-risk and low-risk

levels. The reason might be that the numbers of Android

applications at those two levels are relatively larger, which

makes the model more fully trained. Another observation

is that RF (random forest) and GBDT (gradient boosting

decision tree) have better prediction performance compared

with other algorithms -- the ROU of RF and GBDT are 0.97

and 0.96, respectively (we used the scikit-learn Python library

to build RF and GBDT models with default configuration

settings in the paper). Both GBDT and RF are classic ensemble

models that produce several decision trees at training time.

Compared to a single decision tree, such an ensemble method

could greatly reduce the over-fit problem caused by a single

decision tree [28]–[30], thus further improved the prediction

performance in practice.

Answer to RQ2: Android code smells could achieve

competitive prediction performance compared to Java static

code metrics; and they are complementary to each other in

predicting the security of an Android application (By

combining these two kinds of features, we could obtain an

effective prediction model with the precision of 0.89, recall

of 0.89, accuracy of 0.88, and F1-score of 0.89). Among

nine typical machine learning methods, Random Forest (RF)

could outperform other classification algorithms by obtaining

an AUC of 0.97.

C. Results for RQ3

In this paper, we used a gradient boosting machine to iden-

tify important features in predicting the security risk level of an

Android application. For a boosted tree, an average reduction

of Gini impurity5 for each feature is calculated and is further

used to represent the importance of the feature. Figure 5

shows the importance of the Java static code metrics and

Android code smells in security risk level prediction models.

From Figure 5, We can find that 30 features contributed as

much as 99% of the cumulative importance while 6 features

did not contribute to cumulative importance (these 6 features

were inefficient data structure (IDS), no low memory resolver

(NLMR), slow loop (SL), debuggable release (DR), unclosed

closable (UC) and inefficient SQL query (ISQLQ)). Among

those features which contributed to cumulative importance, we

can find that metrics including bad violations, lines, member

ignoring method (MIM), leaking inner class (LIC) and so

5https://en.wikipedia.org/wiki/Decision tree learning#Gini impurity
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TABLE IV
EFFECTIVENESS OF JAVA CODE STATIC METRICS AND ANDROID CODE SMELLS IN PREDICTING THE SECURITY RISK LEVEL OF ANDROID APPLICATIONS.

Classifier PCA SMOTEENN
Metrics

Java code metrics Android code smells metrics / Hybrid code metrics
precision recall F1-score accuracy precision recall F1-score accuracy

Naive
Bayes

NO
NO 0.520 0.562 0.513 0.562 0.394 / 0.519 0.431 / 0.562 0.405 / 0.512 0.431 / 0.562
YES 0.538 0.261 0.216 0.261 0.392 / 0.537 0.461 / 0.262 0.381 / 0.218 0.461 / 0.262

YES
NO / / / / / / / /
YES / / / / / / / /

KNN
NO

NO 0.597 0.625 0.599 0.625 0.572 / 0.602 0.605 / 0.627 0.576 / 0.602 0.605 / 0.627
YES 0.798 0.796 0.789 0.796 0.722 / 0.803 0.725 / 0.803 0.719 / 0.795 0.725 / 0.803

YES
NO 0.583 0.619 0.592 0.619 0.576 / 0.610 0.611 / 0.634 0.582 / 0.607 0.611 / 0.634
YES 0.780 0.777 0.769 0.777 0.698 / 0.791 0.702 / 0.790 0.698 / 0.783 0.702 / 0.790

Logistic
Regression

NO
NO 0.578 0.630 0.577 0.630 0.532 / 0.579 0.583 / 0.630 0.465 / 0.582 0.583 / 0.630
YES 0.679 0.677 0.657 0.677 0.658 / 0.688 0.639 / 0.685 0.603 / 0.666 0.639 / 0.685

YES
NO 0.571 0.627 0.563 0.627 0.430 / 0.568 0.573 / 0.620 0.424 / 0.559 0.573 / 0.620
YES 0.649 0.633 0.610 0.633 0.662 / 0.658 0.638 / 0.647 0.598 / 0.625 0.638 / 0.647

Random
Forest

NO
NO 0.645 0.660 0.637 0.660 0.601 / 0.656 0.621 / 0.666 0.605 / 0.640 0.621 / 0.666
YES 0.880 0.881 0.879 0.881 0.758 / 0.883 0.758 / 0.884 0.758 / 0.882 0.758 / 0.884

YES
NO 0.654 0.664 0.638 0.664 0.607 / 0.634 0.620 / 0.650 0.610 / 0.626 0.620 / 0.650
YES 0.838 0.838 0.835 0.838 0.733 / 0.832 0.733 / 0.833 0.732 / 0.831 0.733 / 0.833

Decision
Tree

NO
NO 0.599 0.596 0.597 0.596 0.568 / 0.601 0.568 / 0.597 0.567 / 0.599 0.568 / 0.597
YES 0.833 0.834 0.833 0.834 0.731 / 0.834 0.730 / 0.835 0.730 / 0.834 0.729 / 0.835

YES
NO 0.589 0.582 0.585 0.582 0.588 / 0.591 0.582 / 0.591 0.584 / 0.590 0.582 / 0.591
YES 0.780 0.783 0.781 0.783 0.699 / 0.799 0.696 / 0.800 0.696 / 0.799 0.696 / 0.800

SVM
NO

NO 0.574 0.638 0.599 0.638 0.627 / 0.615 0.581 / 0.640 0.445 / 0.600 0.581 / 0.640
YES 0.719 0.699 0.684 0.699 0.671 / 0.735 0.633 / 0.713 0.605 / 0.700 0.633 / 0.713

YES
NO 0.595 0.659 0.625 0.659 0.629 / 0.689 0.587 / 0.657 0.462 / 0.622 0.587 / 0.657
YES 0.734 0.717 0.708 0.717 0.677 / 0.747 0.642 / 0.725 0.614 / 0.715 0.642 / 0.725

Gradient
Boosting

NO
NO 0.661 0.677 0.651 0.677 0.613 / 0.662 0.631 / 0.678 0.609 / 0.653 0.631 / 0.677
YES 0.888 0.887 0.884 0.887 0.749 / 0.891 0.748 / 0.891 0.7447 / 0.889 0.748 / 0.891

YES
NO 0.645 0.663 0.636 0.663 0.614 / 0.637 0.631 / 0.660 0.609 / 0.632 0.631 / 0.660
YES 0.810 0.807 0.803 0.807 0.722 / 0.836 0.719 / 0.832 0.711 / 0.828 0.719 / 0.832

MLP
NO

NO 0.614 0.652 0.620 0.652 0.594 / 0.639 0.627 / 0.647 0.596 / 0.620 0.627 / 0.647
YES 0.766 0.763 0.758 0.763 0.682 / 0.795 0.670 / 0.791 0.652 / 0.787 0.670 / 0.791

YES
NO 0.675 0.669 0.633 0.669 0.574 / 0.625 0.628 / 0.661 0.592 / 0.631 0.628 / 0.661
YES 0.724 0.722 0.715 0.722 0.672 / 0.767 0.659 / 0.762 0.637 / 0.754 0.659 / 0.762

CNN
NO

NO 0.588 0.648 0.615 0.648 0.564 / 0.613 0.624 / 0.647 0.592 / 0.615 0.624 / 0.647
YES 0.698 0.694 0.682 0.694 0.671 / 0.765 0.638 / 0.759 0.597 / 0.752 0.638 / 0.759

YES
NO 0.579 0.629 0.561 0.629 0.565 / 0.586 0.632 / 0.646 0.590 / 0.604 0.632 / 0.646
YES 0.681 0.664 0.643 0.664 0.674 / 0.750 0.644 / 0.740 0.609 / 0.733 0.644 / 0.740

on have a relatively large influence on the performance of

prediction models.
Compared to Java static code metrics, we can observe that

although the importance ranks of Android code smells are not

highest, the absolute values of the importance of code smells

are just slightly smaller than those of Java code static metrics.

This indicated the competitive importance of these two kinds

of features in helping to predict the security risk level of an

Android application.
Figure 5 also shows that not all Android code smells are

related to risks in Android applications. Among those risk-

related code smells, smells like member ignoring method

(MIM), leaking inner class (LIC), leaking thread (LT), internal

getter and setter (IGS), data transmission without compression

(DTWC), inefficient data structure (IDS), durable wakelock

(DW), and rigid alarm manager (RAM) are much more indica-

tive for security risk prediction. This means that developers

should pay more attention to avoid these bad practices during

Android application development. For example, MIM is intro-

duced if a method that does not access any internal properties

of the class is not made static [12]. To avoid the potential

security risk MIM brings, developers may have better make

the non-static method as a static one. While analyzing code

smells, we found that some smells which are naturally related

to Android security (e.g., public data (PD)) only showed a

weak correlation with application risks in our study. This was

mainly because only a few applications contained such smells

in our dataset.

Answer to RQ3: Member ignoring method (MIM) and

leaking inner class (LIC) have a relatively large influence on

Android security risk prediction; developers should pay more

attention to avoid these code smells in their application

development.

D. Threats to Validity

Construct Validity. In order to use Android-specific code

smells to help predict the security risk level of an application,

we should first define what Android code smells are and what

code smells to use. As different practitioners may have differ-

ent opinions about the definitions of Android code smells, in
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(a) Naive Bayes (b) k-NearestNeighbor (c) Logistic Regression

(d) Random Forest (e) Decision Tree (f) Support Vector Machine

(g) Gradient Boosting (h) Multi-Layer Perceptron (i) Convolutional Neural Networks

Fig. 4. ROC Curves of different classification algorithms

Fig. 5. The importance of Java static metrics and Android code smell metrics

this paper, we only retrieved some code smells which are well

defined and examined in [12].

Internal Validity. In this paper, we used two widely-

used tools SonarQube and aDoctor to extract Java static code

metrics and Android-specific code smells. Some unnoticeable

errors introduced by these two tools may to some extent

threaten our results. Besides, we used Androrisk to help label

an application with a security risk level. To ensure that our

labels are reasonable, we manually checked Android files

based on the results of Androrisk. However, we were not able

to check all Android files and some other unknown factors may

also affect the security of an application. We cannot claim that

our labels are 100 percent correct.

External Validity. In our study, all applications used are

from Github. We cannot guarantee that our conclusions apply
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to other OSS platforms or industrial communities. However,

considering that our applications are from various domains,

and are of different scales, we believe that our study still pro-

jected some valuable insights about code smells and security

risk of applications.

V. RELATED WORK

Many studies have been conducted to explore Android vul-

nerability, including permission mechanisms, system security,

application security, and privacy. Gibler et al. [7] developed

a tool called AndroidLeaks to detect security information

leakage problems. Chess et al. [31] proposed an approach to

reveal security flaws in source code. Wu et al. [32] provided

a static analyst paradigm to detect Android malware. Kumar

et al. [33] also built a model based on GIST features to detect

Android malware. Bose et al. [34] trained Support Vector

Machine (SVM) classifiers to distinguish malicious behaviors

from normal behaviors of applications. Shabtai et al. [35]

presented a behavior-based detection framework for Android-

powered mobile devices. The authors continuously monitored

various features and events from mobile devices and then

applied machine learning algorithms to classify data as normal

(benign) or abnormal (malicious). In this paper, our focus is

on one aspect of Android vulnerability, i.e., the application

security problem. We tried to extract useful features from

static analysis to predict the security risk level of an Android

application.

Androrisk [36] is most related to our work. Androrisk [36]

is a tool that aims to give risk scores to Android applications

using fuzzy logic. Within Androrisk, more sensitive permis-

sions (i.e. access to the location, SMS messages, or payment

systems) and functionalities which are more dangerous (i.e.

shared libraries, use of cryptographic functions, the reflection

API) are assigned with higher risk values. One problem with

Androrisk is that it could neither provide accurate risk scores

nor provide effective suggestions for developers to reduce

security risks of applications, since most applications with

low-security scores (measured by Androrisk) by using some

sensitive permissions and dangerous functionality are actually

not malicious. In this paper, we introduced the Android code

smells to compensate for the shortcomings of Androrisk.

Android code smells are closely related to the security of

an application and could be eliminated by code refactoring.

Our focus is to provide code modification suggestions for

developers when their application is at high risk, so as to help

them develop much safer Android applications.

Existing studies have found that various kinds of software

metrics and code smells are related to software quality [37]–

[39]. For example, software metrics (including object-oriented

(OO) metrics [40], change metrics [38], [41], etc.) have been

widely used for fault prediction [37]. And code smells (which

were first proposed by Holschuh et al. [42]) were found to

be effective in defect prediction on Java projects. Related

to Android applications, Mannan et al. [39] studied some

Android-specific code smells; they found that the distribution

of code smells in Android applications were different from

that of Java desktop applications. Hecht et al. [37], [43] found

that Android code smells occurred more frequently than other

code smells. Currently, Android code smells have not been

explored in security risk prediction tasks. We are the first to

consider exploiting Android code smells to facilitate security

risk level prediction of Android applications.
Barrera et al. [44] used 27 function-level metrics to examine

the correlation between software internal quality and security

vulnerabilities. Rahman et. al. [3] evaluated how static code

metrics such as the number of lines, functional complexity, and

McCabe’s complexity could be used to predict security risk

for Android applications. Alenezi et al. [15] did an empirical

study on the impact of static code metrics in predicting security

vulnerabilities within Android applications. Unlike the above

studies, we introduced a new kind of Android-specific code

metrics, i.e., Android code smells, to predict security risk for

Android applications. We combined Java code metrics and

Android code smells to build prediction models, and further

addressed some practical problems such as imbalanced classes.

Various machine learning methods were also compared to each

other during the evaluation process.

VI. CONCLUSION

In this paper, we proposed to make use of Android-specific

code smells to help predict security risk levels for Android

applications. More specifically, we incorporated Android code

smells into Java code metrics (aka. hybrid metrics) and applied

a variety of learning methods upon those hybrid metrics to

build relevant prediction models. A data set of 3,680 Android

applications from GitHub was constructed to evaluate the

effectiveness of our models. We found that the learning al-

gorithm Random Forest outperformed other learning methods,

achieving an AUC of 0.97. We further analyzed how helpful

individual Android code smells were in identifying security

risk levels of Android applications. We found that Android

code smells such as member ignoring method (MIM) and

leaking inner class (LIC) were more important in predicting

security risk levels of Android applications.
In the future, we plan to further improve our approach

by identifying and exploiting more types of Android code

smells. We also plan to investigate how Android-specific code

smells would affect other software tasks such as software

maintenance like code refactoring.
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