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Abstract—Branching is often used to help developers work
in parallel during distributed software development. Previous
studies have examined branch usage in practice. However, most
studies perform branch analysis on industrial projects or only
a small number of open source software (OSS) systems. There
are no broad examinations of how branches are used across
OSS communities. Due to the rapidly increasing popularity of
collaboration in OSS projects, it is important to gain insights
into the practice of branch usage in these communities. In this
paper, we performed an empirical study on branch usage for
2,923 projects developed on GitHub. Our work mainly studies
the way developers use branches and the effects of branching on
the overall productivity of these projects. Our results show that:
1) Most projects use a few branches (<5) during development; 2)
Large scale projects tend to use more branches than small scale
projects. 3) Branches are mainly used to implement new features,
conduct version iteration, and fix bugs. 4) Almost all master
branches have been requested by contributors to merge their
contributions; 5) There always exists a branch playing a more
important role in merging contributions than other branches; 6)
Almost all commits of more than 75% branches are included
in the master branches; 7) The number of branches used in
a project has a positive effect on a project’s productivity but
the effect size is small, and there is no statistically significantly
difference between personal projects and organizational projects.

Index Terms—branch use, GitHub, exploratory study

I. INTRODUCTION

Along with the rapid growth of both project scale and

team size in modern software development, there comes an

important and challenging problem: enabling developers to

collaborate and develop projects in parallel without interfering

with one another [5]. One common method to address this

problem is with branches within version control systems [3].

Many advanced version control systems, such as Git1 and

SVN2, have provided good support for the feature of branches.

When developers plan to perform specific tasks such as bug

fixing or feature implementation without affecting the main

stream development, they often create a branch. Then they will

work on this new branch independently without interfering

with other developers. After they finish coding and testing,

they then merge their branch that they were changing back

into the branch they originally branched from, or they invite

*Zhenyu Chen is the corresponding author.
1http://git-scm.com/
2http://subversion.apache.org/

another developer to help perform the merge for them [32]. In

this way, branching makes it possible for developers to work

on their own workspace without being disturbed or disturbing

others unnecessarily.

With the above benefits of branching, many OSS projects

(such as Python) and commercial companies (such as Mi-

crosoft) adopt branching strategies to facilitate the process

of software development [5]. However, branching has a cost.

Some developers do not fully understand branching and abus-

ing of branches can hinder development [1]. This can result

in problems such as integration failures and release delays if

branches are used incorrectly.

To help developers better use branches, some researchers

have created branching best practices [55], [40], [1]. Others

try to learn the branch usage in practice and its potential

impact on software development [43], [39]. There also exist

approaches that propose solutions to problems introduced

by using branches [5], [36]. Unfortunately, most existing

research studies are either largely based on researchers’ own

experience, are targeted at a small number of OSS projects,

or are limited to individual industrial projects. To the best of

our knowledge, there are no large-scale empirical studies on

developers’ behaviours of branch usage in practice. As such,

we do not yet have an overview about how branches are used

in practice across the breadth of OSS communities.

Fortunately, GitHub3 makes it possible to deeply investigate

branch usage across a large number of practical projects.

GitHub is a platform based on Git, which provides code

hosting and distributed collaboration [26]. As of January 2017

more than 50 million repositories were hosted on GitHub.

In this paper, we investigated the current state of branch

usage in OSS communities. Specifically, we conducted an

empirical analysis on 2,923 GitHub projects that have been de-

veloped over at least five years. We first obtained an overview

of branch usage in GitHub. Then we studied the purposes

of branching. Next, we investigated the roles that branches

take in coping with contributions by others. We also studied

the commits flowing from non-master branches into master

branches. Finally, we studied the impact of using branches on

the overall productivity of projects. Our major contributions

are listed as follows:

3http://github.com/
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• We conduct a large-scale empirical analysis on branch

usage on OSS communities. In total, we investigate

2,923 projects on GitHub. Our study sheds light into the

practice of branching, and the large number of projects

can improve the generalizability of our results.

• We investigate several aspects of branch usage practice

on GitHub, including the number of branches used,

branching purpose, the roles of branches in coping with

contributions by others, the commit flow, and the impact

of using branches on the overall productivity of projects.

Our findings increase the understanding of branching in

practice.

II. RESEARCH QUESTIONS

In this paper, we aim to understand how branches are used

in real OSS communities. Specifically, we seek to understand

the characteristics of branch usage and its potential impact on

project productivity. In order to achieve these goals, we study

the following five research questions.

RQ1. How many branches does a project have and what

kind of projects are more likely to have more branches?

Although some researchers have conducted a series of

studies on branching [5], [43], to the best of our knowledge,

there are no broad investigations into the branching practices

of OSS communities. In this RQ, we try to gain some insights

into how prevalently branches are used in GitHub. We further

try to find out what kind of projects tend to use branches

more than others. The answer of RQ1 helps to gain a better

understanding of current situation of branch usage in large-

scale OSS communities.

RQ2. What are branches used for?

Philips et al. [39] studied the purposes of branching in

industry by surveying 140 practitioners. They found that

branching for release and feature implementation are the most

two most popular branch use types. Survey results represent

the belief of participants, which are primarily formed based on

personal experience, rather than on evidence found in empir-

ical research [14]. In this RQ, to complement Philips et al.’s

study, we try to understand why developers create branches in

GitHub by analyzing data collected from OSS communities.

The answer to this RQ can help us gain a better understanding

about the branching practice in OSS communities. It can also

provide a good complement to existing industrial studies, thus

to make people hold a more complete view over branching in

practice.

RQ3. How many branches are requested to merge PRs?

On GitHub, developers can contribute to any project via pull

requests (PRs) [20]. Developers only need to fork the targeted

project and modify code in the forked repository. If they finish

coding and want to merge their code change into the targeted

project, they can submit a PR. When submitting a PR, they

have to specify which branch they want to merge the PR into.

Although contributors can submit any PR to an arbitrary

branch as they wish, however, when we read contribution

documents of projects in GitHub, we found that differ-

ent projects have different requirements on which branch

the contributors should push PRs into. For example, some

projects may allow contributors to submit PRs to master

branch while some projects forbid this practice. For example,

project orientechnologies/orientdb 4 explicitly re-

quires contributors to never submit PRs to their master branch

because the master branch is only used for releasing 5.

Considering the arbitrariness of specifying targeted branch

by contributors and the specific requirement by projects, it

is important to get a macro view of the current situation of

branches that are requested by contributors to merge their PRs.

In this RQ, we study the role of different branches in terms of

receiving outside contributions from PRs. Our results can be an

initial basis for practitioners or researchers to help contributors

submit their PRs to the right branches more easily.

RQ4. Do all commits go into the master branch? Generally

speaking, developers tend to create branches from the master

branch to complete specific tasks such as bug fixing or feature

implementation. When they finish their work on the branch,

they may want to merge their work (in the form of commits)

into the master branch [9]. This inspires us to figure out

whether all such commits flow into the master branch. In cases

where this does not happen, we study how many commits are

left alone on the unmerged branch itself.

The answer of RQ4 can gain a high-level view of the

current commit flow of non-master branches in the whole

OSS community. Besides, for developers of a project, knowing

detailed commit flow of non-master branches can also help

them understand what is going on within their project, which

can help better manage work on their branches. For example,

they may timely merge useful commits from non-master

branches into their master branches.

RQ5. Does branch usage affect the overall productivity

of a project? Branching is proposed to help developers

focus on their own work to avoid unnecessary interruptions

by others [9]. In intuition, branching can facilitate the process

of developing software. Nevertheless, little work has been

done to check the potential impact of branching on software

development in OSS communities. In this RQ, we investigate

the effect of branch usage on project productivity. Specifically,

we aim to determine whether the number of branches used has

an impact on a project’s productivity. The answer of this RQ

can help better identify the functionality of branch use.

III. METHODOLOGY

In this section, we describe three aspects of our methodol-

ogy: project selection, RQ design, and RQ statistical method

selection.

A. Studied Projects

Our experimental subjects are selected from projects in

GitHub. We select projects that have been existed on for at

4http://github.com/orientechnologies/orientdb
5http://orientdb.com/docs/last/Contribute-to-OrientDB.html
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TABLE I
SUMMARY OF ATTRIBUTES ON 2,923 GITHUB PROJECTS.

Attribute Min Median Max Mean St. Dev.

Age (years) 5.0 6.8 8.9 6.9 0.7
Commits 100 422 25, 052 918.3 1, 483.2
Total PRs 1 32 4, 418 91.1 192.5
Total issues 1 47 3, 465 142.4 284.5
Size (MB) 0.1 2.0 928.4 12.4 42.9
Developers 3 15 690 29.8 45.2

least five years (last update timestamp minus project creation

timestamp) by January of 2016. This condition ensures that the

projects are long-lived. With this criterion, we were left with

431,879 projects. Among those projects, we only consider non-

forked projects (i.e., projects that are not cloned from other

projects), as forked projects may bring bias to our conclusions

with their duplicate code and documents. With this condition,

only 304,694 projects were left.

We also filter out projects with fewer than 100 commits

to avoid small scale and toy projects. If a project involves

fewer than 3 contributors, we also remove it from our data set.

Additionally, since RQ3 studies the role of branches on coping

with contributions (PRs in GitHub) by others, each selected

project should have at least one closed PR (contributors can

submit a PR to any branch as they wish). Considering the

number of commits, contributors and closed PRs have been

listed in each project’s website in GitHub, we wrote a web

crawler to retrieve these numbers and directly compared them

with our threshold values. After filtering, only 2,938 projects

met all the above criteria.

When we analyzed the remaining projects, we found that

there were 15 projects that do not specifically target developing

software but instead focus on documenting tasks. For example,

the project msgpack/msgpack6, mainly focuses on manag-

ing the specification of MessagePack format. These projects

were also eliminated from the 2,938 projects. Ultimately, 2,923

GitHub projects were selected as our experimental subjects.

Table I shows more details on our collected project data.

In our experiment, we downloaded each project using git

clone. Then, for each project we retrieved all branches used

(using git branch -r). In total, we retrieved 19,389 branches

created for the 2,923 projects. We used these collected data to

conduct our experiments and answer the five RQs.

B. Design of RQs

We attempt to gain insight into the branch usage in OSS

projects via five RQs. In RQ1, we provide an overall view of

branches used in 2,923 projects. We further investigate some

characteristics of projects that use relatively more branches

during development. In RQ2, we investigate branching purpose

in GitHub. In RQ3, we study the branches that are requested

for merging PRs. We further study whether all commits of

other branches make it into master branches in RQ4. Finally

in RQ5, we examine the impact of branches usage on projects’

productivity. We combine bar plots, non-parametric statistical

hypothesis tests, and regression models to answer our RQs.

6https://github.com/msgpack/msgpack

In RQ1, we use bar plot and Wilcoxon Rank Sum test [34]

to observe the overall usage of branches across the 2,923

projects. In RQ2, we manually check each branch’s content

and then provide some descriptive statistics on the purpose

of branch use. In RQ3, we calculate the number of pushed

pull requests (PRs) in each branch, and investigate the role

of branches in coping with PRs in GitHub. In RQ4, we count

the number of commits that are unique to non-master branches

and perform statistics to understand the flowing of commits

from non-master branches to master branches. In RQ5, we use

a multiple linear regression model [25] to measure the impact

of branch usage on the overall productivity of projects. In

particular, we adopt Cohen’s f2 to capture the effect size of

branching on project’s productivity. The detailed description

about the regression model and Choen’s f2 will be presented

in Section III-C. During our model building for RQ5, we

also use eight confounding factors that may affect project’s

productivity. These confounding factors are listed as follows:

Forks: The number of forks of a project. Outsiders (developers

who cannot directly commit to a project) must fork a project

if they want to contribute to it. More forks may indicate that

more developers are involved in a project’s development. This

may affect a project’s final productivity.

Watchers: The number of watchers of a project. In general,

the more watchers a project has, the more popular it is

among developers; a project’s popularity may affect its overall

productivity.

Project age: Project’s age since its creation. A project’s age

is calculated as the last update timestamp minus the creation

timestamp. A longer-lived project may have more commits

than a relatively short-lived project.

Project size: Project’s size measured as total physical space

a project needs to store its data (MB). Generally speaking,

different projects with different sizes may behavior differently,

thus leading to different project productivity.

Number of PRs: The number of PRs requested to merge into

the project. PR is a form of contributions. More PRs indicate

that more contributions are requested to merge into the project.

This may result in an increase of project productivity.

Number of PR comments: The number of comments made

on PRs. More comments on PRs may indicate an active

response to contributions by developers. This may result in a

quicker resolution to PRs, which may further affect a project’s

productivity.

Number of issue comments: The number of comments

made on issues. More comments on issues may indicate

active interactions among developers to fix bugs. This may

facilitate a project’s development and finally affect a project’s

productivity [7].

Number of developers: The number of developers contribut-

ing to a project. More developers contributing to a project may

indicate a higher project’s productivity.

The details about above eight confounding factors can be

found in Table II.
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TABLE II
SUMMARY OF EIGHT CONFOUNDING FACTORS ON 2,923 GITHUB

PROJECTS.

Confound Min Median Max Mean St. Dev.

Forks 0 51 9, 609 161.7 426.5
Watchers 1 18 3, 081 47.0 115.9
Age (years) 5.0 6.8 8.9 6.9 0.7
Size (MB) 0.1 2.0 928.4 12.4 42.9
Total PRs 1 32 4, 418 91.1 192.5
PR comments 0 43 13, 366 243.8 767.5
Issue comments 0 95 13, 248 439.4 1, 030.2
Developers 3 15 690 29.8 45.2

C. Statistical methods

1) Multiple Linear Regression: Regression models are often

used to measure the effects of several explanatory variables on

a response variable. In our study, we use a multiple linear

regression model [25] to measure the impact of branches

used on a project’s overall productivity, i.e., the total number

of commits within a project. While building the regression

models, we also perform the regression diagnostics with rec-

ommended criteria [14]. We log transform (i.e., x->log(x))

the response variable (i.e., the number of commits) to assure

acceptable normality. We also do the log transformation on

several explanatory variables as this can make the variance

more stable and can always improve the model fit [11].

Variance inflation is also controlled within the recommended

range [25]. All outliers are removed to avoid possible dis-

turbance to the experimental results. In this paper, we use

outlierTest function in the “car” package of R to detect

outliers7. All regression models are conducted within the R

statistic environment [46].

2) Cohen’s Effect Size: Based on the results of multiple

regression models, we further use Cohen’s effect size [25]

to gauge the effect of branches on the project’s productivity.

Specifically, we use Cohen’s f2 to measure the effect size for

a linear regression model. Cohen’s f2 is calculated as

R2

AB
−R2

B

1−R2

AB

Here R2

B
is the variance accounted by variable set B. The R2

AB

is the variance accounted by variable set B and A together.

In this paper, B is the set of eight confounding factors as

mentioned in Table II and A is the number of branches used.

A threshold value of 0.02 for f2 is suggested as a minimum

value to determine that the effect is small [25]. 0.15 and 0.35

is suggested as the minimum values for median and large

effects.

IV. EXPERIMENTAL RESULTS

In this section, we present empirical results for the five RQs.

A. RQ1: How many branches does a project have and what

kind of projects are more likely to have more branches?

Results. In RQ1, we study the general characteristics of

branches used in GitHub. Specifically, we investigate how

many branches are used by developers during development.

7http://CRAN.R-project.org/package=car.
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Fig. 1. General statistics on the number of branches used in 2,923 projects.

Additionally, we try to identify what kind of projects tend

to use more branches. We conduct our experiments on 2,923

GitHub projects. For each project, we first retrieve all branches

created within the project. Then we count how many branches

each project uses.

Figure 1 shows the general statistics on the number of

branches used in 2,923 projects. The horizontal axis is the

number of branches created within a project. The vertical axis

represents the number of projects containing a certain number

of branches during development. Most projects (87.9%) create

less than five branches. Only 91 projects create more than

30 branches, while 534 projects have only one branch. In

other words, 18.3% (534/2,923) projects do not create other

branches but directly develop on the master branch.

Finding 1. Most projects (87.9%) create fewer than five

branches during their development. A small number of

projects (3.1%) create at least 30 branches; 18.3% projects

only develop on their master branches.

In Figure 1, we also observe that different projects create

different numbers of branches during their development. Some

use only a few branches while some others create many

branches. To understand what kind of projects tend to use

more or fewer branches,we divide 2,923 projects into different

groups by specific project attributes (such as project’s scale

and popularity) to examine the branch usage in those projects.

We consider three project features, namely project size, forks

number, and owner type.

Project size measures a project’s scale, which represents

how much physical space a project needs to store its data

(KB). The Forks count describes how many times a project is

forked by others. In GitHub, if a developer wants to contribute

to a project, he/she generally needs to fork it to his/her own

account. Thus, forks number can be used as a proxy metric

of a project’s popularity among developers. Owner type can

tell us whether a project is owned by a personal user or an

organization, which is obtained by searching relevant item

(i.e., “type”) in the details of individual repository by using

GitHub API (i.e., “GET /repos/:owner/:repo”).

We divide projects into groups based on each of the above
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Fig. 2. Branches used in projects grouped by owner type, forks number and size.

three project attributes. Unlike owner type, which has only

two enumeration values (“personal user” and “organization”),

project size and forks number are numeric values. For each of

the numeric project attributes, we divide the numeric values

into three groups: small, median, and large. For project size

and forks number, we first compute the 1st quartile, the

median, and the 3rd quartile of all values. Projects with the

measure smaller than the 1st quartile are assigned to the

small group. If the value is larger than the 3rd quartile, the

project is assigned to the large group. The remaining projects

are assigned to the median group. Figure 2(a)-2(c) presents

branches used in projects grouped by size, forks number and

owner type respectively. The horizontal axis is the number of

branches used in a project. The vertical axis is the number of

projects which have a certain number of branches. Different

colours represent different groups.

In Figure 2(a), when the number of branches is no more

than three, the numbers of projects with small size, median

size, and large size are similar. When the number of branches

increases above 3, large scale projects tend to represent a much

larger proportion compared to small and median projects.

This means large-scale projects are more likely to use more

branches during development. A similar phenomenon can also

be observed in Figure 2(b). Thus, a more popular project

tends to use more branches during development. As shown in

Figure 2(c), when there are less than eight branches, personal

projects occupy a larger proportion than organization-owned

projects. As the branch count increases, the difference between

two types of projects becomes small. For projects with more

than 30 branches, organization-based projects are the majority.

This suggests that projects created by personal users are

more likely to use fewer branches; while projects created by

organizations are more likely to use more branches during their

development.

Next, we apply Wilcoxon Rank Sum test with Bonferroni

correction [2] and Cliff Delta Effect Size [10] to check

the statistical significance of the above-observed differences

between different groups, i.e., user vs. organization, high

vs. median, median vs. low, and high vs. low. We apply

Bonferroni correction to adjust p-values from multiple

comparisons. We find that the differences in branch usage

between different groups are all statistical significant

(p-value<0.05): for project size or owner type, all

p-values<2.2e−16; for forks number, the p-values for high

vs. median, median vs. low and high vs. low are 0.024,

2.68e−13 and < 2.2e−16 respectively. However, all differences

except two are small evaluated by the Cliff Delta effect size

(|d|<0.147 "negligible", |d|<0.33 "small",

|d|<0.474 "medium", otherwise "large"): for

project size, the difference between high and low groups is

large, with effect size value being 0.543 (>0.474); for forks

number, the difference between median and low groups is

negligible, with effect size value being 0.067 (<0.147); all

other differences are small with their effect size values being

larger than 0.147 but smaller than 0.33.

Finding 2. Large scale projects tend to use significantly

more branches than small scale projects; popular projects or

projects owned by organizations tend to use slightly more

branches during software development.

Implications. In Finding 1, we note that most (87.9%) projects

use no more than five branches during their development.

However, it also can be observed that either some projects

(18.3%) only work on the master branch or some projects

(3.1%) use many branches (>30 branches). For these projects,

in-depth analysis is desired. For example, we are not clear on

why some projects create a lot of branches, what problems

they face when they try to manage many branches. Moreover,

why do some projects, including organizational projects which

may involve many developers, only develop on master branch?

In Finding 2, we find that more popular, larger or organiza-

tional projects tend to use more branches than others, which

propose more research questions to investigate, e.g., whether

these projects might face more challenges when managing

more branches, and what problems they exactly face and how

do they try to address them. The answers of these research

questions can 1) provide some guidance for other practitioners

who face similar problems, and 2) inspire more researchers or
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practitioners make more efforts to help solve real problems in

branching practice in OSS communities.

B. RQ2: What are branches used for?

In RQ2, we try to gain insights into the problem of why

branches are created in GitHub. Particularly, considering mas-

ter branches are used for projects’ main line development by

default, in this RQ, we only explore the branching purpose

of non-master branches. Specifically, we randomly sample

300 branches from 16,466 non-master branches. This sample

size is comparable with existing work [18] that 350 out of

>20,000 unmerged PRs are randomly selected to study why

PRs are not merged.

We adopt a three-step process to conduct the branching

purpose categorization: First, the first two authors selected

the first 100 branches and discussed their categories. Specif-

ically, for each non-master branch, they manually read its

commit logs, changed code and relevant conversations of

commits/issues/PRs on GitHub, in order to understand what

activities (such as bug fixing, testing) developers perform on

it. Then they took the major activity as the branching purpose

for each branch. The results contain 6 categories shown in

Table III (with Dependency Configuration and Others being

excluded).

Then they tried to classify the remaining 200 branches

based on the 6 categories independently. They left the

branches which cannot be classified for later discussion.

Fleiss Kappa [15] was used to measure the overall agreement

between the two labelers. The Kappa value was 0.78, which

indicates a substantial agreement between them.

At last, for those branches that they cannot classify into

the initial categories or disagree with each other on certain

branches, they invited another senior developer with 12 years

development experience in industry to help them make the

final decision. As a result, a new category, i.e., Dependency

Configuration was added to the original 6 categories. There are

7 branches being created for other purposes (such as doing

nothing, experimenting with a framework) or unknown pur-

pose that we cannot identify after reading relevant data items.

We placed them into the Others category. Table III shows the

final categories of branching purposes of the sampled 300 non-

master branches.

As shown in Table III, we summarized 8 categories of

reasons for which developers create branches, from bug fixing

to version iteration. From the table, we can find that approx-

imately 83% branches are created for feature implementation

(41.7%), version iteration (24.7%) and bug fixing (16.7%).

The remaining branches (approx. 15%) target at testing, doc-

umentation, etc. Our findings are consistent with [39]’s study,

which also found that feature implementation and version

iteration are also the most two popular branching types among

developers.

Specially, 58.4% branches target at two major activities

during software development, i.e., bug fixing and feature

implementation. This to some extent, implies that developers

may have recognized branches’ potential in helping them

TABLE III
CATEGORIES OF BRANCHING PURPOSE.

Purpose Description Num. %

Bug Fixing A branch aims to fix bugs. 50 16.7

Feature
Implementation

A branch aims to implement
features.

125 41.7

Testing
A branch aims to test code, de-
ploy test platform or maintain
test cases, etc.

16 5.3

Code Structure
Optimization

A branch aims to perform code
refactoring or style formatting.

12 4

Documentation
A branch aims to maintain a
project’s documents, such as its
website, license declaration, etc.

10 3.3

Dependency
Configuration

A branch aims to declare a
project’s plugins or dependent
libraries’ versions.

6 2

Version
Iteration

A branch aims to certain ver-
sion development, prepare for
release, and version upgrade. In
such a branch, bug fixing and
feature implementation are two
major activities.

74 24.7

Others

A branch which cannot be put
into the above categories goes
to this category. E.g., a branch
is created for doing nothing.

7 2.3

better perform independent single task (i.e., bug or feature)

in practice; After diving into those branches (24.7%) that aim

at version iteration, we find that 1) 25% branches are created

for version release; 2) 12% branches are created for a single

version development; 3) others (63%) mainly focus on version

bumping, i.e., upgrading product to a higher version. This to

some extent, indicates that branches may play an important

role in helping developers manage their products’ versions.

Despite the importance of testing during development, it

seems that developers are less likely to build specific branches

to conduct pure testing tasks, with only 5.3% branches fo-

cusing on testing. Similarly, other kinds of activities, such as

documentation, refactoring, are also not reflected too much in

a single particular branch.

Finding 3. Developers mainly use branches to implement

features, fix bugs, and conduct version iteration. Very few

developers would create particular branches for testing,

documentation, etc.

Implications. We find that branches are mainly still focusing

on bug fixing and feature implementation (both of these

two activities play an important role in version iteration). In

practice, developers can also submit pull requests to perform

bug fixing and feature implementation activities. Thus, it

would be interesting to investigate the difference between

the pull requests and branching in bug fixing and feature

implementation.

Besides, during our investigation into branching purpose, we

find that it is prevalent that branches are not fully described

in an explicit way. For example, we find that only 69 out of

300 sampled branches have easy-to-understand names. One

may have to spend lots of time on reading changed code and

commit logs, to infer the branching purpose. This may place

a great burden on project moderators who need to manage
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Fig. 3. Branches that are requested to merge PRs.

and maintain lots of branches. Thus, it would be valuable

if techniques can be developed to automatically provide a

descriptive summary for a branch, by collecting and analyzing

different kinds of branching information, e.g., changed code,

commit logs, and branch names.

C. RQ3: How many branches are requested to merge PRs?

In GitHub, developers use PRs to contribute to others’

projects. A PR contains detailed code change or document

modification to the target project by developers. Developers

specify the destination branch (i.e., the branch that developers

want to have their PRs merged into) for the PRs. Since a

project may have several branches during their development,

which inspires us to further investigate the prevalence of

branches within a project that are requested by developers to

merge their PRs.

For each project, we download all PRs that were submitted

by developers. We then retrieve the destination branch of each

PR with the help of GitHub APIs for PRs8. Finally, we count

the number of PRs submitted to each destination branch within

the project.

After recording each branch’s state of receiving PRs, we

find that only 6,159 out of 19,389 branches have ever been

requested to merge PRs. For those 6,159 branches, we further

investigate how many branches have been requested to merge

PRs in a project. Figure 3 shows the detailed results. In

Figure 3, the horizontal axis is the number of branches that

are requested to merge PRs. The vertical axis is the number

of projects.

From Figure 3, we can find that more than 90% projects

(2,723/2,923=93.2%) have less than 5 branches that are re-

quested to merge PRs by contributors, among which more

than 60% projects (1,756/2,723=64.5%) have only one branch

having been requested by merging PRs. There are extremely

few projects (1.9%) that have more than 10 branches re-

quested by merging PRs. Next, we specifically study master

branches and find that almost all projects’ master branches

8https://developer.github.com/v3/pulls/

(2,909/2,923=99.5%) have been requested to merge PRs by

contributors.

After analyzing the overall usage of PRs in each project,

we further investigate those projects which have more than

two branches with PR merging requests. We find that 1,135

projects have more than two branches having been asked for

merging PRs. For those projects, we investigate whether all

branches weight the same on being requested by merging PRs.

The data shows that 1,121 out of 1,135 projects always have

one branch having more than 50% PRs merging requests.

Finding 4. 90% projects have less than 5 branches that are

requested to merge PRs in GitHub. There always exists a

branch that is mainly targeted by contributors to merge PRs

for each project. About 60% projects have only one branch

requested to merge PRs. Almost all master branches (99.5%)

have been requested to merge PRs.

Implications. In RQ3, we mainly study the current situation

of branches that are requested to merge PRs by contributors.

One interesting observation is that almost all projects’ (99.5%)

master branches are pushed PRs by contributors. However,

as mentioned previously in Section II, some projects have

their own requirement in to which branch a PR is supposed

to submit (e.g., contributors should not submit PRs to the

targeted project’s master branch). This contrary to some extent

indicates that not all contributors are aware of such require-

ments. Those PRs with incorrectly targeted branches may be

rejected and be asked to re-merge to the right branches, which

will affect contributors’ passion on further contribution, and

increase project maintainers’ workload in coping with PRs.

Thus, an effective way to identify the right targeted branch for

contributors is very desirable. Researchers or practitioners may

need to build an automated approach that can help contributors

more easily find the right branch to merge into, such as

developing recommending tools or providing more explicit and

indicative information of targeted branches.

D. RQ4: Do all commits go into the master branch?

In this RQ, we investigate the prevalence of commits

flowing into the master branch from other branches. In other

words, we try to gain some insights into the validity of work

on other branches. In total, we examined 19,389 branches

on 2,923 projects (2,923 master branches and 16,466 other

branches). For each project, we first find its master branch9

(M) and other branches (BranchSetA). Then for each branch

(B) within BranchSetA, we use the commands “git log --

pretty=oneline B --not M --” and “git log --pretty=oneline M

--not B --” to retrieve the number of commits which are only

in the branch B or in the master branch M. Since the projects

we collected have various number of commits in them, we

use percentage of total commits that are only in master or

only in a non-master branch, in order to better observe the

whole situation of commit flow within GitHub.

9The master branches are identified by retrieving the default base branch
of projects hosted in GitHub.
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Figure 4 shows the commit flow of master and non-master

branches. In Figure 4(a), we find that on the whole situation,

the percentage of commits which are left on the non-master

branches is very low. It seems that at least 75% branches’ all

commits are almost contained in master branches (with at most

0.56% commits are not included in the master branch). We fur-

ther find that 50% branches have only one commit that is not

in master branches; and about 40% (6,460/16,466) branches’

all commits go into their master branches. In Figure 4(b), we

observe that the minimum value of the boxplot is also 0, which

means there are branches (actually 373 branches from 278

projects) containing all commits from their master branches.

From the 50% quantile value, we can find that, nearly 25%

commits of half master branches are not contained in their

non-master branches, which is much more than the number

(0.7%) of commits unique to a non-master branch. Comparing

quantile values of Figure 4(a) with those of Figure 4(b), we

can find that master branches always have many more commits

that are not in non-master branches.
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Fig. 4. Commit flow of master and non-master branches

Finding 5. Almost all commits of most branches (>75%)

finally flow into their master branches. In comparison, more

than 97% branches (16,093/16.466=97.7%) do not include

all commits from their master branches.

Implications. From the results of RQ4, we find that some

commits only belong to non-master branches or master

branches. For those unique commits, it would be helpful if

some techniques can be proposed to summarize these unique

commits and provide supportive information to further indicate

what is going on in each branch. In this way, developers

working on either non-master branches or master branches

can feel more free to merge work from other branches without

unnecessary conflicts or duplicate work.

E. RQ5: Does branch usage affect the overall productivity of

a project?

Branching is a method that can help developers focus

on their own development task without hindering, or being

hindered by others. In this way, we assume that branching may

facilitate development. To our best knowledge, the impact of

branch usage on development in large OSS communities has

not been studied. In this RQ, we quantitatively measure the

impact of branch usage on the overall productivity of projects.

Our experiment includes two parts. The first part studies

the impact of branches used on project’s productivity. The

second part investigates whether the results are different

between personal projects and organization-based projects.

We use a multiple linear regression model to measure the

impact of branch usage on project’s productivity. Since code

contributions are always encompassed in the form of commits,

the number of commits is used as a proxy measure of

developers’ productivity [13]. Following existing studies [51],

[17], [50], we also use the commit count to measure projects’

productivity. Specifically, we use the number of commits

within master branch as a proxy of a project’s productivity

and use the number of branches as a proxy of branch usage.

We aim to discover whether the more branches are used,

the more likely a project will have more commits on the

master branch. Since there are other factors (such as project

popularity and developers’ interaction) that can also affect

project’s productivity, we also use other eight factors listed

in Table II as confounding factors.

As mentioned in Section III, we use Cohen’s f2 to measure

the effect size of branch usage on a project’s productivity. To

measure effect size, we first build a model with all explanatory

variables, i.e., the factor brCnt (the number of branches) and

other eight confounding factors. Then we build another model

with only eight confounding factors. We use each models’

Adjusted R-squared to calculate the Cohen’s f2 as the

branches’ effect size on each project’s productivity.

Since some explanatory variables have large numeric scales,

we performed log transformation on them and outliers are

removed. The residual distribution is found to have acceptable

normality and the variance inflation is also within recommend-

able ranges [25].

Table IV and Table V show the results of two models. From

the two tables, we can find that the project’s final productivity

(i.e., the number of commits) increases with the number of

branches, developers, PRs, issue comments and project age;

the final productivity decreases with the number of forks and

watchers of projects.

As can be seen in Table IV and Table V, the R2 for

models that includes and excludes brCnt is separately 0.625

and 0.616. Thus the Cohen’s f2 is (0.625-0.616)/(1-

0.625)=0.024. Since 0.024 is bigger than the minimum value

0.02 for a small effect but smaller than the minimum value

0.15 for the median effect, we can conclude that the branch

usage does have a positive effect on project’s productivity,

although the effect is small.

Finding 6. The number of branches used within a project

has a positive impact on a project’s productivity, despite of

a small effect measured by Cohen’s effect size. This means,

to some extent, the more branches a project has, the more

final commits a project has.

After examining the effect of branch usage on project pro-

ductivity on all 2,923 projects, we further investigate whether

the effect is different between projects owned by personal

users and by organizations. We divide 2,923 projects into two

groups: personal projects and organizational projects. There

are 1,891 personal projects and 1,032 organizational projects,
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TABLE IV
MULTIPLE REGRESSION MODEL FOR BRANCH USAGE (BRCNT) AND EIGHT

CONFOUNDING FACTORS ON 2,923 PROJECTS.

Variable T Value Significance

(Intercept) 17.4 p<.001 ***
brCnt 8.8 p<.001 ***
log(forks count+0.5) -9.2 p<.001 ***
log(watchers count+0.5) -3.5 p<.001 ***
age 6.6 p<.001 ***
log(project size) 43.7 p<.001 ***
developer 9.4 p<.001 ***
PRs 4.8 p<.001 ***
log(PR comments) 4.7 p<.001 ***
log(issue comments) 8.3 p<.001 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

F-statistic = 542.9, p-value: <0.001. R2 = 0.625
The response variable is log(total commits).

containing 9,290 and 10,099 branches respectively.

For personal projects and organizational projects, we sep-

arately build two models in Tables IV and V to find the R2

to further calculate the Cohens’ f2. The F Statistics of four

models are all significant (p-value<0.001). The detailed

results can be found in Table VI

From Table VI, we can find that the Cohen’s f2 values of

both models are larger than 0.02 (the minimum value for a

small effect) but are smaller than 0.15 (the minimum value

for a median effect). This means the number of branches

indeed has a small effect on the productivity of both personal

and organizational projects. However, despite organizational

projects tend to use more branches than personal projects

(which can be observed in RQ1), the number of branches does

not have a stronger effect on the productivity of organizational

projects than that of personal projects (with both Cohen’s f2

values being almost equal, i.e., 0.0277 vs. 0.0265).

Finding 7. The number of branches has a small effect on the

final productivity of projects created by personal users and

organizations, and there is no statistically significantly differ-

ence between personal projects and organizational projects.

Implications. In this paper, we focus on how branch usage

affects a project’s commits productivity. We find the branch

use has a small effect on a project’s overall productivity

measured by Cohen’s f2. It would be interesting to investigate

how branch usage affects other OSS development activities

such as developer’s productivity (e.g., bug fixing or feature

implementation) or software maintainability (e.g., conflicts

inducing by merging branches). By doing so, we are likely

to gain a more complete understanding of the functions of

branches.

V. THREATS TO VALIDITY

Generalization of Findings. In this paper, we try to gain

some insights into the branch usage in OSS communities

by conducting experiments on 2,923 GitHub projects. Since

there are also other OSS communities (such as SourceForge

and BitBucket), we cannot guarantee that our conclusions

on GitHub can be generalized to other OSS communities.

However, with the great popularity of GitHub for OSS de-

velopment and the large scale of our experiments, we think

TABLE V
MULTIPLE REGRESSION MODEL FOR CONFOUNDING FACTORS.

Variable T Value Significance

(Intercept) 16.7 p<.001 ***
log(forks count+0.5) -9.8 p<.001 ***
log(watchers count+0.5) -3.5 p<.001 ***
age 6.5 p<.001 ***
log(project size) 45.9 p<.001 ***
developer 9.3 p<.001 ***
PRs 5.5 p<.001 ***
log(PR comments) 5.7 p<.001 ***
log(issue comments) 8.2 p<.001 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

F-statistic = 585.9, p-value: <0.001. R2 = 0.616
The response variable is log(total commits).

TABLE VI
ADJUSTED R-SQUARED (R2) OF REGRESSION MODELS BUILT ON

PROJECTS OWNED BY PERSONAL USERS AND ORGANIZATIONS.

owner with brCnt with no brCnt F value Conhen’s f2

users 0.5774 0.5657 p<0.001 0.0277
Org. 0.6268 0.6169 p<0.001 0.0265

the findings on GitHub can reveal some insights into the

practice of branching in OSS communities. In future, we plan

to perform our experiments on other OSS platforms to better

generalize our findings.

Private Projects. In this paper, we only consider projects that

are available in GitHub. This may make us miss some private

projects that are inaccessible to the public in GitHub. These

missing projects may bring some bias to our concluded finding

across the GitHub platform. However, considering the large

scale of our experiments, we believe our findings can still be

generalized to other projects.

Implicit Merged Commits. When examining commit flows in

RQ4, we take commits only occurring in non-master branches

as commits that are not merged into the master branch. How-

ever, since developers may use rebase or cherry-pick

provided by Git to manipulate commits, some seemingly

unmerged commits may have been merged into the master

branch [26]. These implicit merged commits may indicate a

higher flowing ratio of commits into the master branch than

we have observed in RQ4. Although we are unable to track

these commits, we think our findings of RQ4 can shed some

light into the trend of how commits flow between branches.

Measurement of Project Productivity. We use the number

of commits as a project’s overall productivity, as has prior

work [51], [17]. In particular, we only take the commits

of master branch into account without considering other

branches. Since some useful work may stay in other branches

without being merged into the master branch, this might bring

some bias to our arrived conclusions. However, since it is hard

to identify whether all unmerged commits from other branches

are useful, and it is very likely that most useful commits would

go into the master branch, we think only using the commits

of master branch is also acceptable.

VI. RELATED WORK

Studies on Branching. There are some studies similar to

ours. Bird et al. showed that developers working on Windows
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use branches to divide work into tasks and teams [6]. They

also found some problems related to merging branches in

Windows [5]. Phillips et al. conducted a survey among indus-

trial developers and gained insights into the best branching

strategy in practice [39]. Shihab et al. investigated the effect

of different branching strategies on software quality [43].

Hua found that branches are often used during Linux kernel

development, and cross-branch porting is frequent and error-

prone in practice [21]. These studies mainly focus on industrial

branching practice or are limited to a small number of specific

OSS projects. To the best of our knowledge, we are the first

to conduct a large-scale empirical study of branch usage on a

broad collection of OSS communities.

Researchers also have made several efforts to tackle the

problems of using branches in practice. Bird et al. proposed

to remove low benefit but high cost branches to reduce the

integration delays [5]. Tarvo et al. [45] and Michaud [36]

proposed to track commits from different branches to improve

the maintainability of software. Kerzazi proposed to use social

network to build better branch strategies to facilitate the

software development [28]. Costa et al. developed TIPMerge

to recommend developers to merge commits from different

branches [12]. Kovalenko et al. emphasized that it was im-

portant to properly cope with branches when calculating file

modification histories [29]. We studied a different problem and

our findings also projected some insights into the best practices

of branching and potential related problems to be solved.

Some researchers have also developed some guidelines for

using branches. Berczuk and Appleton guided people when

to branch and how to adopt the right branch structure [4].

Wingerd et al. gave some high-level best practices of using

branches in software management [55]. Arve studied how to

use advanced branching strategies to facilitate the development

in Agile projects [3]. Appleton et al. described some branch

patterns for parallel software development [1]. Premraj et

al. discussed the pros and cons of branches and presented

some guidelines on when and how to branch [40]. There

also exist some lively discussions or specific documents on

branching and merging over Internet. For example, Linus

Torvalds provided some branching and merging guidance for

Git users in an email thread [31]. Microsoft documented

some practical advice on branching strategies in the Team

Foundation Server branching guide [22]. These studies mainly

provided some best practices of branching based on personal

experience. We studied the actual practice of branching in

2,923 real GitHub projects and investigated different aspects

of branch usage.

Studies on GitHub. A great number of studies have been

conducted on GitHub, with focuses ranging from pull-based

mechanism, social coding to testing and being productive on

GitHub [57], [37], [38], [51], [26], [53].

Zhu et al. investigated the effectiveness of pull-based mech-

anism compared to patch-based methods [57]. Gousios et

al. studied the challenges of pull-based development from

both the contributors’ and integrators’ perspectives [19], [20].

They further found that 40% PRs do not appear as merged

even though they have been merged [27]. Some researchers

explored how social and technical factors may affect the

evaluation of PRs [47], [18], [56]. Veen et al. proposed to

rank PRs to help developers better handle PRs [49]. Different

from above studies, we studied a new aspect of PRs, i.e., the

destination branches of PRs.

Vasilescu et al. found that the gender and tenure diversity,

the adoption of continuous integration, would affect a project’s

productivity [51], [52]. They also studied how context-switch

would affect developers’ productivity [52]. Casalnuovo et al.

found that both social links and language experience have an

influence on both developers’ and projects’ outcomes [8]. We

looked into a new factor, i.e., branch usage, that affects a

project’s productivity.

Vendome et al. studied the license changing problem [54].

Ray et al. measured the naturalness of buggy source code [41]

and explored how programming languages would affect code

quality [42]. Silva et al. and Tufang et al. did an exploration

into the code smells [44] and test smells [48]. Fowkes et al.

tried to mine APIs across GitHub [16]. Ma et al. explored how

developers coped with cross-project bugs [33]. Lee et al. found

that developers used rockstars to better choose and contribute

to projects in GitHub [30]. Jiang et al. found that creators’

status affected developers’ forking behavior [23]. Marlow et

al. studied impression formation in GitHub [35]. Jiang et al.

studied how projects get disseminated across GitHub [24].

Unlike them, we considered branch usage in GitHub.

VII. SUMMARY

In this paper, we conduct an exploratory study of branch

usage in 2,923 OSS projects hosted on GitHub. We first

investigate how branches are used in 2,923 projects. We

find that most projects have less than five branches during

development and less than 20% projects only develop on

their own master branches without creating other branches.

Then, we study the branching purpose in GitHub, we find that

83% branches are created by developers to conduct feature

implementation, version iteration, and bug fixing. We also

find that almost all master branches of 2,923 projects have

been requested to merge contributions by developers. When

studying the commits of branches, we find that 75% branches’

most commits are contained on their master branches. Finally,

we investigate the impact of branch usage on project’s pro-

ductivity. We find that the more branches a project has, the

more commits the project has; but the impact is considered

small measured by Cohen’s effect size. Our findings provide

insight into the situation of the current practice of branching in

OSS communities on GitHub. Our experimental data sets are

available online: https://github.com/SurfGitHub/branchStudy.
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