
Information and Software Technology 181 (2025) 107675

A
0

A
c
H
a

b

A

D
o

K
B
M
S
C

1

t
h
s
l
b
b
d
s
s
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

more accurate bug localization technique for bugs with multiple buggy
ode files
ui Xu a,1, Zhaodan Wang a,1, Weiqin Zou a,b,∗

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

R T I C L E I N F O

ataset link: https://github.com/LyraXv/HitM
re

eywords:
ug localization
ultiple buggy files

ubset retrieval
ode relations

A B S T R A C T

Context: Bug localization is a key step in bug fixing. Despite considerable progress, existing bug localization
techniques still perform unsatisfactorily in situations where the complete fix to a bug involves touching multiple
buggy code files. That is, for such bugs, those techniques tend to locate correctly only one or at least not all
buggy code files, leaving other buggy code files undetected.
Objective: This study aims to improve bug localization in cases where resolving a bug requires modifications
to multiple buggy code files by proposing HitMore to rank more truly buggy files higher in the recommendation
list.
Method: The basic idea of HitMore is to attempt to retrieve a subset of truly buggy code files first, then use
these files to retrieve other buggy code files based on code relation analysis. For the first part, we designed
three kinds of domain-specific features to build a machine-learning model to identify the truly buggy code
file subset. For the second part, we make use of three types of code relations between the code base and the
buggy file subset to better retrieve the remaining truly buggy code files.
Results: The experiments on six widely open-source projects show that: Our technique is effective in
identifying the subset of truly buggy code files, with a weighted prediction F1-Score of 86.1%–92.1%. By
leveraging the code relations to the retrieved subset and the code base, our HitMore could retrieve all truly
buggy code files for 29.31%–69.56% of bugs across six projects. For multiple-buggy-code-file bugs, HitMore
could completely localize such bugs by up to 15.38%, 19.36%, and 11.86% more than three representative
IRBL baselines across six projects.
Conclusion: The experimental results demonstrate the potential of HitMore in reducing developers’ burden of
locating and further fixing relatively complex bugs such as those with multiple buggy code files in practice.
. Introduction

Bug localization is an important part of bug repair [1,2]. In order
o facilitate bug repair and ensure the quality of products, researchers
ave proposed various bug localization techniques which can be clas-
ified into two categories: dynamic bug localization and static bug
ocalization [3–9]. Dynamic bug localization techniques aim to locate
ugs by analyzing execution profiles collected while running the to-
e-debugged software products [3] . Static bug localization techniques
o not need to run the buggy program; instead, they mainly extract
ome static semantic features from the code and bug reports, do some
emantic matching (e.g., based on cosine similarity), and then output
 recommendation list of buggy code elements [10]. With comparative

∗ Corresponding author.
E-mail addresses: lyraxv@nuaa.edu.cn (H. Xu), wangzhaodan@nuaa.edu.cn (Z. Wang), weiqin@nuaa.edu.cn (W. Zou).

1 Hui Xu and Zhaodan Wang are both first authors, and contributed equally to the work.

performance and the cost reduction of no program running over dy-
namic bug localization, static bug localization receives much attention
from both the academic and industrial communities. The main-stream
and also the most representative of static bug localization is the infor-
mation retrieval-based (IR-based) bug localization [11–16]. IR-based
bug localization usually considers bug localization as an information
retrieval task, which generates a prioritized list of suspicious code files
for a bug report based on their static semantic relevance scores [8]
(kinda like the scenario of searching Google for relevant documents). In
this paper, we also focus on developing advanced static bug localization
techniques, specifically, the more advanced IR-based bug localization
techniques.
vailable online 31 January 2025
950-5849/© 2025 Elsevier B.V. All rights are reserved, including those for text and

ttps://doi.org/10.1016/j.infsof.2025.107675
eceived 4 March 2024; Received in revised form 30 November 2024; Accepted 21
data mining, AI training, and similar technologies.

 January 2025

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
mailto:lyraxv@nuaa.edu.cn
mailto:wangzhaodan@nuaa.edu.cn
mailto:weiqin@nuaa.edu.cn
https://doi.org/10.1016/j.infsof.2025.107675
https://doi.org/10.1016/j.infsof.2025.107675

Information and Software Technology 181 (2025) 107675H. Xu et al.

i

t

c
b
I
u

i

c
d
b

t
M
t

8
c
t
f
c
1
(
(
a
o
a
m
M

t

t

b

e

t
r

e
u
s
i

c
I

a

Despite considerable advancements, existing IR-based bug local-
zation (IRBL) techniques fail to handle multiple-buggy-code-file bugs

effectively. Here, a multiple-buggy-code-file bug refers to a bug for
which the complete fix requires modifying multiple code files. In
practice, it is not uncommon for developers to handle the multiple-
buggy-code-file bugs. For instance, based on our preliminary analysis of
5297 bugs in six open-source software projects (i.e., Tomcat, AspectJ,
Lucene, ZooKeeper, OpenJPA, and Hibernate-ORM) in this paper, there
are 3215 bugs each of which has at least two corresponding buggy code
files. Nevertheless, by analyzing the localization results (with a recom-
mendation list size of 5) of three mainstream IR-based bug localization
techniques (i.e., Amalgam [14], Blizzard [17], and BugLocator [12]),
it can be found that many buggy code files for these bugs could not
be retrieved correctly (the three techniques missed buggy code files for
2812/2799/2759 bugs).

One potential cause of the problem may lie in how current IRBL
echniques operate. Typically, the majority of IRBL techniques [8,15–

17] tend to treat each code file as an isolated entity, calculating its
similarity to a bug report independently and ranking files based on this
similarity score in a unified output list. However, for multiple-buggy-
code-file bugs, the involved buggy files often have interdependencies.
While existing IRBL techniques can often ensure at least one buggy file
appears in the recommendation list, treating each file independently
and overlooking these relationships may make it difficult to identify
all relevant buggy files within the same list accurately.

Towards this problem, we propose developing a new bug localiza-
tion technique namely HitMore. The idea of HitMore is inspired by
two considerations. One consideration is that mainstream static bug
localization techniques have shown reasonably good performance in
generating recommendation lists that, while not covering all buggy
files, usually include at least one truly buggy file [12,15,17]; the
problem is that the exact buggy file remains unknown. The other
onsideration is that the buggy code files of a bug are generally related
y nature through, for example, data dependencies or other relations.
f we can obtain a subset of truly buggy code files, then it is likely for
s to retrieve other buggy code files scattered in the code base through

relation analysis.
Hence, we propose to develop HitMore, which builds a classifier to

dentify a subset of truly buggy files from recommendation lists first
(support by the first consideration), then use the subset to retrieve the
remaining buggy files through leveraging three kinds of code relations
(support by the second consideration). In the subset identification step,
we construct three kinds of domain-specific features of bug reports and
codes, and then build a classifier to predict which code file within the
recommendation list is truly buggy. Then, we leverage three kinds of
ode relations including control flow dependency, data flow depen-
ency, and co-occurrence dependency, to retrieve the remaining truly
uggy code files.

A dataset of six widely used open-source Java projects is used
o evaluate our HitMore. The experimental results indicate that Hit-
ore could achieve a good performance in recognizing a subset of

ruly buggy files, with weighted prediction Accuracy of 85.5%–92.7%,
Precision of 86.7%–91.7%, Recall of 85.5%–92.7%, and F1-Score of
6.1%–92.1%. The importance of three kinds of features for truly buggy
ode files identification is further analyzed to better understand our
echnique. Overall, HitMore could retrieve all truly buggy code files
or 29.31%–69.56% of bugs across six projects. For multiple-buggy-
ode-file bugs, HitMore could completely localize such bugs by up to
5.38% (6.83% on average), 19.36% (6.18% on average), and 11.86%
7.42% on average) more than the three representative IRBL baselines
i.e., AmaLgam, BugLocator, and Blizzard) across six projects. The MAP
nd MRR for HitMore ranged from 0.35–0.58, and 0.43–0.72, which
utperformed three baselines by 0.19/0.12/0.12 and 0.2/0.09/0.1 on
verage. The improvement in MAP indicates that our technique ranks
ore buggy files higher in the recommendation list, and the higher
RR reflects that it can position the truly buggy file closer to the top
2

of the list. The results show that HitMore can more effectively help
developers find multiple buggy code files corresponding to bugs at
once.

The major contributions are as follows:

• We highlight the problem that a bug with multiple buggy files
could not be well located by existing bug localization techniques
and propose a more advanced solution.

• We develop a technique HitMore that aims to locate the multiple-
buggy-code-files bugs by identifying a subset of truly buggy code
files first and then use the subset to retrieve other remaining
buggy code files through different code file relations.

• We construct a dataset of 5297 bugs to evaluate our HitMore and
obtain promising results that verify the potential of our technique
in handling bugs with multiple corresponding buggy code files.

The rest of this paper is organized as follows. Section 2 presents
he background and related work of our study. Section 3 detailedly

introduces our technique. Section 4 describes the experimental setup.
Section 5 presents the experimental results. Section 6 discusses the
hreats to the validity of our study. Section 7 concludes our work.

2. Background and related work

Bug localization aims to support the debugging activities of de-
velopers by highlighting the code elements that are suspected to be
responsible for the observed failure [4,18,19]. It allows developers to
concentrate on vital files [20]. Existing bug localization techniques can
e divided into two categories based on whether or not to run test cases,

namely dynamic bug localization and static bug localization [3–10].
Dynamic bug localization tends to run tested programs under a set

of test cases and leverage program execution traces to associate code
lements with program failures [4]. Spectrum-based bug localization

techniques are representatives of such techniques [3,21,22]. Static
bug localization generally requires no program execution. For static
bug localization, some static semantic features of bug reports and
code snippets are extracted first. Then semantic similarities of those
features are calculated and used to locate buggy elements, where a
program element with a higher semantic similarity with a bug report
is considered more relevant to the bug [10]. Information retrieval-
based bug localization (IRBL) techniques are representatives of such
techniques [8,12,16,17,23]. As the focus of our study is also on IRBL
echniques, we will mainly introduce the general idea of IRBL and
elated studies in this research area.

IRBL views bug localization as a document retrieval task: bug
reports function as queries, code files act as the document database,
and the goal is to retrieve the code files most relevant to a given bug
report. Fig. 1 illustrates a real bug report from the Tomcat project.
A typical bug report usually consists of textual information items like
the bug title and detailed bug description, as well as non-textual meta-
information items, including priority, severity, status, etc. In IRBL, bug
reports and code files are typically treated as textual data, with their
semantics extracted using traditional information retrieval techniques,
such as the vector space model (VSM) [12,24], latent Dirichlet al-
location (LDA) [25,26], and latent semantic indexing (LSI) [27,28].
Semantic vectors extracted from a bug report and a code element, for
xample using VSM, are then compared to calculate a similarity score,
sually using cosine similarity. The code elements with the highest
imilarity scores are identified as potential buggy candidates for further
nspection.

In the early stage, mainly the textual contents of bug reports and
ode files themselves are considered during semantic representation by
R models and subsequent similarity calculation [4,12,26,27] in bug

localization. Considering that other information in the software may
lso help in bug localization, some researchers started to mine specific

kinds of information related to bugs and code to improve bug-locating
performance.

Information and Software Technology 181 (2025) 107675H. Xu et al.
Fig. 1. A bug report example with bugID = 54 379 in Tomcat Project.
Nguyen et al. [29] proposed BugScout, which considered the tech-
nical aspects in the textual contents of bug reports correlated with
buggy files and customized LDA for bug localization. Sisman et al.
integrate version history information into an IRBL framework [30].
Zhou et al. [12] proposed BugLocator leveraging similar bug reports
for bug localization. Saha et al. [11] proposed BLUiR, which lever-
ages structured information retrieval based on code constructs like
class/method/variable names from bug reports and source files. Wang
and Lo [14] integrated version history, bug reports and structured
information to enhance the locating performance. To further improve
localization results, they also incorporated stack traces and reporter
information [10]. Considering the lexical gap between bug reports and
code, Ye et al. [31] introduced word embedding techniques to project
them as embedding vectors in the shared space. Xiao et al. [23] pro-
posed BugRadar, which utilized text features and employed knowledge
graphs to represent structure features from bug reports and source files.

Unlike the above studies, which focus on leveraging various poten-
tially useful information for bug localization, some researchers propose
to focus on the quality of bug reports themselves by improving their
quality to facilitate bug localization. They developed several bug report
reformulation strategies to reduce noise within bug reports or expand
useful information to the original bug reports. Sisman et al. [32]
performed an initial localization based on the original bug report to get
a ranked list of relevant documents first, and then extracted additional
words from the top-ranked documents to expand the original bug
reports. Chaparro et al. [33] observed that low-quality bug reports
contain irrelevant terms; they enhanced localization performance by
refining them to include only observed behavior. Rahman et al. [17]
proposed Blizaard, which categorized bug reports into three types
and applied corresponding query reformulation to them to do bug
3

localization. Kim and Lee [34] enhanced the quality of bug reports by
utilizing attachments and reformulating bug reports by reducing noisy
terms.

Some other researchers tried to apply deep/machine learning mod-
els to bug localization work. Lam et al. [35] first combined deep neural
networks (DNNs) with rVSM for bug localization. Meng et al. [36]
proposed TRANSFER, which utilized deep semantic features, as well
as knowledge transferred from open-source data to improve bug lo-
calization and bug repair. Chakraborty et al. [9] proposed RLocator
which adopted reinforcement learning to directly optimize evaluation
measures. Yousofvand et al. [37] suggested that the bug localization
problem could be treated as a node classification problem. They first
used the Gumtree algorithm to label nodes by comparing the error
graph with its corresponding repair graph, and then used a graph
neural network for classification. Koyuncu et al. [38] proposed a multi-
classifier approach to improve the performance of IRBL. Khatiwada
et al. [39] proposed an optimized method that could systematically
combine various IRBL techniques into hybrid pairs. Le et al. proposed
APRILE [40], which introduced the ensemble method as a component
for predicting whether the bug localization is effective.

Unlike previous studies, we pay special attention to the localization
of multiple-buggy-code-file bugs, which existing IRBL studies to some
extent overlooked and failed to locate well. Towards this kind of bugs,
we proposed a new approach that identifies a subset of truly buggy code
files first and then leverages the inherent dependency (three kinds of
code relations) between truly buggy code files to retrieve the remaining
truly buggy code files.

Information and Software Technology 181 (2025) 107675H. Xu et al.
Fig. 2. Overview of HitMore.
3. Our HitMore approach

This section describes our technique in detail. We first describe the
overall framework of our HitMore, and then introduce each component
of HitMore.

3.1. Overview

As illustrated in Fig. 2, our technique contains three steps, including
generating the initial buggy file list, identifying a subset of truly buggy
files, and optimizing buggy file lists. The goal of the first step is to
obtain an initial buggy file list that very likely contains at least one truly
buggy file(s) so as to provide a good data basis for the second step to
identify the exact subset of truly buggy code files. The retrieved subsets
of truly buggy code files are then fed to the third step, where three
code file lists having control flow dependency, data flow dependency,
and co-occurrence dependency relations with the retrieved subsets of
truly buggy code files, are obtained, merged, and output an optimized
recommendation list that is expected to contain more truly buggy code
files.

As mentioned in Section 1, the idea of HitMore is to precisely iden-
tify a subset of truly buggy code files first, then leverage different kinds
of code relationships between truly buggy code files and remaining
code files to retrieve other truly buggy files. The prerequisite for the
success of subset retrieval of truly buggy code files is that the input list
should, as much as possible, ensure the presence of truly buggy code
files for retrieval, and this is the goal of the first step.

In the first step, three representative IRBL techniques are used to
help obtain a good initial file list that largely contains truly buggy code
files. Specifically, for a bug report, three IRBL techniques, including
AmaLgam, Blizzard, and BugLocator, are applied first to retrieve a
suspicious file list from the code base separately. Then, with the aim
to enhance the likelihood of including truly buggy files in the final
initial list, we leverage the complementary nature of (IR-based) bug
localization techniques — by combining their individual suspicious file
lists through an ensemble method [2,38]. This improves the overall
accuracy by addressing the strengths and weaknesses of each IRBL
baseline. Furthermore, as reported by existing studies, the three tech-
niques generally achieved an Accuracy@10 (accuracy in hitting at least
one buggy file when recommending 10 files) in the range of 60%+ to
80%+ across different datasets [17,38], which are reasonably good but
may still not be good enough for our first step. To further increase the
likelihood of a list containing truly buggy code file(s), we decide to use
the recommendation lists of size 20 by three IRBL techniques in the
first step.
4

In the second step, we take the subset retrieval of truly buggy code
files from the initial list output by the first step as a machine learning
task. More specifically, a classification model is first built on historical
bug report-code file data, where for each pair of a bug report and a
suspicious code file, three kinds of features related to the bug report,
the suspicious code file, and their relationships are collected; and the
class label is assigned 1 if the suspicious code file is truly buggy for the
bug report, otherwise 0. For each new arrival bug report and its initial
buggy file list, the subset retrieval of truly buggy code files is then
transformed to use the classification model to predict which suspicious
code files are truly buggy code files based on corresponding instance
feature values.

In the third step, we use the obtained subset to retrieve the remain-
ing buggy code files. This is accomplished by analyzing the subset and
code base through control flow, data flow, and co-occurrence analysis.
We then employ a weighted strategy to merge and reorder the code
files, which helps to generate an optimized list of buggy code files. If
the subset of truly buggy code files output by the second step is empty
(i.e., the classifier predicts all suspicious code files as non-buggy), the
initial recommended list output by the first step is then provided to the
developer as the final list.

3.2. Generate the initial buggy file list

As explained in Section 3.1, our technique starts with using existing
IR-based bug localization techniques to get an initial buggy code file
recommendation list for a given bug. More specifically, we plan to
use three representative IR-based bug localization techniques to get the
initial list, including BugLocator, AmaLgam, and Blizzard.

• BugLocator [12] — BugLocator uses a revised vector space model
(rVSM) to sort all files based on textual similarity (cosine sim-
ilarity) between bug reports and source code, while also taking
into account information about similar bugs that have been fixed
previously. It can be taken as a representative of classical IR-based
approaches to bug location.

• AmaLgam [14] — AmaLgam is an automated bug localization
technique that incorporates various sources of information that
may aid in bug localization. Beyond leveraging the textual content
of bug reports and source code files, AmaLgam utilizes additional
information such as code version history, similar bug reports,
and the structural features of both bug reports and source code
files. By integrating these diverse data sources, AmaLgam aims to
improve the accuracy and effectiveness of localizing buggy files.

Information and Software Technology 181 (2025) 107675H. Xu et al.

T
r
f
t
f

f
s
i

g
s
a
b
u
s
o
l
o
f

r
b
a
t
H

a

r
r

a
f
f
d
d

c
a
f
g
J

w

r
r
t
a
l
a
a

(
a

(

i
i
r
t
d

• Blizzard [17] — IR-based bug location techniques would perform
poorly if a bug report lacks essential information or contains
much noise brought by, for example, structured information like
stacktrace. Blizzard proposes to reformulate a bug report first and
use the bug report with higher quality to perform bug localiza-
tion. It improves the classical IR-based bug localization with a
focus on improving bug report quality.

The three techniques represent different kinds of IRBL techniques.
o fully utilize the advantages of three techniques, for a given bug
eport, we ran them to obtain their suspicious file lists with size = 20
rom the code base first. Then, we applied a machine-learning method
o merge them and output the 20 files that were most likely to be buggy
or the following subset retrieval of truly buggy files.

Specifically, for each file from the three lists, we obtained their
ranks and suspicious scores output by three IRBL techniques as instance
eatures (note that since Blizzard only provides file ranks without
uspicious scores, each file instance actually would have five features,
.e., three ranks and two suspicious scores), with being buggy or not as

their labels. Then, we applied XGBoost [41,42] to the training data to
et a classifier. XGBoost is a leading machine-learning method, more
pecifically, an extension of the gradient boosting algorithm, which is
n ensemble learning method that builds a stronger predictive model
y combining the predictions of multiple weaker models. It mainly
tilizes decision trees as its base models, and these trees are generally
hallow, with limited depth and fewer splits, to mitigate the risk of
verfitting. It provides parallel tree boosting and could automatically
earn to handle missing values within instances (which may happen in
ur case as Blizzard sometimes would not output a rank list of all code
iles within a codebase according to its design).

For testing bug reports with also three suspicious lists (aka, 60
ecommendation files of three IRBL baselines in total), we used the
uilt XGBoost classifier to predict which one was buggy, sorted the files
ccording to their classification scores, and took the top 20 files with
he largest scores as the initial buggy file list for use in the next step of
itMore (i.e., the subset retrieval of truly buggy code files).

3.3. Identify a subset of truly buggy files

In the first step, we could only assure that the initial buggy file list
is very likely to contain a truly buggy code file without knowing its
file name. This part is to precisely figure out which one from the initial
list is truly buggy(or very likely to be truly buggy). We would build
 machine learning model to predict whether a code file in the initial

list is truly buggy or not. To build the model, we extract three types of
instance features shown in Table 1, i.e., features related to bug reports,
recommended buggy files, and relations between them, such as textual
similarity.

Features related to bug reports. The proposed features related to bug
eports include two categories, i.e., bug report quality features and
eporter expertise features. Bug report quality is a fundamental factor

that largely affects whether, for a new bug report, a bug localization
tool can successfully retrieve a buggy code file [17]. Inspired by [43],
we consider seven features related to bug report quality, including the
existence or not of itemizations, code samples, stack traces, patches,
and screenshots, as well as keyword completeness and textual read-
ability of bug reports. We also take into account reporter expertise
features. We believe that reporters who submit or fix more bugs are
more experienced, then the bug reports submitted by the reporter will
be more professional; and if the percentage of bugs submitted by the
reporter that are fixed is higher, the bug reports submitted by him/her
will be more likely to be valid and of high quality. Hence, for reporter
expertise, we mainly calculate the number of bugs fixed by a reporter,
the number of bugs fixed by a reporter, and the number of bugs fixed
among all submitted bugs by a reporter.
5

t

Features related to recommended buggy files. The features related to
the suspicious buggy files include code complexity, bug fixing history
features, code readability, comments-codes consistency, and involved
developer features of code files. More complex code file is more prone
to have bugs; we mainly use CK metrics [44], Lines of Code (LoC),
nd statement numbers to measure the complexity of a code file. As
or bug fixing history, for each code file, we mainly consider four
eatures namely bug fixing frequency, bug fixing recency, bug fixing
ependencies, and the number of developers who touched the file
uring bug fixing. According to [15], a frequently fixed source file may

be a bug-prone file (bug fixing frequency), and a recently fixed source
file may be responsible for newly arrived bugs (bug fixing recency).
Bug fix dependencies take into account the dependencies between the
urrent source file and the past buggy files. We believe that if there
re dependencies between the current source file and the past buggy
iles, the current source file is likely to be buggy. We use the java-call-
raph suite, which can generate static and dynamic call graphs from the
ava system (https://github.corn/gousiosg/java-callgraph), to get the

complete call chain of the current source file and count the number of
past buggy files that exist in the call chain. The number of developers
who touched a code file during bug fixing is also related to the bug-
proneness of the code file [47]. If the cumulative number of developers

ho fix a code file is higher, the more problematic the file may be.
Code readability [48] and code-comment consistency [49] to some

extent also reveal the quality of a code file, and further correlate with
bug occurrence. A code file with relatively low readability (calculated
by using the style tool [43]), or whose code is inconsistent with its
comments (measured by topic similarity in this paper) may prevent
developers from comprehending the code and hence be more likely
to introduce bugs. Inspired by [45,46], we believe that developers of
a source code file are also an important factor in bug-introducing.
Compared to a developer who focuses on one module, a developer
who contributes to multiple modules is more prone to make errors
during the development and testing process. In this study, we mainly
compute four kinds of developer features including Developer Attention
Focus(DAF), Module Attention Focus(MAF) [45], Developer’s Structural
Scattering and Semantic Scattering [46].

Features related to the relationship between bug reports and recommended
buggy files. These features mainly focus on the textual similarity and
developer-reporter overlap between bug reports and recommended
buggy files.

Considering that code files with greater textual similarity to bug
eports are more likely to be associated with the bugs [12], for each bug
eport, we retrieve the textual similarity between the bug report and
hese code files in the initial list for the bug. Three types of similarities
re calculated, namely raw-text similarity (i.e., Surface Lexical Simi-
arity, API-Enriched Lexical Similarity, Collaborative Filtering Scores,
nd Class Name Similarity [15]), topic similarity (by capturing higher
bstract relevance of two documents in topic level using the Latent

Dirichlet Allocation (LDA) model [25]), and word embedding similarity
capturing contextual semantics using word embedding techniques such
s Word2Vec that convert both bug reports and source documents into

word embedding vectors and calculates their cosine similarity) [12].
All three types of text similarities are calculated based on the lexical
terms present in the bug report and the code file. Given that developers
or users) may use different terms to express the same intent [15], we

also introduce the WordNet [50] synonym network to extend the lexical
terms in bug reports and code files to avoid potential threats.

We also argue that the overlap of developers/reporters involved
n bug reports and source code influences the results. For example,
f the reporter of a bug report is the same as the developer of the
ecommended buggy file in the list, the file is more likely related to
he bug report. During overlap calculation, we extract reporters and
evelopers from the CCList and Comments of a bug report, as well as
hose contributing to a code file (through mining Git commit history),

https://github.corn/gousiosg/java-callgraph

Information and Software Technology 181 (2025) 107675H. Xu et al.

f
b
t

c
l
a
t
r
w
u
a
t
I

b
t
d
f
t

Table 1
Instance features used in identifying a subset of truly buggy files.

Dimension Feature Description

Bu
g r

ep
or

t

hasItemizations Whether the bug report contains itemizations.
Keyword completeness The completeness of a bug report by checking whether the keywords appear in a bug report.
hasCodeSamples Whether a bug report contains code samples.
hasStackTraces Whether a bug report contains stack traces.
HasPatches Whether a bug report contains patches.
hasScreenshots Whether a bug report contains screenshots.
Report readability Following [43], using Kincaid, Automated Readability Index (ARI), Coleman-Liau, RIX, Flesh, Fog, Lix, and SMOG Grade, to

measure the readability.
Report expertise The number of bugs submitted, fixed by a reporter, and the fixed bug ratio of the reporter.

Re
co

m
m

en
de

d b
ug

gy
 fil

e

Bug-fixing recency The reporting time distance between a bug report and the most recent fixed bug report of a code file.
Bug-fixing frequency The number of times a source file has been fixed before the current bug report.
NDEV The cumulative number of developers who have changed files in all previous code versions.
Code complexity Measured by CK metrics [44], Lines of Code, and Statement number.
Comments-codes consistency Consistency between code comments and codes, measured in LDA topic similarity.
Code readability Measured in the same as bug report readability.
DAF(Developer Attention
Focus)

Measures how focused the activities are of a developer [45].

MAF(Module Attention Focus) Measures how focused the activities are on a module (a code file in this paper) [45].
Developer’s structural
scattering

Measures how structurally far the code files modified by a developer are based on the number of subsystems one needs to cross
to reach one code file from the other [46].

Developer’s semantic
scattering

Measures how much spread the implemented responsibilities of the code files modified by a developer are based on the textual
similarity of his/her changed code files [46].

Bug fix dependencies The number of past buggy files that have a call/called relationship with the current source file.

Re
la

tio
n b

et
w

ee
n t

he
m Surface lexical similarity Cosine similarity (using VSM) between a bug report and a code file.

API-enriched lexical similarity Cosine similarity (using VSM) between a bug report and a code file extended by its API documentation.
Collaborative filtering score Cosine similarity (using VSM) between a given bug report and the bug reports for which a code file was fixed before the bug

was reported.
Class name similarity The length of source code class name contained in the title of a bug report.
Topic similarity Topic similarity (using LDA) between bug reports and source files.
Semantic similarity Cosine similarity of word embedding vectors of bug reports and source files.
Developers and reporters The number of people both appearing in a bug report and contributing to a code file.
d
d

i
d
s

t
t
u

m
i
d
p
i
s
w

to check how many people are overlapped between them.
Finally, a machine learning model is built to predict truly buggy

files using the three types of features extracted from the initial buggy
file list.

3.4. Optimize buggy file list

After we obtain the subset of truly (or very likely to be) buggy
ile(s), our next step is to use them to help retrieve the remaining
uggy files. We would particularly focus on three kinds of code files
hat are related to the given buggy files, i.e., files that have a control

flow, data flow, and co-occurrence relationships with those given buggy
files. A bug may propagate in code files by following the control flow,
data flow. Hence, we believe that code files correlated with a buggy
ode file through control flow and data flow dependency are more
ikely to be modified to fix the bug. We say that two code files have
 co-occurrence relationship if they are generally changed/committed
ogether or contributed by the same developers. Such a co-occurrence
elationship matters in bug localization and bug fixing [15,51]. After
e obtained the candidate buggy code files for each relationship, we
se a weighted strategy to merge and re-order the code files to generate
n optimized buggy file list. This optimized buggy file list is supposed
o contain more truly buggy code files than existing state-of-the-art
R-based bug localization techniques.

3.4.1. Code relationship analysis
We mainly focus on three types of code files associated with a given

buggy code file based on control flow, data flow, and co-occurrence re-
lationships with the file. For each file from the acquired subset of truly
uggy files, a corresponding control flow graph is generated. Based on
he analysis, we find the files with control flow dependencies, data flow
ependencies, and co-occurrence relationships with the truly buggy
ile. In other words, three lists of candidate buggy files corresponding to
hese relationships are generated for each truly buggy file in the subset.
6

w

Control flow dependency. It describes the sequential relationship be-
tween statements in program execution. It indicates that the execution
of a statement depends on the execution result of previous statements.
The control dependencies followed in our technique are defined as: let
𝑎 and 𝑏 be two nodes of a Control Flow Graph (CFG) of a program;
if the execution of 𝑏 depends on the execution result of 𝑎, then 𝑏 is
control-dependent on 𝑎.

Data flow dependency. It describes the delivery and dependency of data
in a program. In Data Flow Dependencies, the value of a variable is
elivered from one program point to another. The definition of data
ependencies in our technique is as follows: given a CFG 𝐺 = (𝑉 , 𝐸)

of a file 𝑓 , and two nodes 𝑛𝑖, 𝑛𝑗 (assuming that 𝑗 follows 𝑖), and 𝑖 ≠ 𝑗.
There exists one path from 𝑛𝑖 to 𝑛𝑗 in the CFG. If the value calculated
n 𝑛𝑖 is used in 𝑛𝑗 , then 𝑛𝑗 data depends on 𝑛𝑖. That is, there is a
ata dependency between two statements: a variable is defined in one
tatement, and that variable is used later in another statement.

Co-occurrence dependency. The co-occurrence of two files, to some
extent, reveals the relevance between them. In HitMore, we consider
hree types of co-occurrence dependencies between files: committed
ogether, modified together, and with the same contributor. We first
se Git Blame to get the commit time, committer, modified time, and

modifier. If two files have the same modification time, they were
odified together (i.e., there is a co-occurrence dependency). Similarly,

f two files have the same commit time, they also have co-occurrence
ependency. Then, we use Git Log to get the developers who have
articipated in the file’s development. If a developer has participated
n the development of two files, it is considered that both files have the
ame contributor. By comparing the time and developers’ information,
e can identify the code files that have co-occurrence dependencies
ith each code file in the subset of buggy files.

Information and Software Technology 181 (2025) 107675H. Xu et al.

t
w
r

r
B
t
r
t
i
t
0
i
f

a
w
m
t
t
r
c

w

l

O
n

t
u
s
a

t
l
‘
H
r
F
s
‘
w
f
o

b
c
t

s

o

a

i

3.4.2. Weighting strategy for list merge
After code relationship analysis in Section 3.4.1, we would get the

following three file lists for the files in the truly buggy file subset:

• List 1 contains files that have control flow dependencies with the
files in the subset.

• List 2 contains files that have data flow dependencies with the
files in the subset.

• List 3 contains files that have co-occurrence dependencies with
the files in the subset.

Our next step is to determine the way to merge these three lists
o get a final optimized one. Towards this, we designed a three-step
eighting strategy that fully considered the original suspiciousness

evealed by mainstream bug localization techniques and the existing
dependency relation as follows.

Obtain initial suspicious scores 𝐶. For each code file in three lists, we
efer to the full recommendation lists of Amalgam, BugLocator, and
lizzard to get its corresponding ranks first; the rank value corresponds
o its position in the recommendation list, where a rank of 1 means it is
anked first and is supposed to be the most suspicious. After obtaining
he rank of each IRBL technique, we calculate its 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 score by
nverting its rank (i.e., 3 → 1/3); if a code file is not ranked in a given
echnique (e.g., not retrieved by Blizzard), its 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 score is set as
. Last, we add the three 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 scores and take the sum as the file’s
nitial suspiciousness value. The initial suspicious scores would range
rom 0 to 3, according to our calculation strategy.

Compute relationship weights 𝑊 . It is possible that a file may have
more than one relationship, e.g., having both control and data-flow
dependencies, with a truly buggy code file. In other words, a file from
 relation list may also appear in another relation list(s). We think files
ith more code relationships to a truly buggy code file are likely to be
ore suspicious than other files. To account for this, for each file in the

hree relation lists (i.e., the above Lists 1, 2, and 3), we decided to use
he number of times it appears across the lists, noted as 𝑜𝑐 𝑐_𝑛𝑢𝑚, as the
elationship weight for the file. The weight value would be 1,2, or 3,
orresponding to a file appearing in 1 list, 2 lists, or 3 lists, separately.

Reorder based on weighted suspicious score 𝑆. After we obtain the initial
suspicious score and relationship weight for each file in the three lists,

e multiply them and take the weighted suspicious scores as their final
scores. Then we sort the files in descending order of their weighted
scores to obtain the final optimized buggy file list and return it to
developers for further checking.

4. Experiment setup

In this section, we first present the dataset and comparison base-
ines. Then, we describe the metrics that we used for performance

evaluation. Additionally, we provide information regarding the imple-
mentation of machine learning algorithms and present some tools that
can be used to support our technique.

4.1. Dataset and baselines

In this paper, six open-source Java projects are selected for experi-
ments: Tomcat, AspectJ, Lucene, ZooKeeper, OpenJPA, and Hibernate-

RM. These projects are widely used for static bug localization tech-
iques. They are from different domains and are of varied code scales.

We totally collected 7609 bug reports from the six projects. Among
them, Tomcat and AspectJ are from the dataset shared by [15]. For
he remaining four projects, we crawled their code and bug reports
p to November 2018 and linked the bug reports with their corre-
ponding buggy code files through heuristic rules obtained by manually
nalyzing the commit logs.
7

Table 2
Basic statistics of six experimental projects.

Project Time period Bug
reports

Lines of
code

Number of bugs with
multiple buggy files
(Ratio)

ZooKeeper 2008-06-09–
2018-11-12

470 140,175 305 (64.89%)

OpenJPA 2006-08-11–
2018-11-16

533 723,284 311 (58.35%)

Tomcat 2002-07-06–
2014-01-18

992 573,208 339 (34.17%)

AspectJ 2002-03-13–
2014-01-10

563 690,560 376 (66.79%)

Hibernate-
ORM

2004-08-22–
2018-11-16

1285 1,068,498 805 (62.65%)

Lucene 2007-07-12–
2018-11-14

1454 1,762,563 1079 (74.21%)

Through manual analysis of bug reports and commit logs, we found
hat developers tended to add projectName-bugID in their commit
ogs to tell others which bugs they fixed. For example, by adding
‘ZOOKEEPER-3217’’ to say they fixed a ZooKeeper bug with ID 3217.
ence, we used the heuristic rule projectName-bugID to obtain bug

eports which could potentially be linked with their buggy code files.
or those bugs which failed to match the heuristic rule, we further
earched their raw bugIDs through project commit logs, e.g., using
‘3217’’ rather than ‘‘ZOOKEEPER-3217’’. After the two-step searching,
e would get a list of linked bug report candidates. To filter out some

alse positive candidates, we manually checked each candidate and
btained 6278 linked bug reports from the four projects.

Following [15], we further removed bug reports that linked to
multiple commits or shared the same commit with others, as it was not
clear which files were relevant. Some bug reports with no deleted or
modified code files were also ignored as it was not applicable to predict
uggy files which were not created yet in the buggy version of project
ode. After we linked bug reports with bug-fixing commits, following
he strategy used in [15], for each bug report, we checked out the

version right before the bug-fixing commit, and took the deleted and
modified code files as the buggy files that contained the bug (adding
files were ignored as they did not even exist yet when the bug report
was initially reported). Table 2 shows the basic information about the
ix experimental projects, including the project name, the time period

of bug reports, the number of bug reports, and the number of code lines.
To evaluate the effectiveness of combining three localization tech-

niques to produce an initial list of buggy files, we use AmaLgam,
BugLocator and Blizzard as baselines. In evaluating HitMore, we also
use the three techniques as comparison baselines. These techniques
selected for comparison are well-performed representatives of static,
especially IR-based bug localization techniques.

4.2. Metrics

HitMore mainly includes two parts, one is to retrieve a subset of
truly buggy code files from an initial buggy file recommendation list.
The other part is to retrieve the remaining buggy files based on the
subset through three kinds of code relationship analysis. The result
combination of the two parts constitutes the output of HitMore to devel-
pers. Correspondingly, we used two kinds of performance metrics to

evaluate the effectiveness of our technique, namely binary classification
metrics and bug localization metrics. The binary classification metrics
re used to evaluate how effective we are in retrieving the subset of

truly buggy files. We take it as a binary classification problem that
dentifies truly buggy files from an initial buggy file recommendation

list. Hence, we use Accuracy, Precision, Recall, and F1-score, which are
commonly used evaluation metrics for binary classification models, to
measure the performance of the identification step for a subset.

Information and Software Technology 181 (2025) 107675H. Xu et al.

p
A
p
w
c
m
o
A
a

l
t

t
i
d

q

𝐾

b
b
b

t

w

(

d

a
f
s
=
f
t

f

r
f

D

f
h

f

The bug localization metrics are used to measure the final overall
erformance of locating buggy files of a bug localization technique.
s our HitMore is also an information retrieval-based technique that
rovides a buggy file recommendation list for a bug report (as a query),
e also adopt the commonly used Accuracy@K, MAP, and MRR for lo-

alization performance evaluation. Further, we also designed two new
etrics HitCount@N and multiCompleteness@All, to better evaluate

ur HitMore in locating multiple-buggy-file bugs. The definitions of
ccuracy@K, MAP, MRR, HitCount@N, and multiCompleteness@All
re as follows.

Accuracy@K. Accuracy@K is defined as the ratio of bugs that has at
east one truly buggy code file successfully retrieved in a recommenda-
ion of size 𝐾.

MAP (mean average precision). This metric returns the mean value of
he average detection rate of all bug reports. The average detection rate
s an average over different recall rate points for a search result, and is
efined as follows:

𝑃 (𝑗) = number of positive instances in top 𝑗
𝑗

(1)

Avg𝑃𝑖 = ⋅
𝑁
∑

𝑗=1

𝑃 (𝑗) × 𝑝𝑜𝑠(𝑗)
number of positive instances (2)

𝑀 𝐴𝑃 = 1
𝑄

𝑄
∑

𝑖=1
Avg𝑃𝑖 (3)

where 𝑝𝑜𝑠(𝑗) denotes whether the instance ranked 𝑗 is relevant to the
bug report: relevant is 1, otherwise 0. 𝑃 (𝑗) denotes the precision of the
retrieval at position 𝑗. Avg𝑃𝑖 denotes the average retrieval precision of
uery 𝑖. MAP denotes the mean of the average precision for 𝑄 queries.

MRR (mean reciprocal rank). This metric returns the mean of the
inverse rank of a series of queries. The inverse rank of a query refers
to the inverse of 1st relevant document’s rank, i.e., the inverse of the
rank of the buggy program module, which is defined as follows:

𝑀 𝑅𝑅 = 1
𝑄

𝑄
∑

𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(4)

where 𝑟𝑎𝑛𝑘𝑖 denotes the rank of the 1st relevant file.

HitCount@N. HitCount@N is defined as the number of bugs that have
𝑁 truly buggy files successfully retrieved in a buggy file recommenda-
tion list of a certain size 𝐾.

MultiCompleteness@All. It measures the retrieval completeness for
multiple-buggy-code-file bugs. As shown in the following formula,
multiCompleteness@All is defined as the ratio of bugs that have all
truly buggy files retrieved in a buggy file recommendation list of size

.

𝑚𝑢𝑙 𝑡𝑖𝐶 𝑜𝑚𝑝𝑙 𝑒𝑡𝑒𝑛𝑒𝑠𝑠@𝐴𝑙 𝑙 = 𝑞
𝑄

(5)

where 𝑞 denotes the number of bugs for which all multiple (>1) truly
uggy files are successfully retrieved in the recommendation list of
uggy files. 𝑄 is the number of bugs associated with multiple (>1) truly
uggy code files.

4.3. Implementation and tool supports

In identifying a subset of truly buggy files, we divide the dataset into
raining and test datasets. We train the model on the training dataset

and validate the model with the test dataset. Five cross-validations
ere used. In this paper, five machine learning algorithms are tested,

i.e., Random Forest (RF), Support Vector Machine (SVM), Decision Tree
DT), Naive Bayes (NB), and Logistic Regression (LR). During the model

construction process, we also used the random oversampling strategy to
eal with the class imbalance problem (one class having more instances

than the other).
8

In obtaining the code files that have control/data flow and co-
occurrence dependency with the subset of buggy files, we used the
vailable tools and commands: (i) For the control flow analysis of code
iles, the Understand API tool was used first. For each code file 𝑓 in the
ubset of buggy files, generate its control flow graph control_flow_graph

java_file.ents(‘‘Control Flow Graph’’)[0]. Each node of the control
low graph is then read to find the nodes that simultaneously satisfy
he criteria of being reachable from 𝑓 and having at least two direct

successors. These nodes (files) have a control flow relationship with the
code file 𝑓 . (ii)For the data flow analysis of code files, we follow the
control flow graph obtained in (i). If the value obtained in node 𝑛𝑖 is
used in node 𝑛𝑗 , then 𝑛𝑗 data depends on 𝑛𝑖. (iii) For analyzing the co-
currency dependency of code files, we first use the Git blame command
to obtain the commit time, commit person, change time, and person
information of each code file. Then, we match the time and the person’s
name to get the code files that have co-occurrence dependencies with
the truly buggy files in the subset. The replication package of our study
is available at https://github.com/LyraXv/HitMore.

5. Experiment results

This section presents the results of our experiment by analyzing and
answering the following two research questions.
RQ1: Can we effectively retrieve the contained truly buggy code file(s)
rom the initial recommendation list?
RQ2: What is the overall performance of HitMore in locating bugs
especially those bugs with multiple buggy code files?

5.1. RQ1: Can we effectively retrieve the contained truly buggy file(s) from
the initial recommendation list?

The successful retrieval of truly buggy code files from the initial
recommendation list (i.e., the subset of truly buggy files) is the basis
for subsequent retrieval of remaining truly buggy files. Knowing the
subset retrieval performance can help us better understand our HitMore
and reveal potential improvement directions of our technique. Before
checking that, we first checked whether the initial recommendation list
indeed contains truly buggy code files, as it is the data basis for subset
etrieval. Through analyzing the obtained initial lists of size = 20, we
ind that 94.58%, 80.86%, 89.21%, 74.96%, 81.17% and 92.98% of

them contain at least one truly buggy code file for the bug reports of six
projects (i.e., ZooKeeper, OpenJPA, Tomcat, AspectJ, Hibernate-ORM,
and Lucene). We think these ratios are acceptable in our following
subset retrieval experiments.

As we transform the subset identification problem into a binary
classification one, we present the overall retrieval performance in
terms of Accuracy, Precision, Recall, and F1 scores. The importance of
instance features used to build classification models is also analyzed.

etailed results are as follows.
Subset Retrieval Performance. As mentioned in Section 3.3, we

build a binary classification model based on three kinds of bug/code file
features to predict whether a code file from the initial recommendation
list is truly buggy or not. Since we have no idea which classifier is
best suited for this task, we test five typical machine learning (ML)
models, including Decision Tree (DT), Support Vector Machine (SVM),
Naive Bayes (NB), Logistic Regression (LR), and Random Forest (RF).
Furthermore, considering that an ML algorithm generally has some
tunable hyperparameters, which practitioners often choose to optimize
or better performance in real application scenarios, we also performed
yperparameter tuning on the five ML algorithms. With reference to

existing studies [52–55], we identified the hyperparameters to be tuned
or each ML method and their respective parameter ranges (shown in

Table A.10 in the Appendix Section). We then conducted experiments
by systematically combining all possible values of the hyperparameters
for every ML method. Finally, the hyperparameter settings that deliv-
ered the best performance (regarding F1 scores) were selected to train

https://github.com/LyraXv/HitMore

Information and Software Technology 181 (2025) 107675H. Xu et al.

P
b
t
P
N
r
d
9
b
c
f
n

a
u
m
m
w
i

f
o
t
r
t
t
p

o
f
f
r
t
f
t

r
i
f

l
t
p

D

Table 3
Subset retrieval performance of truly buggy files.

Project Classifier Accuracy Precision Recall F1-Score

ZooKeeper

DT 81.5% 86.0% 81.5% 83.4%
SVM 73.6% 87.2% 73.6% 78.4%
NB 54.7% 86.1% 54.7% 63.3%
LR 72.4% 87.1% 72.4% 77.5%
RF 85.5% 86.7% 85.5% 86.1%

OpenJPA

DT 85.3% 89.4% 85.3% 87.2%
SVM 73.5% 90.8% 73.5% 79.9%
NB 42.6% 90.3% 42.6% 53.3%
LR 73.1% 90.9% 73.1% 79.6%
RF 88.6% 89.9% 88.6% 89.2%

Tomcat

DT 88.1% 90.4% 88.1% 89.1%
SVM 80.3% 91.3% 80.3% 84.5%
NB 47.7% 90.3% 47.7% 58.4%
LR 78.5% 91.3% 78.5% 83.3%
RF 92.7% 91.7% 92.7% 92.1%

AspectJ

DT 85.5% 90.5% 85.5% 87.7%
SVM 87.0% 90.3% 87.0% 88.5%
NB 31.4% 90.3% 31.4% 41.1%
LR 72.0% 91.4% 72.0% 79.1%
RF 91.6% 91.0% 91.6% 91.3%

Hibernate-ORM

DT 88.5% 90.5% 88.5% 89.4%
SVM 67.5% 90.7% 67.5% 75.7%
NB 69.5% 91.1% 69.5% 77.0%
LR 76.1% 91.7% 76.1% 81.8%
RF 92.6% 91.5% 92.6% 91.9%

Lucene

DT 82.5% 85.8% 82.5% 83.9%
SVM 75.5% 87.3% 75.5% 79.6%
NB 73.5% 86.0% 73.5% 77.9%
LR 75.3% 87.4% 75.3% 79.5%
RF 88.9% 87.7% 88.9% 88.2%

the model used in the subset retrieval.
Table 3 shows the classification performance of five ML methods af-

ter hyperparameter tuning on six projects (the concrete hyperparameter
settings that lead to the best performance for each ML method could be
found in Table A.11 in the Appendix Section).

From Table 3, we can find that in terms of weighted Accuracy,
recision, Recall, and F1-Score, the Random Forest classifier performs
est among the five classifiers and demonstrates excellent results on
he Tomcat, AspectJ and Hibernate-orm project sets (the Accuracy,
recision, Recall, and F1-score are as high as 91.0% to 92.7%). The
aive Bayes performs most poorly in these projects, with F1-scores

anging from 41.1% to 77.9% in six experimental projects. With Ran-
om Forest, we can obtain a best F1-score that ranges from 86.1% to
2.1% across six experimental projects. These results indicate that our
uilt classification models are able to help us figure out the truly buggy
ode files contained in the initial recommendation list. This lays a good
oundation for us to retrieve other remaining buggy code files in our
ext step.
Feature Importance. As shown in Table 1, three kinds of features

re used to build the classifier. We perform two kinds of analysis to
nderstand the importance of these features: (i) How effective is the
odel built on a single kind of features? (ii) Which exact features are
ore influential in predicting truly buggy files? During model building,
e chose the Random Forest classifier as it was found to perform best

n overall classification performance (in Table 3). The details are as
follows.

For (i), we first built three prediction models on each kind of
eatures separately. Then, we compare their performance with the
ne built on all features in terms of F1-Score, a metric that manages
he balance between accurately identifying buggy files (recall) and
educing false positives (precision), which is crucial in bug localization
asks. Table 4 shows the F1-Score results. From the table, we can find
hat, as expected, the model built on all features achieved much better
erformance than the ones built on every single kind of features. This
9

Table 4
F1-score of the Random Forest Models Based on Individual Feature Subsets.

Project Dimension F1-score

ZooKeeper

All 86.1%
Bug Reports 64.8%
Recommended Buggy Files 81.3%
Reltionship Between Them 77.9%

OpenJPA

All 89.2%
Bug Reports 63.1%
Recommended Buggy Files 86.3%
Reltionship Between Them 81.6%

Tomcat

All 92.1%
Bug Reports 62.3%
Recommended Buggy Files 87.9%
Reltionship Between Them 85.1%

AspectJ

All 91.3%
Bug Reports 62.8%
Recommended Buggy Files 89.9%
Reltionship Between Them 80.5%

Hibernate-ORM

All 91.9%
Bug Reports 67.6%
Recommended Buggy Files 89.4%
Reltionship Between Them 86.2%

Lucene

All 88.2%
Bug Reports 61.3%
Recommended Buggy Files 83.7%
Reltionship Between Them 80.3%

means all three kinds of features are needed in the subset retrieval
f truly buggy files. As for the three kinds of features themselves, the
eatures related to recommended buggy files outperform the other two
eature groups by about 2.8% to 27.1% in F1-Score. The results of the
elationship feature group are relatively lower but not by much than
hat of the buggy file feature group. Models building on the bug report
eature group perform worst, obtaining an F1 score ranging from 61.3%
o 67.6% on six projects.

For (ii), we followed the process of [56,57] to analyze the impor-
tance of individual features. Specifically, we first conduct correlation
analysis by using the R package Hmisc to reduce the covariance be-
tween features [17,32]. Then, we perform redundancy analysis by using
the redun function to remove redundant features. After that, we build
andom forest models on left features and apply statistical tests to
dentify important features. More detailedly, we first build a random
orest model using the R package randomForest, with 10-fold cross-

validation applied. During model training, the importance function in
the randomForest package is used to compute the importance of a
factor based on the OOB (the internal error estimate of a random forest
classifier). Based on the importance values of individual features from
prediction models, the Scott-Knott ESD test [58] is applied to determine
the most important features. Further, to better measure how effective
these features are, we use the Wilcoxon rank sum test [35] along with
the Bonferroni correction [59] to compare the statistical significance of
differences between code files with and without bugs. The differences
are measured by Cliff’s delta effect size [60].

Table 5 shows the top 5 features that are most indicative in predict-
ing truly buggy files for each project. The last column, 𝛿, shows Cliff’s
delta effect size and corresponding difference magnitude; for effect size
values less than 0.147, between 0.147 and 0.33, between 0.33 and
0.474, and above 0.474, map them to ‘‘Negligible’’, ‘‘Small’’, ‘‘Medium’’,
and ‘‘Large’’ difference magnitude, respectively [61]. The significance
evels are also marked with stars in the table, from which we can tell
hat the associated statistical tests all show statistical significance at the
-value < 0.05, more specifically < 0.001.

Among these six projects, nine features belong to the top 5 most
important features, i.e., Topic Similarity, Class Name Similarity, Surface
Lexical Similarity, Collaborative Filtering Score, Semantic Similarity,

AF, MAF, Developers Semantic Scattering, cf.RIX(code file readabil-
ity). Further, as shown in Table 5, two features, namely Topic Similarity

Information and Software Technology 181 (2025) 107675H. Xu et al.

e
e
b
f
f
a
p
d

w
c
t
t

c
a
l
t

o
o
t
I
r
v
b
A

Table 5
Top 5 most important features and their Cliff’s delta effect size in predicting truly
buggy files.

Project Feature name 𝛿

ZooKeeper

Surface lexical similarity 0.319 (small)***
Collaborative filter score −0.272 (small)***
Topic similarity 0.234 (small)***
Class name similarity −0.152 (small)***
Semantic similarity −0.112 (negligible)***

OpenJPA

Collaborative filtering score 0.257 (small)***
Surface lexical similarity 0,229 (small)***
Topic similarity 0.161 (small)***
Class name similarity 0.124 (negligible)***
Semantic similarity −0.113 (negligible)***

Tomcat

Surface lexical similarity 0.366 (medium)***
Class name similarity 0.280 (small)***
Topic similarity 0.213 (small)***
Collaborative filter score 0.213 (small)***
Semantic similarity −0.109 (negligible)***

AspectJ

Collaborative filter score 0.259 (small)***
MAF −0.109 (negligible)***
Topic similarity 0.105 (negligible)***
DAF −0.101 (negligible)***
Class name similarity 0.092 (negligible)***

Hibernate-ORM

Surface lexical similarity 0.288 (small)***
Class name similarity 0.233 (small)***
cf.RIX(Readability) 0.232 (small)***
Topic similarity 0.227 (small)***
DAF −0.199 (small)***

Lucene

Surface lexical similarity 0.294 (small)***
Class name similarity 0.257 (small)***
Topic similarity 0.215 (small)***
Semantic similarity −0.184 (small)***
Developers semantic scattering 0.038 (negligible)***

Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.

and Class Name Similarity, appear in all six projects, indicating their
predictive value for identifying truly buggy files across diverse datasets.

Regarding their effect size, we can find that all features show a neg-
ligible to medium difference magnitude between buggy and non-buggy
code files. The feature Surface Lexical Similarity (which appeared as the
top 5 most important feature in five projects) shows a relatively larger
ffect size compared to other features, with one medium and four small
ffect sizes, indicating stronger discriminatory power for distinguishing
etween truly buggy files and non-buggy files. Topic Similarity presents
ive small and one negligible effect size; Class Name Similarity shows
our small and two negligible effect sizes; Collaborative Filtering Score
ppeared four times as the top 5 most important feature among six
rojects, with all effect sizes also being small. The effect sizes of
ifferent features in Table 5 also, to some extent, indicate that the

reported classification performance in this study is achieved through
the combined contributions of all features.

5.2. RQ2: What is the overall performance of HitMore in locating bugs
especially those bugs with multiple buggy code files?

HitMore is a technique mainly designed to improve locating bugs
with multiple buggy code files. However, as we cannot know in advance

hether a newly arrived bug is associated with single or multiple buggy
ode files or not in practice, it then becomes important to make sure
hat HitMore would not perform worse than other bug localization
echniques in general locating cases. Hence, in evaluating HitMore,

we first present its overall locating performance by using general
locating metrics (Accuracy@K, MAP, and MRR) like other locating
techniques. Then, we particularly check to what extent our HitMore
can improve multiple-buggy-code-file bugs compared to existing tech-
niques. For each comparison of our HitMore and three baselines, we
further conduct statistical analysis by running the Wilcoxon Rank Sum
10

t

test and using Cliff’s Delta effect size, to check whether our observed
performance differences between them have statistical significance or
not, and if so, how large the differences are. Result details are as
follows.

Overall Locating Performance. Table 6 shows the overall lo-
cating performance of HitMore and three strong baselines in terms
of Accuracy@K (i.e., A@K in the table), MAP, and MRR. From the
table, we can find that in general bug locating cases (without dis-
tinguishing single or multiple-buggy-code-file bugs or not), HitMore
did not lose to comparison baselines. Instead, in all cases, HitMore
achieved better results than baselines. Specifically, compared to three
baselines, HitMore improved the MAP by 0.09–0.27, 0.06–0.19 and
0.08–0.15, respectively, and improved the MRR by 0.07–0.3, 0.03–
0.18 and 0.07–0.13, respectively, across six projects. By referring to
the definition of MAP and MRR, the corresponding improvements of
HitMore indicate that HitMore could place more truly buggy code
files into the top-K recommendation list (higher MAP), and make
developers check fewer files to find the first truly buggy one (higher
MRR). The largest improvements of MAP (0.13–0.27) and MRR (0.1–
0.3) over three baselines happened on the Lucene project. Considering
that Lucene has 74.21% multiple-buggy-code-file bugs, such a quite
substantial improvement over baselines indirectly indicates our Hit-
More performs much better in locating multiple-buggy-code-file bugs
than existing techniques. As for the Accuracy@K metric, we can find
that in all cases, HitMore obtains the best Accuracy@K, which also
releases a positive signal of our HitMore in locating general bugs
in real development situations. For example, HitMore could improve
Accuracy@20 by 3.19%–27.94%, 1.07%–16.5% and 3.41%–15.45%
over three baselines across six projects, respectively.

By referring to the statistical analysis results in Table 8, we can
onclude that the observed performance differences between HitMore
nd three baselines are all statistically significant at the significance
evel of p-value < 0.05. The magnitude of these differences are medium
o large according to the Cliff’s Detla effect size. These results further

support the effectiveness of our HitMore in locating bugs.
Extraction Effectiveness of Multiple-Buggy-Code-File Bugs. The

results in Table 6 reveal that HitMore could achieve better perfor-
mance than existing bug-locating techniques in general cases. Our
next step is to figure out to what extent our HitMore outperforms
existing techniques in handling multiple-buggy-code-file bugs. This is
mainly measured by our metrics HitCount@N (the number of bugs
that have N truly buggy code files retrieved in a recommendation
list) and multiCompleteness@All (the ratio of bugs having all multiple
truly buggy code files retrieved in the recommendation list). Table 7
shows the corresponding HitCount@N and Completeness@All results
for HitMore and three comparison baselines. For better comparison,
we provide the number of multiple-buggy-code-file bugs and their
corresponding ratios in the Project column. we also add a delta number
in the () beside the HitCount@N values in the table. The delta number
in the () is obtained by minus HitCount@N of a technique from that of
HitMore. For example, the 200 (−58) in the All column (HitCount@All)
of AmaLgam, means that AmaLgam could retrieve all truly buggy code
files for 200 bugs, with 58 bugs fewer than HitMore which retrieves
all truly buggy code files for 258 bugs. We consider three values of N:
One, Two, and All.

From Table 7, we can find that in terms of all three HitCount@N
(HitCount@One, HitCount@Two, HitCount@All), HitMore
utperformed three baselines in all six experimental projects except
ne (In OpenJPA, the HitCount@Two of HitMore is 7 fewer than
hat of AmaLgam). This means HitMore is able to improve existing
R-based bug-locating techniques in different extraction levels, either
etrieving only one or multiple truly buggy code files. For example, the
alues of HitCount@One (the number of bugs having at least one truly
uggy file retrieved) are 17-359, 5-212 and 16-153 higher than that of
maLgam, BugLocator and Blizzard across six projects, respectively;
he corresponding delta values of HitCount@Two/HitCount@All are

Information and Software Technology 181 (2025) 107675H. Xu et al.

m

Table 6
Overall locating performance of HitMore and three baselines in terms of accuracy@K, MAP, and MRR.

Project Approach A@1 A@5 A@10 A@20 MAP MRR

ZooKeeper

AmaLgam 34.26% 66.38% 73.62% 82.55% 0.39 0.48
BugLocator 52.55% 78.94% 87.45% 91.91% 0.51 0.65
Blizzard 50.00% 73.83% 82.13% 89.57% 0.49 0.61
HitMore 56.81% 81.70% 89.57% 92.98% 0.57 0.68

OpenJPA

AmaLgam 30.39% 57.60% 68.28% 77.86% 0.36 0.43
BugLocator 28.52% 56.29% 65.85% 75.61% 0.35 0.41
Blizzard 26.83% 50.28% 60.60% 69.61% 0.31 0.38
HitMore 38.46% 64.54% 72.80% 81.05% 0.45 0.50

Tomcat

AmaLgam 28.73% 52.12% 60.99% 67.54% 0.35 0.39
BugLocator 45.16% 69.56% 79.64% 86.19% 0.51 0.57
Blizzard 41.53% 67.35% 76.62% 83.67% 0.48 0.53
HitMore 51.11% 74.80% 81.65% 87.70% 0.58 0.61

AspectJ

AmaLgam 19.01% 36.94% 48.85% 59.68% 0.22 0.29
BugLocator 20.07% 43.34% 55.77% 68.38% 0.22 0.32
Blizzard 20.07% 39.08% 48.49% 58.44% 0.21 0.30
HitMore 31.08% 55.42% 64.83% 74.07% 0.35 0.43

Hibernate-ORM

AmaLgam 17.51% 35.41% 43.35% 51.75% 0.21 0.26
BugLocator 23.81% 46.07% 56.26% 63.19% 0.25 0.33
Blizzard 29.73% 50.43% 59.92% 67.78% 0.31 0.40
HitMore 39.92% 64.05% 71.91% 79.69% 0.44 0.51

Lucene

AmaLgam 29.30% 57.22% 67.19% 75.45% 0.30 0.42
BugLocator 50.07% 76.27% 83.70% 88.51% 0.41 0.62
Blizzard 49.11% 76.89% 84.32% 88.93% 0.44 0.62
HitMore 62.65% 85.01% 89.68% 92.85% 0.57 0.72
T
c

d
b

Table 7
Extraction effectiveness of multiple buggy code files in terms of HitCount@N and

ultiCompleteness@All (mC).
Project Approach HitCount@N(𝛥) mC(%)

One Two All

ZooKeeper
(305,64.89%)

Amalgam 388(−49) 164(−47) 200(−58) 24.92
BugLocator 432(−5) 201(−10) 236(−22) 29.18
Blizzard 421(−16) 195(−16) 225(−33) 26.89
HitMore 437 211 258 35.08

OpenJPA
(311,58.35%)

Amalgam 415(−17) 120(+7) 230(−11) 16.72
BugLocator 403(−29) 101(−12) 229(−12) 15.43
Blizzard 371(−61) 80(−33) 195(−46) 10.29
HitMore 432 113 241 16.40

Tomcat
(339,34.17%)

Amalgam 670(−200) 128(−50) 499(−191) 20.35
BugLocator 855(−15) 163(−15) 658(−32) 23.60
Blizzard 830(−40) 151(−27) 638(−52) 21.53
HitMore 870 178 690 28.32

AspectJ
(376,66.79%)

Amalgam 336(−81) 107(−36) 125(−40) 6.91
BugLocator 385(−32) 100(−43) 149(−16) 6.38
Blizzard 329(−88) 65(−78) 131(−34) 2.93
HitMore 417 143 165 8.51

Hibernate-
ORM
(805,62.65%)

Amalgam 665(−359) 171(−129) 287(−211) 7.33
BugLocator 812(−212) 220(−80) 395(−103) 9.57
Blizzard 871(−153) 205(−95) 395(−103) 7.58
HitMore 1024 300 498 13.54

Lucene
(1079,74.21%)

Amalgam 1097(−253) 584(−225) 511(−265) 26.14
BugLocator 1286(−64) 581(−228) 537(−239) 22.15
Blizzard 1293(−57) 691(−118) 628(−148) 29.66
HitMore 1350 809 776 41.52

-7-225/11-265, 10-228/12-239 and 16-118/33-148, separately.
Further, by referring to the multiCompleteness@All values in the

table(i.e., the mC column), we can find that our HitMore outperformed
three baselines in the locating performance of mutiple-buggy-code-file
bugs over all six projects (except on the OpenJPA, where AmaLgam ob-
tained slightly better mC over HitMore). In six projects, HitMore is able
to retrieve all buggy code files for 8.51% to 41.52% multiple-buggy-
code-file bugs; while for three baselines, their corresponding values are
6.91%–26.14%, 6.38%–29.18% and 2.93%–29.66%, respectively. The
absolute improvement in muliCompleteness@All between HitMore and
three baselines (i.e., AmaLgam, BugLocator, and Blizzard) are up to
11

u

15.38% (6.83% on average), 19.36% (6.18% on average), and 11.86%
(7.42% on average), respectively.

The obtained statistical test results and Cliff’s Delta effect size in
Table 9, indicate that the performance differences between HitMore
and three baselines in locating multiple-buggy-code-file bugs all present
statistical significance at the p-value < 0.05. These results indicate
that HitMore indeed performs better than baselines. In terms of Hit-
Count@N (N: One, Two, and All), the difference magnitude between
HitMore and three baselines ranges from small to medium according
to the Cliff’s Delta effect size. While in the multiCompleteness@All
(mC) metric, HitMore shows two medium difference magnitudes (over
AmaLgam and Blizzard) among three baselines (over BugLocator, it is
small). The overall larger difference magnitude (based on effect size)
between HitMore and three baselines in the multiCompleteness@All
metric further demonstrates the effectiveness of our HitMore in locating
multiple-buggy-code-file bugs over existing techniques; as according
to the definition of multiCompleteness@All, it serves as a more pure
metric in measuring locating performance for the particular kind of
multiple-buggy-code-file bugs, compared to HitCount@N.

6. Threats to validity

In this Section, we present the threats to validity of our study.
hese threats can be categorized into external validity, internal validity,
onstruct validity and conclusion validity.

External validity. In this study, all experiments and analyses are con-
ducted on six open-source software (OSS) projects written in Java.
We cannot guarantee that the arrived conclusions could be applicable
to other OSS or industry projects written in Java or other languages.
However, these projects are all well-known and widely-used projects
in practice; they come from different domains and are of different
sizes. This, to some extent, reveals the effectiveness of our HitMore
used in real development scenarios, especially on those projects with a
number of multiple-buggy-code-file bugs. Further replicate studies on
more projects are encouraged to generalize our conclusions.

Internal validity. During performance comparison with baselines, we
irectly used the reported configurations of those baselines (with the
est performance in the original papers) in the paper. As our eval-
ations were conducted on different projects, it is possible that the

Information and Software Technology 181 (2025) 107675H. Xu et al.

e

o
t
f

l
r
w
H
c
m

a
t
i
s
u
a

b

Table 8
Cliff’s delta effect size and Wilcoxon rank-sum test results in terms of accuracy@K, MAP, and MRR.

Technique pair Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR

HitMore vs. Amalgam 0.944(large)* 0.722(large)* 0.722(large)* 0.722(large)* 0.917(large)* 0.917(large)*
HitMore vs. BugLocator 0.444(medium)* 0.333(medium)* 0.333(medium)* 0.333(medium)* 0.611(large)* 0.389(medium)*
HitMore vs. Blizzrd 0.500(large)* 0.444(medium)* 0.389(medium)* 0.389(medium)* 0.611(large)* 0.417(medium)*

Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.
Table 9
Cliff’s delta effect size and Wilcoxon rank-sum test results in terms of HitCount@N and multiCompleteness@All (mC).

Technique Pair HitCount@N(𝛥) mC(%)

One Two All

HitMore vs. Amalgam 0.389(medium)* 0.389(medium)* 0.278(small)* 0.333(medium)*
HitMore vs. BugLocator 0.306(small)* 0.222(small)* 0.278(small)* 0.278(small)*
HitMore vs. Blizzrd 0.278(small)* 0.278(small)* 0.278(small)* 0.389(medium)*

Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001.
f

t

t
a
(
L
K
T

configurations may not best suit our projects. We made such a deci-
sion mainly based on two considerations. Firstly, all parameters were
dedicatedly tuned with various projects in the original papers; this, to
a large extent, guaranteed the applicability of individual parameters.
Secondly and more importantly, from the adoption of tools in real prac-
tice, it is not likely for a software project to conduct parameter tunes,
specially when they have limited data or when the parameter tune is

complex or time-consuming. Instead, they are very likely to directly use
the recommend/default configurations when checking whether a tool
is useful to their project or not. Thus, we believe that it is practical and
reasonable to use the default configurations of baselines to compare
their performance with HitMore.

Construct validity. Threats to construct validity relate to the suitability
f our evaluation metrics on multiple-buggy-file bugs. Although tradi-
ional metrics such as MAP are valuable for assessing how well buggy
iles are ranked in a recommendation list, they fall short in evaluating

whether all buggy files associated with a single bug are effectively
ocated. This limitation underscores the need for more targeted met-
ics in scenarios involving multiple buggy files. To address this issue,
e introduced two metrics: HitCount@N and multiCompleteness@All.
itCount@N evaluates the number of bugs for which the technique suc-
essfully identifies 𝑁 buggy files within the recommendation list, while
ultiCompleteness@All measures the technique’s ability to completely

locate all buggy files for a given bug. While these metrics aim to better
reflect the challenges of locating multiple buggy files and align with
developers’ needs for efficiency and completeness, we remain cautious
about their limitations and view them as an ongoing attempt to refine
the evaluation process for multiple-buggy-code-file bugs.

Conclusion validity. The ability to draw conclusions could be affected
by various factors. To avoid HitMore obtaining good results by chance
nd overfitting, we conducted a five-fold cross validation and compared
he performance of locating results using standard metrics, widely used
n evaluating IRBL techniques [4]. As a further analysis, we performed
tatistical tests to determine the statistical significance of the results and
sed Cliff’s delta effect size to quantify the difference between HitMore
nd baselines statistically.

7. Conclusion

In this paper, we propose a technique, HitMore, which aims to im-
prove the locating performance of those bugs associated with multiple
buggy code files. The basic idea of HitMore is to generate an initial
recommendation list that is rather likely to contain at least a truly
uggy code file, then use a prediction model based on bug reports and
12
code semantic features to retrieve a subset of truly buggy code files
from the initial list, last, fully leverage the code relations between the
subset and the codebase to retrieve the remaining truly buggy code
iles. The experimental results on six projects demonstrate that our

HitMore could significantly improve the locating performance for those
bugs with multiple buggy code files without decreasing but improving
he locating performance in general bug locating scenarios.

CRediT authorship contribution statement

Hui Xu: Writing – review & editing, Writing – original draft, Formal
analysis, Validation, Software, Visualization. Zhaodan Wang: Writing
– review & editing, Writing – original draft, Methodology, Investiaga-
tion, Data Curation, Software. Weiqin Zou: Writing – review & editing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (No. 62002161), partly supported by Key Labora-
ory of Safety-Critical Software (Nanjing University of Aeronautics
nd Astronautics), Ministry of Industry and Information Technology
Grant No. 56XCA2002605), the Open Project Foundation of State Key
ab. for Novel Software Technology, Nanjing University (Grant No.
FKT2024B35), and Collaborative Innovation Center of Novel Software
echnology and Industrialization.

Appendix

A.1. Hyperparameters tuning for five classifiers

Table A.10 presents the hyperparameters to be tuned for each
machine learning method and the value ranges of these hyperpa-
rameters during the tuning process. Table A.11 presents the concrete
configurations of the hyperparameters that lead to best classification
performance in terms of F1 scores during tuning process for each
machine learning classifier over six experimental projects.

Information and Software Technology 181 (2025) 107675H. Xu et al.
Table A.10
Hyperparameters and corresponding value range during tunning process for five classifiers.

Classifier Hyperparameters Default Value range

Decision tree min_samples_split 2 [1,60]
min_samples_leaf 1 [1,60]

SVM

kernel ‘rbf’ [‘linear’, ‘rbf’ , ‘poly’, ‘sigmoid’]
cost 1 2𝑥 , 𝑥 ∈ [−10, 10]
gamma 1/n_features 2𝑥 , 𝑥 ∈ [−10, 10]
degree 3 [2,5]

Naive bayes var_smoothing 1e−9 [0.0,1.0]

Logistic regression C 1 [1,10]

Random forest max_features sqrt(n_features) [0.1,1.0], log2 𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠
max_samples None [0.1,1.0]
Table A.11
Best hyperparameter configurations for each classifier over six experimental projects.

Classifier Project Parameters

Random forest

ZooKeeper ‘max_features’: 0.5, ‘max_samples’: 0.1
openJPA ‘max_features’: 0.4, ‘max_samples’: 0.1
Tomcat ‘max_features’: 0.2, ‘max_samples’: 0.4
AspectJ ‘max_features’: 0.2, ‘max_samples’: 0.7
Hibernate-ORM ‘max_features’: 0.7, ‘max_samples’: 0.3
Lucene ‘max_features’: 0.8, ‘max_samples’: 0.1

SVM

ZooKeeper ‘C’: 4, ‘gamma’: 0.015625, ‘kernel’:‘rbf’
openJPA ‘C’: 128, ‘gamma’: 0.001953125, ‘kernel’: ‘rbf’
Tomcat ‘C’: 1, ‘gamma’: 0.03125, ‘kernel’: ‘rbf’
AspectJ ‘C’: 1024, ‘gamma’: 0.0625, ‘kernel’: ‘rbf’
Hibernate-ORM ‘C’: 64, ‘kernel’: ‘linear’
Lucene ‘C’: 256, ‘gamma’: 0.001953125, ‘kernel’: ‘rbf’

Naive bayes

ZooKeeper ‘var_smoothing’: 0.1
openJPA ‘var_smoothing’: 0.2
Tomcat ‘var_smoothing’: 0.1
AspectJ ‘var_smoothing’: 1e−09
Hibernate-ORM ‘var_smoothing’: 0.1
Lucene ‘var_smoothing’: 0.1

Logistic Regression

ZooKeeper ‘C’: 7
openJPA ‘C’: 1
Tomcat ‘C’: 1
AspectJ ‘C’: 1
Hibernate-ORM ‘C’: 1
Lucene ‘C’: 1

Decision Tree

ZooKeeper ‘min_samples_leaf’: 12, ‘min_samples_split’: 53
openJPA ‘min_samples_leaf’: 13, ‘min_samples_split’: 18
Tomcat ‘min_samples_leaf’: 12, ‘min_samples_split’: 16
AspectJ ‘min_samples_leaf’: 30, ‘min_samples_split’: 27
Hibernate-ORM ‘min_samples_leaf’: 13, ‘min_samples_split’: 23
Lucene ‘min_samples_leaf’: 41, ‘min_samples_split’: 60
t

A.2. Bug localization with time-ordered data

In the main text, to reduce variance in evaluation results and avoid
overfitting to a single split, we performed random five-fold cross-
validation in subset retrieval of truly buggy code files. The subsequent
locating performance of HitMore is also computed based on all bug data
collected from recommendation results corresponding to individual
folds. Given that in practice, bug reports generally appear in chrono-
logical order, to better understand the robustness of our HitMore, we
complemented the experiments of using the first 80% of bug reports as
training data and the last 20% of bug reports as testing data, with all
bug reports being ordered in their reporting time from oldest to newest.
13
Table A.12 shows the overall locating performance of HitMore
and three baselines over the 20% testing bug reports. As shown in
Table A.12, HitMore still outperformed three baselines in most cases.
The Accuracy@K advantage of HitMore is more obvious than three
baselines when K is smaller. This means HitMore can place more
ruly buggy code files closer to the top of the recommendation lists

than existing techniques. This is also reflected by the improved MAP
(by 0.03–0.19, 0.07–0.22 and 0.1–0.18, respectively) and MRR (by
0.0–0.21, 0.03–0.16, 0.06–0.17, respectively).

Table A.13 further presents the HitCount@N and multiComplete-
ness@All results of HitMore and three baselines. From the table, we can
observe that in terms of HitCount@N (N: One, Two, and All), HitMore
outperforms the three comparison baseline methods in all cases except

Information and Software Technology 181 (2025) 107675H. Xu et al.

i

m

w
f

m
t
M
M

a
n
e
p
d
b
m
o

Table A.12
Overall locating performance of HitMore and three baselines on latest 20% bug reports
n terms of Accuracy@K, MAP, and MRR.
Project Approach A@1 A@5 A@10 A@20 MAP MRR

ZooKeeper

AmaLgam 50.53% 75.79% 81.05% 87.37% 0.51 0.61
BugLocator 60.00% 78.95% 85.26% 89.47% 0.53 0.69
Blizzard 51.58% 71.58% 81.05% 85.26% 0.49 0.62
HitMore 65.26% 85.26% 90.53% 93.68% 0.62 0.74

OpenJPA

AmaLgam 29.91% 56.07% 62.62% 71.03% 0.35 0.42
BugLocator 27.10% 47.66% 54.21% 65.42% 0.29 0.37
Blizzard 26.17% 44.86% 54.21% 65.42% 0.27 0.36
HitMore 31.78% 53.27% 59.81% 71.03% 0.38 0.42

Tomcat

AmaLgam 30.50% 54.00% 64.00% 70.50% 0.35 0.41
BugLocator 42.50% 68.00% 73.50% 83.50% 0.46 0.54
Blizzard 36.00% 65.00% 74.00% 82.50% 0.43 0.49
HitMore 46.00% 72.50% 77.00% 83.50% 0.53 0.57

AspectJ

AmaLgam 23.89% 41.59% 55.75% 61.95% 0.29 0.34
BugLocator 27.43% 45.13% 55.75% 67.26% 0.31 0.36
Blizzard 23.89% 44.25% 52.21% 57.52% 0.28 0.33
HitMore 32.74% 51.33% 62.83% 69.91% 0.40 0.43

Hibernate-ORM

AmaLgam 24.71% 43.92% 51.37% 60.00% 0.28 0.34
BugLocator 24.71% 47.84% 60.39% 73.73% 0.27 0.35
Blizzard 23.92% 45.49% 54.51% 63.14% 0.28 0.34
HitMore 41.18% 61.57% 71.37% 80.39% 0.46 0.51

Lucene

AmaLgam 42.12% 65.75% 74.32% 83.56% 0.39 0.53
BugLocator 45.89% 73.29% 82.53% 86.99% 0.36 0.58
Blizzard 47.26% 78.42% 85.62% 89.04% 0.44 0.62
HitMore 65.07% 86.99% 90.07% 93.84% 0.58 0.74

Table A.13
Extraction effectiveness of multiple buggy code files on latest 20% bug reports in terms
of HitCount@N and multiCompleteness@All (mC).

Project Approach HitCount@N(𝛥) mC(%)

One Two All

ZooKeeper (60,63.16%)

Amalgam 83 38 53 36.67%
BugLocator 85 38 46 28.33%
Blizzard 81 40 48 33.33%
HitMore 89 45 59 43.33%

OpenJPA (63,58.88%)

Amalgam 76 20 44 12.70%
BugLocator 70 14 38 7.94%
Blizzard 70 12 37 6.35%
HitMore 76 19 44 11.11%

Tomcat (81,40.50%)

Amalgam 141 29 92 22.22%
BugLocator 167 34 115 18.52%
Blizzard 165 29 114 14.81%
HitMore 167 35 119 24.69%

AspectJ (40,35.40%)

Amalgam 70 10 46 5.00%
BugLocator 76 8 54 5.00%
Blizzard 65 7 47 2.50%
HitMore 79 11 56 7.50%

Hibernate-ORM (175,68.63%)

Amalgam 153 45 59 9.71%
BugLocator 188 34 69 4.57%
Blizzard 161 32 67 6.29%
HitMore 205 53 85 9.14%

Lucene (215,73.63%)

Amalgam 244 132 129 34.88%
BugLocator 254 108 105 20.93%
Blizzard 260 135 121 26.51%
HitMore 274 164 159 41.86%

the comparison with AmaLgam on OpenJPA in HitCount@Two. The
ultiCompleteness@All shows that HitMore generally performs better

than baselines except in two cases where involving the comparisons
ith AmaLgam (HitMore located completely one multiple-buggy-code-

ile bug fewer than AmaLgam on OpenJPA and Hibernate-ORM, hence
leading to a slightly smaller multiCompleteness@All).

The results from both five-fold cross-validation (reported in the
ain text) and the time-ordered 80-20 strategies support the conclusion

hat HitMore outperforms baseline approaches in bug localization.
eanwhile, for multiple-buggy-code-file bugs, the advantage of Hit-
ore under the time-ordered 80-20 split is relatively smaller compared
14
to the five-fold cross-validation results presented in the main text.
This could suggest that newer bug reports may exhibit distinct char-
cteristics compared to older ones, which our current approach has
ot fully captured. Additionally, since the time-ordered 80-20 split
xperiment only allows for a single experiment for each project, the
otential variability of single-run results could also contribute to this
iscrepancy. In the future, larger-scale datasets – including more recent
ug reports for testing – and a wider variety of projects could provide a
ore comprehensive evaluation and further validate the effectiveness

f our HitMore in practice.

Data availability

The replication package of our study is available at https://github.
com/LyraXv/HitMore.

References

[1] Weiqin Zou, David Lo, Zhenyu Chen, Xin Xia, Yang Feng, Baowen Xu, How
practitioners perceive automated bug report management techniques, IEEE Trans.
Softw. Eng. 46 (8) (2018) 836–862.

[2] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D Ernst, Lu Zhang, An
empirical study of fault localization families and their combinations, IEEE Trans.
Softw. Eng. 47 (2) (2019) 332–347.

[3] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, Baowen Xu, A theoretical
analysis of the risk evaluation formulas for spectrum-based fault localization,
ACM Trans. Softw. Eng. Methodol. (TOSEM) 22 (4) (2013) 1–40.

[4] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, Franz Wotawa, A survey on
software fault localization, IEEE Trans. Softw. Eng. 42 (8) (2016) 707–740.

[5] Plinio S Leitao-Junior, Diogo M Freitas, Silvia R Vergilio, Celso G Camilo-Junior,
Rachel Harrison, Search-based fault localisation: A systematic mapping study, Inf.
Softw. Technol. 123 (2020) 106295.

[6] Sungmin Kang, Gabin An, Shin Yoo, A preliminary evaluation of llm-based fault
localization, 2023, arXiv preprint arXiv:2308.05487.

[7] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, Franz Wotawa, Dongcheng
Li, Software fault localization: An overview of research, techniques, and tools,
in: Handbook of Software Fault Localization: Foundations and Advances, Wiley
Online Library, 2023, pp. 1–117.

[8] Xin Xia, David Lo, Information retrieval-based techniques for software fault
localization, in: Handbook of Software Fault Localization: Foundations and
Advances, Wiley Online Library, 2023, pp. 365–391.

[9] Partha Chakraborty, Mahmoud Alfadel, Meiyappan Nagappan, RLocator:
Reinforcement learning for bug localization, IEEE Trans. Softw. Eng. (2024).

[10] Shaowei Wang, David Lo, Amalgam+: Composing rich information sources for
accurate bug localization, J. Softw.: Evol. Process. 28 (10) (2016) 921–942.

[11] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, Dewayne E Perry, Improving
bug localization using structured information retrieval, in: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE, IEEE, 2013,
pp. 345–355.

[12] Jian Zhou, Hongyu Zhang, David Lo, Where should the bugs be fixed? more
accurate information retrieval-based bug localization based on bug reports, in:
2012 34th International Conference on Software Engineering, ICSE, IEEE, 2012,
pp. 14–24.

[13] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, Hong Mei,
Boosting bug-report-oriented fault localization with segmentation and stack-trace
analysis, in: 2014 IEEE International Conference on Software Maintenance and
Evolution, IEEE, 2014, pp. 181–190.

[14] Shaowei Wang, David Lo, Version history, similar report, and structure: Putting
them together for improved bug localization, in: Proceedings of the 22nd
International Conference on Program Comprehension, 2014, pp. 53–63.

[15] Xin Ye, Razvan Bunescu, Chang Liu, Learning to rank relevant files for bug
reports using domain knowledge, in: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014, pp.
689–699.

[16] Zhaoqiang Guo, Huicong Zhou, Shiran Liu, Yanhui Li, Lin Chen, Yuming Zhou,
Baowen Xu, Information retrieval based bug localization: Research problem,
progress, and challenges, J. Softw. 31 (9) (2020) 2826–2854.

[17] Mohammad Masudur Rahman, Chanchal K. Roy, Improving ir-based bug local-
ization with context-aware query reformulation, in: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2018, pp. 621–632.

[18] Jeongju Sohn, Shin Yoo, Fluccs: Using code and change metrics to improve fault
localization, in: Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2017, pp. 273–283.

https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
https://github.com/LyraXv/HitMore
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb1
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb1
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb1
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb1
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb1
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb2
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb2
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb2
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb2
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb2
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb3
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb3
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb3
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb3
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb3
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb4
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb4
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb4
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb5
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb5
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb5
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb5
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb5
http://arxiv.org/abs/2308.05487
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb7
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb8
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb9
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb9
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb9
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb10
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb11
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb12
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb13
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb14
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb15
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb16
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb17
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb18
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb18

Information and Software Technology 181 (2025) 107675H. Xu et al.
[19] Zhengliang Li, Zhiwei Jiang, Xiang Chen, Kaibo Cao, Qing Gu, Laprob: a label
propagation-based software bug localization method, Inf. Softw. Technol. 130
(2021) 106410.

[20] Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, Mohamed Wiem
Mkaouer, On the classification of bug reports to improve bug localization, Soft
Comput. 25 (2021) 7307–7323.

[21] Jifeng Xuan, Martin Monperrus, Learning to combine multiple ranking metrics
for fault localization, in: 2014 IEEE International Conference on Software
Maintenance and Evolution, IEEE, 2014, pp. 191–200.

[22] Dylan Callaghan, Bernd Fischer, Improving spectrum-based localization of mul-
tiple faults by iterative test suite reduction, in: Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis, 2023, pp.
1445–1457.

[23] Xi Xiao, Renjie Xiao, Qing Li, Jianhui Lv, Shunyan Cui, Qixu Liu, BugRadar: Bug
localization by knowledge graph link prediction, Inf. Softw. Technol. 162 (2023)
107274.

[24] Shivani Rao, Avinash Kak, Retrieval from software libraries for bug localization:
a comparative study of generic and composite text models, in: Proceedings of
the 8th Working Conference on Mining Software Repositories, 2011, pp. 43–52.

[25] David M. Blei, Andrew Y. Ng, Michael I. Jordan, Latent dirichlet allocation, J.
Mach. Learn. Res. 3 (Jan) (2003) 993–1022.

[26] Stacy K. Lukins, Nicholas A. Kraft, Letha H. Etzkorn, Source code retrieval for bug
localization using latent dirichlet allocation, in: 2008 15Th Working Conference
on Reverse Engineering, IEEE, 2008, pp. 155–164.

[27] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, Jonathan I Maletic, An
information retrieval approach to concept location in source code, in: 11th
Working Conference on Reverse Engineering, IEEE, 2004, pp. 214–223.

[28] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer,
Richard Harshman, Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci.
41 (6) (1990) 391–407.

[29] Anh Tuan Nguyen, Tung Thanh Nguyen, Jafar Al-Kofahi, Hung Viet Nguyen,
Tien N Nguyen, A topic-based approach for narrowing the search space of buggy
files from a bug report, in: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2011, IEEE, 2011, pp. 263–272.

[30] Bunyamin Sisman, Avinash C. Kak, Incorporating version histories in information
retrieval based bug localization, in: 2012 9th IEEE Working Conference on
Mining Software Repositories, MSR, IEEE, 2012, pp. 50–59.

[31] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, Chang Liu, From word embed-
dings to document similarities for improved information retrieval in software
engineering, in: Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 404–415.

[32] Bunyamin Sisman, Avinash C. Kak, Assisting code search with automatic query
reformulation for bug localization, in: 2013 10th Working Conference on Mining
Software Repositories, MSR, IEEE, 2013, pp. 309–318.

[33] Oscar Chaparro, Juan Manuel Florez, Andrian Marcus, Using observed behavior
to reformulate queries during text retrieval-based bug localization, in: 2017 IEEE
International Conference on Software Maintenance and Evolution, ICSME, IEEE,
2017, pp. 376–387.

[34] Misoo Kim, Eunseok Lee, A novel approach to automatic query reformulation for
ir-based bug localization, in: Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing, 2019, pp. 1752–1759.

[35] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, Tien N Nguyen, Bug
localization with combination of deep learning and information retrieval, in:
2017 IEEE/ACM 25th International Conference on Program Comprehension,
ICPC, IEEE, 2017, pp. 218–229.

[36] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, Xudong Liu, Improving
fault localization and program repair with deep semantic features and transferred
knowledge, in: Proceedings of the 44th International Conference on Software
Engineering, 2022, pp. 1169–1180.

[37] Leila Yousofvand, Seyfollah Soleimani, Vahid Rafe, Automatic bug localization
using a combination of deep learning and model transformation through node
classification, Softw. Qual. J. (2023) 1–19.

[38] Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Kui Liu, Jacques Klein,
Martin Monperrus, Yves Le Traon, D&c: A divide-and-conquer approach to
ir-based bug localization, 2019, arXiv preprint arXiv:1902.02703.
15
[39] Saket Khatiwada, Miroslav Tushev, Anas Mahmoud, On combining ir methods to
improve bug localization, in: Proceedings of the 28th International Conference
on Program Comprehension, 2020, pp. 252–262.

[40] Tien-Duy B. Le, Ferdian Thung, David Lo, Will this localization tool be effective
for this bug? Mitigating the impact of unreliability of information retrieval based
bug localization tools, Empir. Softw. Eng. 22 (2017) 2237–2279.

[41] Tianqi Chen, Carlos Guestrin, Xgboost: A scalable tree boosting system, in:
Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

[42] Zhi-Hua Zhou, Ensemble Methods: Foundations and Algorithms, CRC Press, 2012.
[43] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian

Schroter, Cathrin Weiss, What makes a good bug report? IEEE Trans. Softw. Eng.
36 (5) (2010) 618–643.

[44] Shyam R. Chidamber, Chris F. Kemerer, A metrics suite for object oriented
design, IEEE Trans. Softw. Eng. 20 (6) (1994) 476–493.

[45] Daryl Posnett, Raissa D’Souza, Premkumar Devanbu, Vladimir Filkov, Dual eco-
logical measures of focus in software development, in: 2013 35th International
Conference on Software Engineering, ICSE, IEEE, 2013, pp. 452–461.

[46] Dario Di Nucci, Fabio Palomba, Giuseppe De Rosa, Gabriele Bavota, Rocco
Oliveto, Andrea De Lucia, A developer centered bug prediction model, IEEE
Trans. Softw. Eng. 44 (1) (2017) 5–24.

[47] Thomas J. Ostrand, Elaine J. Weyuker, Robert M. Bell, Programmer-based fault
prediction, in: Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, 2010, pp. 1–10.

[48] Raymond P.L. Buse, Westley R. Weimer, Learning a metric for code readability,
IEEE Trans. Softw. Eng. 36 (4) (2009) 546–558.

[49] Darryl Jarman, Jeffrey Berry, Riley Smith, Ferdian Thung, David Lo, Legion:
Massively composing rankers for improved bug localization at adobe, IEEE Trans.
Softw. Eng. 48 (8) (2021) 3010–3024.

[50] George A. Miller, WordNet: a lexical database for English, Commun. ACM 38
(11) (1995) 39–41.

[51] Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, Nachiappan Nagap-
pan, The design of bug fixes, in: 2013 35th International Conference on Software
Engineering, ICSE, IEEE, 2013, pp. 332–341.

[52] Philipp Probst, Anne-Laure Boulesteix, Bernd Bischl, Tunability: Importance of
hyperparameters of machine learning algorithms, J. Mach. Learn. Res. 20 (53)
(2019) 1–32.

[53] Rafael Gomes Mantovani, Tomáš Horváth, André LD Rossi, Ricardo Cerri, Sylvio
Barbon Junior, Joaquin Vanschoren, André CPLF de Carvalho, Better trees:
an empirical study on hyperparameter tuning of classification decision tree
induction algorithms, Data Min. Knowl. Discov. (2024) 1–53.

[54] Rui Shu, Tianpei Xia, Jianfeng Chen, Laurie Williams, Tim Menzies, How to
better distinguish security bug reports (using dual hyperparameter optimization),
Empir. Softw. Eng. 26 (2021) 1–37.

[55] Bingting Chen, Weiqin Zou, Biyu Cai, Qianshuang Meng, Wenjie Liu, Piji Li, Lin
Chen, An empirical study on the potential of word embedding techniques in bug
report management tasks, Empir. Softw. Eng. 29 (5) (2024) 122.

[56] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, Shanping Li, Who will leave
the company?: a large-scale industry study of developer turnover by mining
monthly work report, in: 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories, MSR, IEEE, 2017, pp. 170–181.

[57] Yuan Tian, Meiyappan Nagappan, David Lo, Ahmed E. Hassan, What are the
characteristics of high-rated apps? a case study on free android applications,
in: 2015 IEEE International Conference on Software Maintenance and Evolution,
ICSME, IEEE, 2015, pp. 301–310.

[58] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Kenichi Mat-
sumoto, An empirical comparison of model validation techniques for defect
prediction models, IEEE Trans. Softw. Eng. 43 (1) (2016) 1–18.

[59] David H. Wolpert, William G. Macready, An efficient method to estimate
bagging’s generalization error, Mach. Learn. 35 (1999) 41–55.

[60] Norman Cliff, Dominance statistics: Ordinal analyses to answer ordinal questions,
Psychol. Bull. 114 (3) (1993) 494.

[61] Norman Cliff, Ordinal Methods for Behavioral Data Analysis, Psychology Press,
2014.

http://refhub.elsevier.com/S0950-5849(25)00014-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb19
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb20
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb21
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb22
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb23
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb24
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb25
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb25
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb25
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb26
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb27
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb28
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb29
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb30
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb31
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb32
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb33
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb34
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb35
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb36
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb37
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb37
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb37
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb37
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb37
http://arxiv.org/abs/1902.02703
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb39
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb40
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb40
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb40
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb40
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb40
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb41
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb42
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb43
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb43
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb43
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb43
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb43
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb44
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb44
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb44
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb45
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb46
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb47
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb48
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb49
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb50
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb51
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb52
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb53
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb54
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb55
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb56
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb57
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb58
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb59
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb60
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb60
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb60
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb61
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb61
http://refhub.elsevier.com/S0950-5849(25)00014-X/sb61

	A more accurate bug localization technique for bugs with multiple buggy code files
	INTRODUCTION
	Background and Related Work
	Our HitMore Approach
	Overview
	Generate the initial buggy file list
	Identify a Subset of Truly Buggy Files
	Optimize Buggy File List
	Code Relationship Analysis
	Weighting Strategy for List Merge

	EXPERIMENT SETUP
	Dataset and Baselines
	Metrics
	Implementation and Tool Supports

	EXPERIMENT RESULTS
	RQ1: Can we effectively retrieve the contained truly buggy file(s) from the initial recommendation list?
	RQ2: What is the overall performance of HitMore in locating bugs especially those bugs with multiple buggy code files?

	THREATS TO VALIDITY
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Hyperparameters Tuning for Five Classifiers
	Bug Localization with Time-Ordered Data

	Appendix . Data availability
	References

