
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/373724845

ICG: A Machine Learning Benchmark Dataset and Baselines for Inline Code

Comments Generation Task

Article  in  International Journal of Software Engineering and Knowledge Engineering · September 2023

DOI: 10.1142/S0218194023500547

CITATION

1
READS

36

8 authors, including:

Zhang Xiaowei

Nanjing University

6 PUBLICATIONS   4 CITATIONS   

SEE PROFILE

Lin Chen

Nanjing University

116 PUBLICATIONS   1,808 CITATIONS   

SEE PROFILE

Yanhui Li

Nanjing University

98 PUBLICATIONS   1,101 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Zhang Xiaowei on 14 May 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/373724845_ICG_A_Machine_Learning_Benchmark_Dataset_and_Baselines_for_Inline_Code_Comments_Generation_Task?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/373724845_ICG_A_Machine_Learning_Benchmark_Dataset_and_Baselines_for_Inline_Code_Comments_Generation_Task?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Xiaowei-13?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Xiaowei-13?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Xiaowei-13?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lin-Chen-80?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lin-Chen-80?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lin-Chen-80?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanhui-Li-9?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanhui-Li-9?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanhui-Li-9?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhang-Xiaowei-13?enrichId=rgreq-97c7e8fbbeef91099183c7046a59c3f3-XXX&enrichSource=Y292ZXJQYWdlOzM3MzcyNDg0NTtBUzoxMTQzMTI4MTI0MzEzODUwM0AxNzE1NjUyMjE2NDI0&el=1_x_10&_esc=publicationCoverPdf


September 4, 2023 6:39 WSPC/INSTRUCTION FILE output

International Journal of Software Engineering and Knowledge Engineering

© World Scientific Publishing Company

ICG: A Machine Learning Benchmark Dataset and Baselines for Inline

Code Comments Generation Task

Xiaowei Zhang

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

XiaoweiZhang@smail.nju.edu.cn

Lin Chen∗

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

lchen@nju.edu.cn

Weiqin Zou

College of Computer Science and Technology, Nanjing University of Aeronautics and

Astronautics, Nanjing, China

Yulu Cao

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Hao Ren

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Zhi Wang

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Yanhui Li

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Yuming Zou

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

As a fundamental component of software documentation, code comments could help
developers comprehend and maintain programs. Several datasets of method header com-

ments have been proposed in previous studies for machine learning based code comment

generation. As part of code comments, inline code comments are also crucial for code
understanding activities. However, unlike method header comments written in a stan-
dard format and describing the whole method code, inline comments are often written in
arbitrary formats by developers due to timelines pressures and describe different aspects
of code snippets in the method. Currently, there is no large-scale dataset used for in-

line comments generation considering these. Hence, this naturally inspires us to explore
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whether we can construct a dataset to foster machine learning research that not only
performs fine-grained noise-cleaning but conducts a taxonomy of inline comments. To

this end, we first collect inline comments and code snippets from 8,000 Java projects

on GitHub. Then, we conduct a manual review to obtain heuristic rules, which could
be used to clean the data noise in a fine-grained manner. As a result, we construct a

large-scale benchmark dataset named ICG with 5,740,770 pairs of inline comments and
code snippets. We then build a comprehensive taxonomy and conduct a statistical and

manual analysis to explore the performances of different categories of inline comments,

such as helpfulness in code understanding. After that, we provide and compare several
baseline models to automatically generate inline comments, such as CodeBERT, to en-

hance the usability of the benchmark for researchers. The availability of our benchmark

and baselines can help develop and validate new inline comment generation methods,
which would also further facilitate code understanding activities.

Keywords: inline comment; benchmark dataset; fine-grained cleaning; comment classifi-

cation; comment generation

1. Introduction

In software development and maintenance, programmers may spend more than

half of their time on program understanding activities [1]. As an essential part of

software documentation, code comments can help developers comprehend code and

reduce the difficulty of code review [2]. Recently, it has become commonplace to

use machine learning techniques [3–7] to automatically generate code comments.

These methods always build models on a large dataset. Several datasets have been

proposed to support this task, such as Funcom [8], TLC [6], and PCSD [9], which

mainly pay attention to the method level and generate a first sentence that appears

in the method header comment.

As part of the code comments, inline comments are also crucial for code under-

standing activities and widely distributed in projects [10,11]. Unlike method header

comments follow a standard composing documentation [12], inline comments could

be written in a more arbitrary format by developers due to the lack of standard

composing documentation [11, 13]. Even some developers do not write inline com-

ments or leave outdated and fragile comments due to release time pressures [14].

This would generate many inline comments with low quality. Unfortunately, the

previous study proposed dataset, such as the dataset in [15], does not focus on this

point. In addition, unlike method header comments, usually written to describe the

functionalities of the whole Java method, inline comments usually describe different

aspects of the code snippet in the method, such as explaining the functionalities, im-

plementation details, and intentions. Hence, we naturally want to explore whether

we can construct a dataset to foster machine learning research with fine-grained

noise-cleaning and provide a taxonomy of inline comments.

Our main work is as follows. First, we collect 8,000 most popular Java projects

on GitHub and link inline comments with their associated code based on the heuris-

tic rules proposed by Zhang et al. [11]. We preliminary obtain a dataset of 8,077,260

pairs of <Inline Comment, Code> on this step. Then, we sample part of the data

pairs in the dataset, manually reviewed different types of data pre-processing noises,
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and adopt heuristic rules to remove them. After this, we obtain a benchmark dataset

named ICG of 5,740,770 pairs of <Inline Comment, Code>. This is the first large-

scale benchmark dataset of inline comments and their corresponding code with

fine-grained noisy cleaning. We then conduct a comprehensive taxonomy and a

statistical and manual analysis of our dataset. Specifically, we classified inline com-

ments from different perspectives (namely, what, how, and why). Our statistical

results show that most inline comments are relatively short and the token used

in inline comments and corresponding code is abundant in our benchmark. In the

manual analysis, we analyze the differences between different categories of inline

comments for code understanding activity. Our results suggest that the inline com-

ments in our benchmark dataset are almost completely correct in grammatically,

relevant with code snippets, and helpful in code understanding activities, especially

the why category of inline comments. Finally, we provide several baseline models,

i.e. CodeBERT, Bart, and ChatGPT, to generate inline comments automatically.

Our results show that the highest value of BLEU-4 and ROUGE-L achieves from

the what category, CodeBERT model, with 42.61 and 48.48, respectively.

Our major contributions are as follows:

• We propose a large-scale benchmark dataset of 5,740,770 pairs of inline

comments and their corresponding codeawith fined-grained noisy cleaning.

• We provide a taxonomy of inline comments, i.e., what, how, and why, and

evaluate the performances of different categories of inline comments, such

as helpfulness in code understanding activities.

• We present three baselines to enhance the usability of our benchmark for

researchers. The benchmark and baselines are available and can be used to

measure the performance of inline comment generation techniques, which

would also further facilitate code understanding activities. Since we mine

different categories of inline comments, our benchmark is also feasible for

evaluating the performance of inline generation techniques in specific cate-

gories.

The rest of this paper is organized as follows. Section 2 introduces the related

work. Section 3 shows the overview of our work. Section 4 describes the process and

results of dataset construction. Section 5 presents the details and results of baseline

construction. Section 6 discusses the implications and possible threats of this work.

Finally, Section 7 provides conclusions.

2. Related Work

In this section, we introduce the related work, including the dataset used in the

generation of code comments, and the code comment generation task.

ahttps://anonymous.4open.science/r/CommentG-1E75/
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2.1. Dataset Used in Comment Generation

Several studies have proposed datasets that can be used in automatic comment

generation. LeClair et al. [8] proposed a dataset named Funcom. They collect 2.1

million code and comment pairs from 29 thousand projects. The comments in their

dataset refer to the first sentence in the Javadoc. Hu et al. [6] presented a dataset

maned TLC. They chose 9,714 open-source projects from GitHub and obtained

87 thousand of code and comment pairs. The comments in TLC are the JavaDoc

comments of method-level code. Husain et al. [16] released CodeSearchNet Corpus,

which contains about 6 million functions and 2 million code and comment pairs

mined from open-source code spanning six programming languages, such as Go,

Java, JavaScript, PHP, and Python. Wan et al. [9] gave a dataset that is specific for

Python. They chose Python open-source repositories from GitHub. It contains 105

thousand pairs of codes and comments. The comments in this dataset refer to the

docstrings in Python, which are the natural language descriptions that appear after

the definition of functions. Wong et al. [17] used 1,005 Java open-source projects

that were downloaded from GitHub containing 42 million lines of code and 17

million lines of comments based on CLOC to generate comments. Huang et al. [15]

proposed a dataset of block comments. They collect a data set that contains more

than 123,900 comment-code pairs from 1,032 open-source Java projects.

The abovementioned research mainly targets proposing code header comments

dataset, with paying little attention to inline comments. Although Huang et al. [15]

proposed a dataset of block comments (i.e. inline comments in our work), they just

discard the comments that are less than 2 words and do not distinguish between

different categories of comments. Given that inline comments are written in a more

casual way by developers than code header comments, it would be valuable to

develop specific data pre-process noisy cleaning before being used in the automatic

generation task. In addition, as inline comments describe different aspects of the

code snippet in the method, we provide a taxonomy of inline comments in our

dataset.

2.2. Comment Classification

Classifying comments can assist us in understanding the performance of comments

under various categories. Currently, the classification of comments does not have a

unified criterion.

Padioleau et al. [13] mainly studied comments from several dimensions includ-

ing What, Whom, Where, and When. Haouari et al. [18] classified 13 categories

from four dimensions and discovered that comments are usually used to explain the

code that follows them. Their objective was to examine developers’ writing com-

ment habits by proposing this comment taxonomy. Martin et al. [19] developed a

taxonomy of knowledge types in API documents based on grounded methods and

independent empirical validation. Steidl et al. [20] provided a model for comment

quality which is based on different comment categories, i.e. seven high-level cate-
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gories. Pascarella and Bacchelli [21] classified the comments into six categories and

sixteen subcategories and used machine learning methods to conduct automatic

classification. Zhai et al. [12] classified comments by considering code entities, and

proposed five categories. Self-admitted technical debt comments have been analyzed

in several studies [22–26]. Ying et al. [27] explored the types of todo comments or

task comments and presented a taxonomy of Eclipse task comments.

The abovementioned studies mainly consider the first line of method header

comments, which describe the functionality of the code and are well-formed. How-

ever, inline comments are written in freestyle by developers than method header

comments. Thus, it would be helpful to develop a new classification taxonomy for

inline comments.

2.3. Code Comment Generation

Comment generation techniques can be categorized as template-based methods,

IR-based methods, and machine learning-based methods.

Some works used the template-based approaches [28] to generate summaries for

the Java method. Giriprasad et al. [29] used content selection and template-based

phrases to generate comments for Java methods.

Information Retrieval (IR) approaches first compute the relevance between the

target code and other code in the dataset, and then return the comment of the

most similar source code as the target comment. Haiduc et al. [30] used vector

space model (VSM) and latent semantic indexing (LSI) to analyze the source code

text, and generate the extractive and abstractive natural language summaries for

classes and methods. Movshovitz-Attias [31] used Latent Dirichlet Allocation (LDA)

to predict programming comments for Java code.

Researchers also adopt deep learning technology to conduct comment generation

tasks. Iyer et al. [32] proposed a summary generation model called Code-NN. This

model uses RNN networks with attention mechanisms to generate natural language

summaries for C# code snippets and SQL queries. Hu and Li [33] used the AST

sequences of source code generated by structure-based traversal (SBT) as the input

of the neural network. They further combine the lexical and structure information

of Java methods for comments generation [34]. Retrieval information has also been

used for deep learning based comment generation [35, 36]. Zhang et al. [36] pro-

posed a novel retrieval-based neural architecture to enhance the NMT model for

summarizing source code with the help of most similar code snippets. Wei et al. [35]

proposed a neural comment generation approach by using the existing comments of

similar code snippets as exemplars to guide comment generation.

Several works propose methods to generate block comments. Huang et al. [15]

proposed a composite learning model that combines reinforcement learning with the

encoder-decoder algorithm to generate block comments. They utilize the abstract

syntax tree of a code snippet to generate a token sequence in a statement-based

traversal way. They [10] also conducted a comparative study on method comments
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and inline comments recently, which explore the reasons why models perform worse

on the task of inline comment generation (compared with method header comment).

These methods mainly target generating method header comments (the first

line) and can be mainly categorized into three types. However, inline comments

could also play an important role in code understanding activities and have not

received enough attention currently. In this paper, we present several baselines

targeting generating inline comments based on our benchmark dataset, which can

help develop and validate new inline comment generation methods.

3. OVERVIEW

...

JDT 

<Inline Comment, Code> 
Pairs

Heuristic Rules
to Fillter Noisy

...

Typical Performance
 MetricsResults

Manual
Review

<Inline Comment, Code>
 Pairs Collection Noisy Filtering

What-category

How-category
......

Dataset
Analysis

Models Evaluation Models Training

Baselines Construction

Models
Training

Inline Comment
Generation

Java Projects
 in Github

<Inline Comment, Code>
 Pairs after Filtering

Statistical

Manual 

Data
PreparationData Pairs
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...

Taxonomy of
Comments

Manual
Analysis

 
Classification

Fig. 1: The overview of the construction of ICG

The goal of our study is to construct a benchmark dataset of inline comments

and provide baselines of automatic inline comments generation. Thus, our study

mainly concludes two parts, the construction of our dataset and the automatic inline

comments generation. In this section, we introduce the overview of our approach.

Fig.1 presents the overview of our approach, which mainly consists of two parts:

1) the process of <Inline Comment, Code> pairs dataset construction and 2) the

process of automatically inline comments generation. We take a three-step approach

to construct such a benchmark dataset. First, we use the most popular 8,000 Java

projects on GitHub as the original data source for data collection. Based on the work

of [11], we mainly extract pairs of each code snippet and its corresponding inline

comments from these projects as the starting point for dataset construction; Then,

we use several heuristic rules obtained by manual observation to filter out noises in
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the dataset; After that, we conduct a statistical analysis of our dataset. In addition,

we further build a taxonomy for inline comments from different perspectives (e.g.,

what and why) and analyze the statistical results. We conduct a manual experiment

to analyze the differences between different categories of inline comments for code

understanding activity.

After dataset construction, our next step is to build several automatic inline

comments generation baselines, including CodeBERT, Bart, and ChatGPT. The

model evaluation is conducted based on the testing dataset. We evaluate the model

by traditional performance metrics, including BLEU1-BLEU4 and ROUGE-L.

4. DATASET CONSTRUCTION

4.1. <Inline Comment, Code> Pairs Collection

There are two phases for <Inline comment, Code> pairs collection, namely the

selection of experimental projects and the determination of the associated code of

inline comments.

4.1.1. Selection of the experimental projects

We use the following criteria proposed in the work of Zhang et al. [11] to select

potential experimental Java projects from GitHub. First, we choose projects with

great popularity. Popular projects are generally actively developed and are likely to

contain more inline comments [11]. Following [37–39], we use the Stars number to

measure the popularity of a project on GitHub. In order to cover a large amount

of developer-provided comment data in current GitHub open-source projects, we

select the top 8,000 Java projects ranked by star numbers as the final experimen-

tal projects. Second, we choose English-commented projects and Non-toy typical

software development projects based on the steps in [11]. Specifically, we calculate

the percentage of comments that are all ASCII encoded in a project. If the per-

centage exceeds 90%, it will be considered an English-commented project. And we

use heuristic patterns to identify potential toy projects, by checking whether their

readme files contain keywords such as “toy”, “test”, and “ exercises” and then ly

checking their readme file and code base to determine whether it is a toy project or

not.

4.1.2. Associated code and inline comments to obtain data pairs

We use the JDT toolc to extract two kinds of inline comments, i.e., line comments

with the format of “//...” and block comments with the format of “/ *...*/”. Then,

we use the same heuristic rules proposed in [11] to merge inline comments. The

bhttps://github.com/dropwizard/dropwizard
chttps://www.eclipse.org/jdt/
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Fig. 2: A Java code and inline comments example to illustrate the collec-

tion of inline comment and code pairs from dropwizardbproject

consecutive multi-line comments that actually compose a complete sentence would

be merged into a single inline comment. For example, lines 3-4 and lines 8-9 in figure

2 need to be merged into one comment, respectively. After that, we use several

heuristic rules summarized in work [11] to determine the corresponding code for

inline comments.

• The code is selected as the corresponding code if a comment is written on

the same line.

• The code block is selected as the corresponding code if a comment is written

before a left brace that starts a code block (e.g., the if {...} statement

block).

• If a comment is written on multiple lines, then all code statements (i.e.,

single-line statements or code blocks before reaching a blank line or a next

comment) at the same level with the comments are chosen as the associated

code.

• If a comment matches none of the above three heuristic rules (e.g., a com-

ment is written on the last line of a code block), then this comment would

be ignored.
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Results of data pairs collection. Following the rules, the comment in lines

3-4 in figure 2 corresponds to the code snippet in line lines 5-6, and the comment

in lines 8-9 to the code snippet in lines 10-11. Finally, we get 8,077,260 of <Inline

Comment, Code> pairs from the selected 8,000 projects.

4.2. Fine-grained Cleaning of Data Noisy

As developers may write fragile comments, or use a more arbitrary format to write

inline comments [11, 13]. After the collection of <Inline Comment, Code> pairs,

we conduct a manual review by three Ph.D. students (two of them are not co-

authors of this paper) to summarize the possible types of inline comment noise.

These three participants are of 3-4-year experience in Java project development,

and they have no problem reading English books and even communicating with

native English speakers. Following the sampling strategy in [21, 40], we randomly

select 4,000 <Inline Comment, Code> pairs of data, with a confidence level of 99%

and a sampling error range of ±5%d. Then we conclude several heuristic rules to

filter out inline comments of low quality. The heuristics are as follows.

• Non-English inline comments. We remove the comments that contain non-

English characters, such as the comment “ // 在ServletAdvice里取出来要

清除掉” corresponds to the following code snippet in project bee-apme.

1 span.addTag("_respWrapper",wrapper);

• Too short inline comments (fewer than two words). Such comments may not

contain enough information corresponding to the code, such as “// Act” in

project azure-sdk-for-javaf in the following example. Therefore, we remove

inline comments that with an empty body or with only one word (after

removing punctuations).

1 // Act

2 assertThrows(IllegalArgumentException.class ,..);

• Todo inline comments. This type of comment describes the topics related

to ongoing and future developments. Such as “// TODO - need to check

whether these are same as current version” in project azure-sdk-for-javag

in the following example. Inline comments that contain keywords such as

“Todo”, and “Fixme” are removed.

1 // TODO - need to check whether these are same as current

version

2 metaData.getJMSMajorVersion ();

3 metaData.getJMSMinorVersion (); ...

dhttps://www.calculator.net/
ehttps://github.com/hao117/bee-apm/...ServletHandler.java
fhttps://github.com/Azure/azure-sdk-for-java/...AmqpErrorContextTest.java
ghttps://github.com/apache/activemq-artemis/...ConnectionTest.java



September 4, 2023 6:39 WSPC/INSTRUCTION FILE output

10 Zhang et al.

• Style & IDE inline comments. Such comments are used to logically separate

the code or provide special services. Such as the “// ———–” comment in

project openj9h in the following example. Inline comments that only contain

symbols such as “——–”, “ ///////” and only contain keywords such as

“ASCII” and “$NON-NLS-1$” are removed.

1 // ------------------------------------

2 ... calledImplies=false; ...

• Inline Comments that contain external links. This

type of comment usually provides reference links. Such as comments “//

http://500px.com/tsyganov/stories/80675/galya “blog”)” in project ripme

in the following example. Inline comments may show less helpfulness to

code understanding and are removed.

1 // http ://500 px.com/tsyganov/stories /80675/ galya "blog")

2 p=Pattern.compile("^.*500 px.com/([a-zA-Z0 -9\\-_]+)/stories

/([0 -9]+).*$");

• Inline comments that are commented code. Such comments are usually

scrapped code that has been commented out, such as the comment “//

FileUploadServlet uploadServlet = new FileUploadServlet();” in project

appformeri in the following example. Inline comments that contain source

code are removed.

1 // FileUploadServlet uploadServlet = new FileUploadServlet ();

2 uploadServlet.doPost(request ,response);

• Inline Comments that are interrogative sentences. Such as the inline com-

ment “// is this right?” in project ghidraj in the following example is an

interrogative sentence. Such comments may be mainly used for communi-

cation for developers, rather than explaining the implementation details or

intentions of code pieces. These inline comments are removed.

1 // is this right??

2 return null;

• Inline Comments that are file paths. Such as the inline comments “// src/-

main/resources/org/drools/compiler/...” in project droolsk in the following

example. Such comments may be a reminder for developers and show less

relevance to code. Thus, we remove these inline comments.

1 // src/main/resources/org/drools/compiler /...

2 int cnt21 =0;

3 loop21: while (true) {...}

hhttps://github.com/eclipse-openj9/openj9/...TestImplies.java
hhttps://github.com/RipMeApp/ripme/...FivehundredpxRipper.java
ihttps://github.com/kiegroup/appformer/...FileUploadServletTest.java
jhttps://github.com/NationalSecurityAgency/ghidra/...FlowArrowPlugin.java
khttps://github.com/kiegroup/drools/...JavaLexer.java
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• Digitized inline Comments. This type means inline comments only com-

posed of numbers. Such as the inline comments “// 4, 5, 13, 29, 31” in

project CalendarFXl in the following example. Such comments may be

meaningless for developers and be removed.

1 // 4, 5, 13, 29, 31

2 runRecurrenceIteratorTest("RRULE:FREQ =...");

Results of dataset construction. After filtering, we get 5,740,770 pairs of

<Inline Comment, Code> and we find that 28.9% ((8077260− 5740770)/8077260)

of the inline comments are noises that needed to be pre-processed. This indicates

that the data pre-processing noise in inline comments is widespread in open-source

Java projects. We also provide supplemental information in our benchmark, such

as the corresponding context (the body of method code), the abstract syntax tree

(AST) of code, and the possible identifiers in the code. We believe that this may

facilitate the training of new models in the future. We open the benchmark dataset

in the open-source platform m.

4.3. A Taxonomy of Inline Comments

As aforementioned, inline comments describe different aspects of the code. There-

fore, we are wondering whether different categories of inline comments show different

performances in our dataset. Based on the filtered sample dataset in Section4.2 and

previous comments classification method [12,41,42], we developed a specific taxon-

omy for inline comments after manual review by three Ph.D. (two of them are not

co-authors of this paper).

We find that inline comments usually describe different aspects of code snippets,

including functionalities, implementation details, and code intentions. We propose

a taxonomy for inline comments with three categories (i.e., what, how, and why).

We are interested in these categories rather than the more categories suggested in

previous studies, such as six categories [21] and five categories [12] for the following

reasons: 1) we conduct detailed noise data processing in Section4.2, so several cate-

gories mentioned in the previous study would not appear in our dataset, such as the

under development (e.g.TODO comments) and style (symbols used to separate the

code) category; and 2) we merged some categories mentioned in previous studies,

such as how-it-is-done and how-it-use, which we think they both describe the im-

plementation details of the code. After that, we summarize the possible features of

the different categories of comments. Finally, we automatically categorize all inline

comments in the dataset based on the classification model. The three categories of

inline comments are as follows:

lhttps://github.com/dlsc-software-consulting-

gmbh/CalendarFX/...CompoundIteratorImplTest.java
mhttps://anonymous.4open.science/r/CommentG-1E75/
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• What : This type of inline comment mainly provides a summary of what the

code snippets are about to do, and may also describe variables, constants,

or expressions in the code snippets concisely. This type of inline comment

could help developers quickly understand the functionality of code snippets.

For example, the comment “// the injector is set up” provides a summary

of what the code snippets are about to do.

• How : This type of inline comment describes the implementation details

of how the code snippet is completed or describes how to use the corre-

sponding code snippet. This type of inline comment could help developers

to understand the code snippet, especially when the code complexity is

high. For example, the comment “// build the polynomials by iterating on

the top diagonal of the divided differences array” is used to describe the

implementation details of code.

• Why : This type of inline comment explains the intentions of the code snip-

pet, i.e. why the code snippet needs to use this implementation or clarifies

why it is written in a specific pattern. For example, the comment “// doc

3 doesn’t have a “test” field but we’re defaulting it to 100 so it should be

last” explains why the code snippet needs to use this implementation.

Then, to automatically classify inline comments by models, we extract five fea-

tures based on a manual review by the abovementioned three Ph.D. The results

are shown in Table 1. The first column shows the features, and the second col-

umn introduces the type of each feature, i.e. numeric and string. The last column

gives the description. Feature TokenNum, PrepNum, and ConjunNum have been

validated in previous studies [12] for their effectiveness in comment classification.

Feature Keywords and Ratio are of positive importance for classification based on

our manual review. Specifically, a large TokenNum and Ratio may indicate a com-

ment has a higher probability to be an explanation of implementation details or

intentions, i.e., how or why comment. PrepNum and ConjunNum mean the specific

relations (preposition or conjunction) in the comment, such as the word “because”

may indicate the category why. Keywords means specific words that may indicate

types, such as the word “via” may indicate the category how.

We automatically extract these features from inline comments and train clas-

sification models based on the filtered sample dataset in Section4.2. Following

[12, 43, 44], we adopt three classification methods that are commonly used in clas-

sification tasks and can achieve good results [12, 45], namely Decision Tree [46],

Random Forest [47], and Convolutional Neural Network [45]. We chose these three

models for the following reasons: 1) During the training process, we utilized a manu-

ally labeled dataset. Due to the constraints of costs in human labeling, our sampled

dataset consisted of 4,000 instances. Based on this dataset, we conducted classifica-

tion training and ten-fold cross-validation. We believe that these models are more

capable of effectively utilizing the limited data for training, mitigating the risk of

overfitting; 2) Considering the limitations in computational resources and time, the
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Table 1: Features for inline comment classification

Feature Type Description

TokenNum Numeric number of tokens in inline comment

PrepNum String
specific prepositional phrases in
inline comment

ConjunNum String
specific conjunction relations in
inline comment

Keywords String words that may indicates a specific type

Ratio Numeric
the ratio of number of tokens in inline

comment and number of tokens in code

training speed of decision tree and random forest models is relatively fast, and the

structure of CNN models is more amenable to adjustments and optimizations.

During model training, we use a 10-fold cross-validation method, that is, we

randomly select one fold of data each time as the test set and other data as a training

set. We use five traditional metrics, namely Precision, Recall, F1-score, Accuracy,

and Hamming Loss. The calculation is conducted based on sklearnn library. Finally,

we automatically classify the entire dataset with the classification model (achieves

the best results on metrics) and conduct a statistic analysis. The results are shown

as follows.

Table 2: The performance of our classification model based on traditional

metrics

Model Precision Recall F1-score Accuracy Hamming
Loss

DCT 83.2% 84.2% 83.5% 87.6% 0.1238

RFC 86.0% 86.8% 86.2% 89.5% 0.1052

CNN 88.1% 86.2% 86.9% 89.7% 0.1029

CNN* 88.1% 86.8% 87.3% 90.0% 0.1000

Results of classification. The results are shown in Table 2. Column 1 presents

the models we used, among them, CNN* means the model is trained on the basis

of extracted features. Columns 2-6 list the results of traditional metrics. From the

table, we can find that:

nhttps://scikit-learn.org/stable/modules/classes.html
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Table 3: The statistic results of different categories of inline comments

How What Why All

Length of Code
1st Quartile 6 5 5 5

Median 12 10 12 11

3rd Quartile 26 23 25 24

Length of Inline Comment
1st Quartile 7 3 9 4

Median 11 5 13 7
3rd Quartile 17 8 22 11

Num. of Tokens per Data Code 29.7 24.8 37.5 27.4
Comment 14.1 6.1 18.1 9.3

Num. of Tokens
Code 37,236,805 93,537,461 26,496,560 157,270,826
Comment 17,659,979 23,029,783 12,780,683 53,470,488

Num. of Unique Tokens
Code 1,397,278 2,660,627 923,389 3,428,800
Comment 219,662 378,587 170,788 564,123

The proportion 21.87% 65.82% 12.32% 100%

Number 1,255,267 3,778,373 707,130 5,740,770

• The three models all achieve high precision, recall, F1-score, and low ham-

ming loss in automatic classification inline comments, which indicates the

effectiveness of our classification.

• The random forest and CNN models achieve high precision, recall, F1-score,

and low hamming loss, compared with the decision tree model. The CNN

model based on the features of our analysis could achieve the best results.

Finally, based on the extracted features, we use the CNN model (i.e. CNN* in

Table 2) to classify the <Inline Comment, Code> pairs in all datasets.

4.4. Assessment of the Classified Dataset

4.4.1. Statistical analysis and results

We conduct a statistical analysis of the dataset after classification. The statistical

analysis mainly contains the following aspects: 1) the length of code and inline

comments, we calculate the 1st quartile, median, and 3rd quartile of them; 2) the

number of tokens in all data pairs and in per data; 3) the number of unique tokens.

Results of statistical analysis. The corresponding results are shown in

Table.3. From the table, we can find that:

• Overall, most inline comments in the dataset are relatively short. The me-

dian value of the length of questions is 7, and 75% of inline comments have

a length <= 11 words. Meanwhile, the median value for code snippets is 11,

and 75% of code snippets have a length <= 24 words. Most inline comments

contain 9.3 tokens and most codes contain 27.4 tokens on average.
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• Token used in inline comments and corresponding code is abundant. This

indicates by the result that the number of unique tokens of codes is more

than three million and the number of unique tokens of inline comments is

more than fifty thousand.

• The value of length for the how and why categories are higher than the

value of length for all the data, and the length for the what category is

the shortest. This indicates that developers use longer sentences to describe

the implementation details and the intentions behind the code snippet, and

more concise sentences to describe the functionality of the code snippet.

• What category achieves the highest proportion, with a value of 65.82%.

The proportion of how and why categories are relatively low, with values

of 21.87% and 12.32%, respectively. This indicates that developers usually

write what category of inline comments that are short and concise summa-

rizing the functionality of the code snippet.

4.4.2. Manual review and results

To explore whether different categories of comments perform differently in code

understanding activity from the perspective of developers, we conduct a manual

review to evaluate different categories of inline comments. Considering that it is

impossible for us to manually check all inline comments (due to their large number),

we decide to analyze a sample set of them. By following the sampling strategy

in [21, 40, 48], we randomly select 384 pairs of <Inline Comment, Code>, with a

confidence level of 95% and sampling error within the range of ± 5%.

The manual evaluation process is carried out by three Ph.D. students (not co-

authors of this paper). We use a cross-validation method and assign each <Inline

Comment, Code> pair to these three people. They settle their emerging differences

through open discussion. If the discussion fails to reach an agreement, this pair

of data will be discarded, and a new pair will be sampled and analyzed so that

the number of samples remains at 384. During the review process, the five-point

Likert scale [49] is used. We mainly focus on three aspects of inline comments and

corresponding codes in the review process. We use grammaticality to assess the

syntactic and semantics of inline comments in our dataset. In addition, we use

relevancy and helpfulness to assess the inline comments when it is corresponding to

a code snippet. The details are as follows:

• Grammaticality and Semantic Correctness: It measures how likely an inline

comment is grammatically and semantically correct. We use 1, 2, 3, 4, and 5

to represent the correctness of the inline comment, i.e., completely incorrect

(1), basically incorrect (2), partially correct (3), correct (4), and completely

correct (5).

• Relevancy: It measures to what extent an inline comment is relevant to

the target code. We also use 1-5 to represent the relevancy of the inline
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comment, i.e., completely irrelevant (1), basically irrelevant (2), partially

relevant (3), relevant (4), and completely relevant (5).

• Helpfulness: It measures to what extent an inline comment is likely to help

the developers understand the target code. We also use 1-5 to represent the

helpfulness of the inline comment, i.e., completely unhelpful (1), basically

unhelpful (2), partially helpful (3), helpful (4), and very helpful (5).

H o w

W h a t

W h y
2 3 4 5

(a) Grammaticality

H o w

W h a t

W h y
2 3 4 5

(b) Relevancy

H o w

W h a t

W h y
2 3 4 5

(c) Helpfulness

Fig. 3: The Likert rating results on the human evaluation of inline com-

ments from three respects

Results of manual review. Fig.3 shows the results. Detailedly, the x-axis

represents the score of inline comments, and the y-axis represents the categories of

inline comments. Fig.3a, Fig.3b, and Fig.3c list the distribution of scores of inline

comments in grammaticality, relevancy, and helpfulness, respectively. From Fig.3,

we can find that:

• In grammaticality, all three categories of inline comments in our bench-

mark dataset perform well, with an average value of close to 5 (completely

correct).

• In relevancy, the inline comments in the what and how categories achieve

a similarly average value (4.63 and 4.61), and the inline comments in the

why category are almost completely relevant to the code snippet (with a
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value of 4.81).

• In helpfulness, the three categories of inline comments show differences. All

of them are helpful in code understanding activities. The why category per-

forms best in average value (4.47), followed by the how category (4.25), and

the what category is the lowest (4.11). This indicates that inline comments

of the why and how category, i.e. comments that describe the implemen-

tation details and the intentions behind the code snippet, are more helpful

in the code understanding activities from the perspective of developers.

• Overall, 14.8% of data (57/384 ) are scored as completely unable (score 1)

and basically unable (score 2) to help code understanding activities. We

further analyze this part of data and find that 4.2% (16/384) of them have

inconsistency between code and comments, which may result in low scores.

In summary, the inline comments in our benchmark dataset are almost com-

pletely correct in grammatically, relevant with code snippets, and helpful in code

understanding activities, especially the why category of inline comments.

5. CONSTRUCTION OF BASELINES

5.1. Data Preparation

To train CodeBERT and Bart, we divide our dataset after the automatic classi-

fication into the training set, the validation set, and the testing set according to

the proportion of 8:1:1. We also remove the duplicate data in the testing set. The

final dataset for each category is a two-tuple containing inline comments and cor-

responding code snippets. Due to the request restrictions of ChatGPT, we sample

384 pairs of data in the test set (with a confidence level of 95% and sampling error

within the range of ± 5%) and try to ask ChatGPT to generate comments for the

given code snippet.

5.2. Comments Generation Model

A CodeBERT [50] model is based on BERT [51] and a multi-layer bidirectional

transformer as the basic model structure. The parameters and structure of Code-

BERT are similar to that of RoBERTa [52], and it is a bimodal model pre-trained

with natural language and programming languages such as Python and Java.

A Bart [53] model is based on a standard seq2seq/machine translation architec-

ture with a bidirectional encoder and a left-to-right decoder.

ChatGPT is based on the GPT-3.5 architecture and can be used for various tasks

such as answering questions, generating comments, and performing translations.

ChatGPT achieves natural language processing and understanding through vast

training data and deep learning algorithms.

We choose these three baselines for the following reasons. First, CodeBERT

and Bart are open-source and can be easily experimented with and compared. Fur-

thermore, they can be combined with other models to enhance their performance in
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future exploration. Second, CodeBERT and Bart are commonly used by researchers

for NLP translation tasks and Javadoc comment generation, which achieves good

performance and accuracy according to existing research [54,55]. Finally, large lan-

guage models have also achieved exciting results in text generation. This naturally

inspires us to explore whether large models perform well in inline comment gener-

ation.

The input of the CodeBERT and Bart is the token sequence of the code snippet,

i.e. the source code is represented as a sequence of symbols, which is a natural

language representation of the code, ignoring the syntactic of the code. The input of

ChatGPT is the instructions and code snippets. The output of the CodeBERT, Bart,

and ChatGPT are the corresponding inline comments of the input code snippet.

For CodeBERT and Bart, we fine-tune the model parameters on our dataset. For

ChatGPT, we utilize the API provided by OpenAI to conduct generation tasks on

the sampled data in the test set. The model training and prediction are conducted

on a machine with Nvidia GTX 1080 GPU, Intel(R) Core(TM) i7-6700 CPU, and

16 GB RAM. The operating system is Ubuntu, and the JDK version is 10.

5.2.1. Evaluation on traditional metrics

We adopt BLEU [56] and ROUGE [57] to measure the performance of baselines.

These two metrics are widely used in the machine translation task and have been

adopted to evaluate the performance of many tasks in software engineering, such

as code comment generation [58, 59], commit message generation [60, 61] and pull

request description generation [62].

BLEU [56] analyzes the n-grams of the candidate and the reference translation,

then counts the number of matches. Modified n-gram precision pn is computed,

where n can be 1,2,3, and 4, results in BLEU-1, BLEU-2, BLEU-3, and BLEU-

4. BLEU-4 takes the geometric mean of the modified precision scores and then

multiplies the result by an exponential brevity penalty factor. ROUGE [57] counts

the number of overlapping units such as n-gram, word sequences, and word pairs

and we use ROUGE-L in our evaluation. In general, BLEU and ROUGE results are

complementing, which are similar to precision and recall, so we adopt both of them

in our evaluation. We calculate the BLEU score based on the nltko package and the

ROUGE score based on the rougep package, respectively.

5.2.2. Results of Automatic Inline Comments Generation Baselines

Based on the prepared benchmark dataset in Section5.1, we train the models to

automatically generate inline comments. For the generated inline comments pre-

dicted by models from the testing set, our BLEU1-BLEU4 [56] and ROUGE-L [57]

results are shown in Table.4. Specifically, column 1 represents the baseline models

ohttp://www.nltk.org/api/nltk.translate.html
phttps://pypi.org/project/rouge/
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and column 2 shows the categories of inline comments. Columns 3-6 list the results

of BLEU1-BLEU4, respectively. Column 7 shows the value of ROUGE-L. From the

table, we can find that:

Table 4: Results of metrics-based evaluation of the inline comments gen-

eration baselines

Model Category BLEU-1 BLEU-2 BLEU-3 BLEU-4 Rouge-L

CodeBERT

What 43.24 42.05 42.04 42.61 48.48

How 39.14 36.92 35.8 35.33 46.82
Why 36.43 34.14 33.00 32.41 43.64

Bart
What 53.71 44.37 39.23 35.61 32.19
How 45.98 38.24 32.77 28.92 32.54

Why 39.05 32.58 27.74 24.33 30.32

ChatGPT

What 11.55 9.30 7.38 5.75 7.22

What* 13.49 10.78 8.56 6.70 7.80

How 22.01 17.87 14.24 11.23 10.72
How* 27.85 22.55 18.05 14.37 11.75

Why 30.67 24.83 19.31 14.87 11.05
Why* 37.61 29.80 22.97 17.74 12.61

1 What*/How*/Why*: the result of the concise comment given by ChatGPT.

• CodeBERT achieves the best performance among the three baselines. The

BLEU4 value of CodeBERT ranges from 32.41 to 42.61, and ROUGE-

L ranges from 43.64 to 48.48. The lowest BLEU4 and ROUGE-L come

from the why category while the highest BLEU4 and ROUGE-L come from

the what category, which indicates that for CodeBERT it may be difficult

to generate the intentions of code from code snippets. In addition, the

difference in the value of BLEU2-BLEU4 of what category is relatively

small, which may be due to the relatively short inline comments of this

category, with over 50% length of 5 and over 75% length of less than 8.

• Bart achieves similar performance to CodeBERT in different categories. In

addition, the value from BLEU1 to BLEU4 is decrease rapidly. It performs

better than CodeBERT on BLEU1-BLEU2, but not as well as CodeBERT

on BLEU3-BLEU4.

• ChatGPT achieves the lowest value of BLEU4 and ROUGE-L values, which

ranges from 5.75 to 14.87 and from 7.22 to 11.05, respectively. This indi-

cates that is difficult for ChatGPT to generate the existing inline comments

in the real project currently. The lowest BLEU4 and ROUGE-L come from

the what category while the highest BLEU4 and ROUGE-L come from

the why category, as opposed to the performance of CodeBERT and Bart.

This indicates that ChatGPT may perform better in generating longer com-
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ments, as both the how and why categories of comments are relatively long

(with a median value of 11 and 13), while what category of comments are

relatively short (with a median value of 5).

To understand why ChatGPT obtains the lowest values of BLEU and ROUGE,

we conduct a manual review of the dataset (ChatGPT used) to find possible rea-

sons and present several examples to visualize the results. We list three Java code

snippets with their real inline comments and the comments given by ChatGPT

and CodeBERT, as shown in Fig.4. Fig.4a, Fig.4b, and Fig.4c list an example of

how, what, and why categories of inline comments, respectively. Our findings are

as follows:

• The comments generated by ChatGPT are significantly longer in length

than the original human-written comments, such as the instances in Fig.4a,

Fig.4b, and Fig.4c. Previous research has shown that developers typically

expect inline comments to be less than 10 words [10]. Therefore, we modi-

fied the input instruction to let ChatGPT give a concise comment, then a

comment (corresponding code is in Fig.4b) of reasonable length “// Com-

putes polynomial coefficients using top diagonal values and abscissae.” will

be given. We also list the corresponding metric results in Table 4, i.e. the

results with a symbol “*”, which get a promotion. This may suggest that

when generating comments with ChatGPT, the entered instructions need

to be carefully considered, and that differences in one word may lead to

significant differences in the results.

• ChatGPT performs not well at capturing semantic information beyond code

snippets to generate inline comments currently. For example, in the instance

in why category (Fig.4c), the semantics of the generated comments given

by ChatGPT are partly different from the original comments. This may be

due to the reason that the instances in the why category may contain extra

semantic information that goes beyond the snippet of code, such as “doc 3”

and “it should be last”, therefore, it is a challenge for ChatGPT to capture

and incorporate these pieces of information into inline comment generation

currently.

• Based on our proposed data set, we fine-tune the open-source CodeBERT

model and conduct the evaluation using the test set. However, the Chat-

GPT model was not fine-tuned on our data set (non-open source), hence

it may not perform as well on the sampled test set for the inline comment

generation task. To a certain extent, this may also indicate the effectiveness

of our dataset in the inline comment generation task, as models trained on

our data set demonstrate are capable of generating inline comments written

by developers more effectively.
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(a) Example in what category

(b) Example in how category

(c) Example in why category

Fig. 4: The examples of generated inline comments
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6. DISCUSSION

6.1. Implications

Implications for researchers. The exploration we made would provide foresight

for the generating of inline comments. We provide the first large-scale benchmark

dataset named ICG with 5,740,770 pairs of inline comments and code snippets after

fine-graned data pre-processing noise cleaning. We find that the why category of

inline comments is almost completely relevant to the code snippet and achieves

the highest value in helpful for understanding code, followed by the how category.

Therefore, it would be interesting to explore the possibility of generating high-

quality why and how categories of inline comments in the future.

In addition, our experimental results (Section 5.2.2) show that even current

SOTA methods cannot achieve ideal results. On the one hand, the metric-based

evaluation results given by three baselines show that the effectiveness of the meth-

ods still needs to be improved. On the other hand, according to the results given

by ChatGPT, overly long comments may affect code understanding, and how to

succinctly capture the semantics hidden behind the code text and the developer’s

intentions are still very challenging to study. Therefore, more advanced methods

are expected to improve the performance further. Moreover, we manually labeled a

dataset of 4,000 instances for the classification task and employed models such as

Random Forest and CNN for the classification task. In the future, the utilization of

a larger labeled dataset and more efficient approaches, such as those based on pre-

trained models, can be further explored. Moreover, we manually labeled a dataset

of 4,000 instances for the classification task and employed models such as Random

Forest and CNN for the classification task. In the future, the utilization of a larger

labeled dataset and more efficient approaches, such as those based on pre-trained

models, can be further explored.

Implications for tool developers. This work can motivate tool developers to

develop IDE plugins that can provide timely feedback by suggesting inline comments

once a developer finishes writing a piece of code. Such feedback can work as an

assistant for code understanding activities for developers. This is indicated by the

result that inline comments in our dataset could help developers understand the

target code (in Section 4.4.2). In addition, it would be more helpful and valuable

if tool developers could pay more attention to generating inline comments that

describe the implementation details and the intentions behind the code snippet.

This is motivated by our results that the why category achieves the highest value

in helpful for understanding code, followed by the how category.

6.2. Threats to validity

Threats to Construct Validity. One threat is about the construction of the

data set (in Section 4). In this work, we associate inline comments and code by the

heuristics in work [11]. Although they could obtain an accuracy of 95% in sampled
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data. We cannot guarantee that these heuristic rules could always obtain such an

or even higher accuracy in any case.

Another threat is that the classification of the whole dataset in Section4.3 was

done by the CNN classifier, which is not 100% accurate. However, given the fact

that CNN performs well in many comment classification tasks [12, 63], we believe

that the current accuracy (88.1%) is acceptable.

Threats to Internal Validity. The major threat is that there may be indi-

vidual bias in the manual review about the grammaticality, relevancy, and helpful-

ness in code understanding activities in Section 4.4.2. To ensure the accuracy and

objectivity of results, the review is conducted by three Ph.D. students and they

cross-checked the data and solved disagreements through discussions.

Threats to External Validity. One threat is that our exploration is only

conducted on open-source Java projects. We cannot guarantee that our process of

dataset construction is applicable to industrial or projects in other programming

languages. However, considering that Java is one of the most popular programming

languages in the world and is widely used in software projects development [1,21,64],

we believe that our research could still provide promotion about the process of

construction of large-scale dataset. In the future, we plan to replicate our work in

more software projects and other programming languages.

Threats to Conclusion Validity. The major threat is that we perform three

types of manual reviews in this work, namely (1) checking the noise of inline com-

ments (Section4.2), (2) classifying inline comments (Section4.3), and (3) evaluating

the quality of the dataset (Section 4.4.2). All participants evolved in these pro-

cesses are not the owners (developers) of the code base, we cannot guarantee that

all judgments made by the participants are correct. In order to reduce these bi-

ases, we cross-checked the data by three Ph.D. students and solved disagreements

through discussions.

7. CONCLUSION

In this paper, we construct a benchmark dataset of inline code comments and

provide several baselines of automatic inline comments generation. We first collect

a large dataset of 8,000 Java projects from GitHub. Then we conduct a manual

review to obtain heuristics to filter the noises in the dataset, resulting in a dataset

of 5,740,770 pairs of inline comments and code snippets. After that, we propose

a comprehensive taxonomy of three categories (i.e. what, how and why) of inline

comments. Then we evaluate our benchmark dataset through statistical and manual

analysis. Our statistical results show that most inline comments are relatively short

and the token used in inline comments and corresponding code is abundant in our

benchmark. In the manual analysis, our results show that the inline comments are

correct in grammaticality, and relevant to the code. And the comments in why

category achieve the highest value of helpfulness in code understanding activities

from the perspective of developers. Finally, we train and compare three models to
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automatically generate inline comments for code snippets, to make our benchmark

easy to use for researchers.
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