
Accepted: 23 June 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Communicated by: Bram Adams.

Extended author information available on the last page of the article

KBL: a golden keywords-based query reformulation
approach for bug localization

Biyu Cai1 · Weiqin Zou1 · Qianshuang Meng1 · Hui Xu1 · Jingxuan Zhang1

Empirical Software Engineering (2025) 30:135
https://doi.org/10.1007/s10664-025-10694-2

Abstract
Reformulating initial bug reports to obtain better queries for buggy code retrieval is an
important research direction in the bug localization area. Existing query reformulation
strategies of bug reports are generally unsupervised and may lack localization guidance,
which prevents the generation of better queries for bug localization. Towards this, we
propose to develop KBL, a golden keywords-based query reformulation approach for bug
localization. Specifically, we first leverage the genetic algorithm and keywords refine-
ment heuristic rules to build a golden keywords benchmark targeted at bug localization.
Taking this benchmark as bug localization guidance, we create a keywords classifier for
bug reports based on three categories of semantic features. The extracted keywords by
the classifier for a bug report are taken as the reformulated start point upon which noise
removal and shared keyword expansion with historical bug reports are further performed.
The final achieved query, as a replacement for the original bug report, is expected to
enhance buggy code retrieval performance. Our experiments show that the contributed
keywords benchmark is of high quality in locating bugs, establishing a good basis for
further query reformulation to improve localization techniques. Through an analysis of
different classifier choices, data balancing strategies, and feature importance, we validate
the suitability of the configuration settings for our keyword classifier. A testing dataset
of 4,484 bug reports from six projects is used to evaluate our KBL. The results show
that KBL is found to substantially outperform both the typical (with a relatively 8%-85%
higher Acc@10, 9%-93% higher MAP, and 10%-94% higher MRR), and state-of-the-art
(with a relatively 21%-45% higher Acc@10, 31%-47% higher MAP and 32%-50% higher
MRR) reformulation strategies. Moreover, based on the reformulated queries of our KBL,
the performance of seven representative information retrieval-based bug localization tech-
niques also showed recognizable improvements, including relative increases of 8%-36%
in Acc@1, 6%-32% in Acc@5, 4%-24% in Acc@10, 4%-21% in Acc@20, 10%-33% in
MAP, and 8%-25% in MRR.

Keywords Bug report · Query reformulation · Golden keywords · Bug localization

1 3

http://orcid.org/0009-0006-6876-6768
https://doi.org/10.1007/s10664-025-10694-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10694-2&domain=pdf&date_stamp=2025-6-30

Empirical Software Engineering (2025) 30:135

1 Introduction

Software users and testers could submit a bug report to bug tracking systems when they encounter
software problems. Developers who are assigned to fix the bug first need to reproduce the bug and
locate where it appears. To successfully reproduce and locate the bug, the bug report should pro-
vide clear and correct information about the bug; the developer should also have a comprehensive
understanding of the bug as well as the software project. In other words, bug localization cannot
be said to be an easy task for developers during their daily routine, the situation is even more
challenging when they have to handle a large number of bug reports. For example, the Mozilla1
project received as many as more than 10K bug reports in just two months (Luo et al. 2023).

To reduce the burden of developers on locating bugs, various bug localization techniques
have been proposed to automatically identify buggy code elements for given bug reports. As
a major category of bug localization, information retrieval-based bug localization (IRBL)
techniques attract much attention from researchers and practitioners (Rahman and Roy
2018b; Florez et al. 2021; Lukins et al. 2008; Sisman and Kak 2012; Wang and Lo 2014).
The basic idea of IRBL techniques is to take bug localization as an information retrieval
task where a bug report is a query, the code base is the corpus, and the localization process
equals retrieving a list of relevant code files for the bug report query from the code corpus.

As an important input, the quality of a bug report would greatly affect the retrieval performance
of IRBL techniques. Previous studies have found that bug reports especially of open-source proj-
ects are of different qualities (Rahman and Roy 2018a; Bettenburg et al. 2008). To improve the
locating performance, some researchers propose to reformulate the bug report first and then use
the generally better query to do bug localization (Rahman and Roy 2018b; Florez et al. 2021; Kim
and Lee 2019a; Chaparro et al. 2017). For instance, Rahman and Roy developed a tool named
BLIZZARD that classifies bug reports into different types and applies different reformulation strat-
egies to reformulate the bug report (Rahman and Roy 2018b). Meanwhile, Florez et al. focus on
information items of a bug report such as observed behavior (OB), expected behavior (EB), steps
to reproduce (S2R), based on which performing query reduction and/or expansion strategies to do
bug report reformulation (Florez et al. 2021). Sisman and Kak proposed the Spatial Code Proxim-
ity model to measure term-term positional proximity. Candidate terms with close proximity are
then used to expand the initial query (Sisman and Kak 2013). Haiduc et al. proposed Refoqus, a
technique that automatically selects a more suitable reformulation strategy based on the properties
of the incoming query, thereby enabling query expansion of reduction (Haiduc et al. 2013), etc.

While the aforementioned reformulation studies have made some progress in facilitating
bug localization, there remains substantial room for further performance improvement. Cur-
rent query reformulation strategies for bug localization primarily focus on utilizing unsuper-
vised graph-based (e.g., TextRank) or frequency-based ranking algorithms. These algorithms
are applied to either the entire bug report, parts of it (e.g., stack traces), or pseudo-relevant
code files. Pseudo-relevant code files are a set of files initially assumed to be relevant to a
bug report based on a retrieval model, even if their actual relevance is unconfirmed. These
algorithms weigh terms and select important ones to either expand (completing extra infor-
mation) or reduce (removing noise) the initial bug report query. Few studies propose using
certain items like Observed Behavior plus Title to replace the whole bug report for buggy-
code retrieval or adopting explicit relevance feedback to enhance search effectiveness, where
developers are required to provide feedback on retrieval results.

1 https://bugzilla.mozilla.org/home

1 3

 135 Page 2 of 61

https://bugzilla.mozilla.org/home

Empirical Software Engineering (2025) 30:135

The potential problems behind these studies are: (1) Pseudo relevant code files can only work
if the original bug report is reasonably strong in its power to retrieve at least some of the relevant
code files; and explicit relevance feedback would increase the user’s burden, be affected by sub-
jective (or wrong) feedback, and generally suffers from scalability issues. (2) Focusing on spe-
cific items such as observed behavior or stack traces would lead to missing useful information
from other items of a bug report, which makes them not a good enough data basis for keyword
extraction. (3) The nature of unsupervised keyword extraction algorithms can only indicate that
the selected terms may be real keywords regarding the content of the software artifacts them-
selves. Still, they may not be the optimal option for the bug localization task. For example, dif-
ferent bug-related tasks, such as priority prediction, bug triage, or localization, are expected to
weigh the terms in bug reports with varying emphasis. It is questionable that the terms obtained
by applying, e.g., TextRank, to a bug report would have the same effect on all these tasks.

The aforementioned issues lead us to explore an intriguing possibility: could we poten-
tially achieve better localization hints for bug localization if we build a supervised keyword
extraction model on a dataset where keywords are labeled based on their buggy-code-retrieval
capability? This forms the foundational assumption of the reformulation technique we pro-
posed in this paper, i.e., the KBL — a golden keywords-based query reformulation approach
for bug localization. Specifically, we first construct a golden keywords benchmark for bug
reports aimed at providing effective localization guidance, by using a genetic algorithm and
keywords refinement heuristic rules towards historical bug reports and their fixing data. One
main characteristic of the extracted golden keywords lies in their capacity to guide bug local-
ization, as evidenced by their effectiveness in retrieving the correct buggy code. Taking this
benchmark as reformulation guidance, we create a supervised keyword classifier based on
three categories of semantic features and use the classifier to obtain potential keywords for
newly arrived bug reports. The extracted keywords by the classifier for a bug report are
taken as the reformulated start point upon which noise removal and keyword expansion with
historical bug reports are further performed. The final query achieved could then be fed into
an IR search engine (as a substitution for the initial bug report) to locate buggy code files.

We perform our experiments on six open-source projects with 22,747 bug reports in total.
The experimental results show that our constructed golden keywords benchmark is of high
quality in locating bugs. Through an analysis of different classifier choices, data balanc-
ing strategies, and feature importance, we validate the suitability of the configuration set-
tings for our keyword classifier. Compared to traditional reformulation baselines, the KBL
shows a relative improvement of 8%-85% in Acc@10, 9%-93% in MAP, and 10%-94%
in MRR. In comparison to state-of-the-art reformulation strategies, KBL demonstrates a
relative improvement of 21%-45% in Acc@10, 31%-47% in MAP, and 32%-50% in MRR.
Moreover, with the leveraging of the reformulated queries generated by our KBL, the per-
formance of seven representative IRBL techniques demonstrated noticeable improvements,
with relative increases of 8%-36% in Acc@1, 6%-32% in Acc@5, 4%-24% in Acc@10,
4%-21% in Acc@20, 10%-33% in MAP, and 8%-25% in MRR.

In summary, our study mainly makes the following contributions:

1) We propose to develop KBL, a golden keywords-based reformulation technique for bug
localization. By using keywords that provide localization guidance as reformulation
start, KBL could generate better bug report queries for locating bugs.

1 3

Page 3 of 61 135

Empirical Software Engineering (2025) 30:135

2) We develop an effective way that integrates genetic algorithms and keywords refine-
ment heuristic rules to create a golden keywords benchmark, which provides a valuable
starting point for researchers who aim to develop more advanced reformulation tech-
niques tailored for bug localization.

3) We conduct a comprehensive evaluation of KBL based on bug localization tasks, using
a testing dataset of 4,484 bug reports. The results demonstrate that KBL outperforms
both traditional and state-of-the-art reformulation strategies in key performance met-
rics; leveraging reformulated queries by KBL enhanced the performance of several
representative IRBL techniques.

2 Background and Related Work

In this section, we will first describe the concept of information retrieval-based bug localiza-
tion and associated research studies. Then, we present current query reformulation strategies
and their use in bug localization. Last, we introduce the genetic algorithms that we use to
construct golden keywords for reformulation-based bug localization in our study. Details
are as follows.

2.1 Information Retrieval-Based Bug localization

Information retrieval bug localization techniques are one main-stream category of existing
bug localization techniques. To provide a clearer understanding of the role and importance
of IRBL techniques, we begin by briefly introducing the categorization of bug localization
methods. Broadly speaking, existing bug localization techniques can be roughly divided
into two categories: dynamic bug localization and static bug localization (Le et al. 2015).

Dynamic bug localization mainly leverages program execution traces to associate code
elements with program failures (Saha et al. 2013). These techniques typically begin with
instrumenting the program to collect execution data during test runs, which contain detailed
logs of which parts of the code are executed during successful and/or failed test cases. By
comparing the behavior of passing (successful) and failing test cases, a suspiciousness score
is computed and assigned to individual code elements (such as lines, methods, etc.). These
code elements are then ranked based on their suspiciousness scores, with higher scores indi-
cating larger probabilities of being buggy. Dynamic bug localization’s main advantage lies
in its ability to leverage real execution data to provide fine-grained fault localization, often
down to the line or method level. Accompanying, this precision comes at the cost of higher
computational resources and increased execution overhead. Spectrum-based bug localization
techniques are representatives of such techniques (Jones and Harrold 2005; Yoo et al. 2017).

Static techniques focus on analyzing static artifacts like source code and bug reports
without requiring program execution. For static bug localization, some static semantic fea-
tures of bug reports and code snippets are extracted first. Then, semantic similarities of those
features are calculated and used to locate buggy code elements, where a code element with
a higher semantic similarity with a bug report is considered more relevant to the bug (Zhou
et al. 2012; Ye et al. 2016). These techniques are helpful for situations where runtime data is
unavailable, difficult to collect, or when resource efficiency is paramount. They can quickly
scan large codebases and provide a broader overview to help developers identify relevant

1 3

 135 Page 4 of 61

Empirical Software Engineering (2025) 30:135

files or classes that may contain bugs without needing to run the code. Information retrieval-
based bug localization (IRBL) techniques are representatives of such techniques (Saha et al.
2013; Kim and Lee 2019a; Chaparro et al. 2017; Zhou et al. 2012; Sisman and Kak 2012).

IRBL treats bug localization as a text retrieval task, where a bug report is treated as a
query, code files represent the document collection, and the location process is equivalent to
retrieving relevant code documents from the collection for a given bug report. Figure 1 illus-
trates a real bug report2 from the Eclipse JDT project. A typical bug report usually consists
of (1) bug title, (2) bug description (which may include steps to reproduce and observed
behavior), and (3) metadata (containing information such as status, report time, etc.).

For IRBL, bug reports and code files are generally taken as textual contents whose seman-
tics are extracted with traditional information retrieval techniques such as vector space model

2 h t t p s : / / b u g s . e c l i p s e . o r g / b u g s / s h o w _ b u g . c g i ? i d = 3 9 7 8 4 2

Fig. 1 A bug report example with bugID=397842 in Eclipse JDT project

1 3

Page 5 of 61 135

https://bugs.eclipse.org/bugs/show_bug.cgi?id=397842

Empirical Software Engineering (2025) 30:135

(VSM) (Rao and Kak 2011; Zhou et al. 2012), latent dirichlet allocation (LDA) (Blei et al.
2003; Lukins et al. 2008), and latent semantic indexing (LSI) (Deerwester et al. 1990). Based
on e.g., semantic vectors extracted by VSM for a bug report and a code element, a similar-
ity score (generally a cosine similarity) would be calculated. Code elements with the highest
scores are returned as buggy candidates to users for further checking. In the early stage, mainly
the contents of bug reports and the code themselves are used to do localization. In recent
years, researchers have tried to leverage other information sources such as code version con-
trol systems or historical bug reports, to improve localizing performance. For instance, Sisman
and Kak integrate defect histories and modification histories into their bug localization tech-
nique (Sisman and Kak 2012). Zhou et al. propose BugLocator, which utilizes a revised Vec-
tor Space Model (rVSM) to rank files based on the textual similarity between the bug report
and the source code, and also leverages information from historically similar bug reports to
facilitate bug localization (Zhou et al. 20120. Wang and Lo integrate version history, similar
bug reports, and structural information to enhance the localization of buggy files (Wang and
Lo 2014). Moreno et al. combine textual and structural similarities between code elements
in stack traces and source code files for bug localization (Moreno et al. 2014). AmaLgam+
integrates five information sources to locate bugs, including the code version history, similar
bug reports, code structures, stack traces, and reporter information (Wang and Lo 2016). With
the aim to bridge the possible lexical gap problem within buggy code retrieval process, Ye et
al. propose to introduce word embedding technique to better represent the semantics of bug
reports and code snippets, so as to further facilitate bug localization (Ye et al. 2016).

Meanwhile, some researchers propose to further combine machine learning techniques
to facilitate bug localization. Kim et al. extract features from bug reports and employ Naive
Bayes to predict files to be addressed for each bug report (Kim et al. 2013). Ye et al. intro-
duce an adaptive ranking approach that utilizes features extracted from source code files,
API descriptions, bug-fixing history, and code change history (Ye et al. 2014). Lam presents
an approach named DNNLOC, which combines a deep neural network with an information
retrieval technique (i.e., rVSM) and bug-fixing history to recommend potentially buggy
source code files for a given bug report (Lam et al. 2017). Yan et al. propose a just-in-time
defect localization tool, applying a classifier with 14 change-level features to identify the
buggy change lines in committed changes (Yan et al. 2020). We also focus on IRBL tech-
niques. Our goal is to reformulate a bug report by keeping its most informative words and
removing its redundant/noisy terms, so as to facilitate bug localization.

2.2 Query Reformulation

In search engines, if an initial query yields unsatisfactory results, users would generally reformu-
late the query and use the reformulated one to do the search again. The practice of query reformu-
lation is widely applied in various retrieval and location tasks, including bug localization (Sisman
and Kak 2013; Chaparro et al. 2017; Rahman and Roy 2018b; Kim and Lee 2019a), concept loca-
tion (Rahman and Roy 2017; Chaparro and Marcus 2016; Gay et al. 2009) and feature location
(Kevic and Fritz 2014), etc. Over time, a list of techniques have been developed to assist users to
do query reformulation (Haiduc et al. 2013; Roldan-Vega et al. 2013). These approaches involve
either query expansion (Carpineto and Romano 2012), where additional terms are incorporated
to broaden the query, or query reduction (Chaparro and Marcus 2016), where terms unlikely to
contribute to the inherent meaning of the query are eliminated to diminish noise.

1 3

 135 Page 6 of 61

Empirical Software Engineering (2025) 30:135

Sisman and Kak were pioneers in introducing query reformulation to the realm of IR-
based bug localization (Sisman and Kak 2013). They achieved query reformulation by
extracting terms related to the original query from pseudo relevance feedback and using
these terms as extensions to the original query. Chaparro et al. enhance the performance of
low-quality queries by identifying observed behavior from the bug report as the reformu-
lated query (Chaparro et al. 2017). Considering the quality of bug reports, Rahman and Roy
analyzed both structured and unstructured content, and adopted different query expansion
or query reduction strategies based on the variations in bug report quality (Rahman and Roy
2018b). Kim and Lee extended bug reports through attachments, and if the quality of the
expanded bug reports remained poor, they further reformulated the query by incorporating
relevance feedback for additional expansion (Kim and Lee 2019a).

Gay et al. combined IR-based concept location with explicit relevance feedback to
enhance the effectiveness of concept location, thereby reducing the burden on developers
to reformulate queries (Gay et al. 2009). Haiduc et al. introduce Refoqus, a technique that
automatically selects the most appropriate reformulation strategy based on the characteris-
tics of the incoming query, allowing for query expansion or reduction (Haiduc et al. 2013).
Chaparro and Marcus demonstrated that removing certain terms from verbose queries can
significantly improve the retrieval effectiveness of concept location (Chaparro and Marcus
2016). Rahman and Roy employed term weighting techniques such as TextRank to select
the most important terms from the original query and construct a new query to accomplish
the concept location task (Rahman and Roy 2017).

Unlike the above query reformulation strategies which mainly rely on applying unsuper-
vised graph-based or frequency-based ranking algorithms to weigh terms within bug reports
(or specific items like stack trace) or pseudo/explicit relevant code files for query expansion
or reduction. We propose a supervised reformulation strategy driven by golden keywords
that can locate bugs with high accuracy.

2.3 Genetic Algorithm

Genetic algorithms (GAs) are search algorithms based on the principles of natural selection
and genetics, introduced by J Holland in the 1970’s and inspired by the biological evolution
of living beings (Sampson 1976). GAs are stochastic global search optimization methods
that simulate the replication, crossover, and mutation that occur in natural selection and
inheritance. Starting from an initial population, through random selection, crossover, and
mutation operations, a group of individuals that are more suitable for the environment is
generated. In this way, they continue to reproduce and evolve from generation to generation
and finally converge to a group of individuals that are most suitable for the environment.
Thus, GAs are widely used to address complex optimization problems in various research
fields including Software Engineering (Rahman et al. 2021). Considering that it is verbose
to use the whole text (i.e., summary + description) of a bug report as a search query for bug
localization, Mills et al. (2020) conduct an empirical study to explore whether a bug report
contains enough information for IRBL tasks. With knowing the buggy code files in advance,
the authors apply GAs to bug reports and check whether they can find a set of keywords with
which a buggy code file can be located accurately. They obtain a yes answer. Their findings
inspire our idea of retrieving bug-indicative keywords as guidance for bug report reformula-
tion to improve bug localization.

1 3

Page 7 of 61 135

Empirical Software Engineering (2025) 30:135

3 Methodology

In this work, we propose KBL, a golden keywords-based query reformulation approach for
bug localization. KBL consists of four modules, which are illustrated in Fig. 2: golden key-
words benchmark construction, keywords classifier construction, query reformulation, and
evaluation based on bug localization. KBL takes bug reports and source files as input. The
benchmark construction module is primarily responsible for building a golden keywords
benchmark using the genetic algorithm and the keywords refinement heuristic rules. The
keywords classifier construction module focuses on extracting three categories of semantic
features from bug reports and source code files, as well as training the keywords classifier.
The query reformulation module builds on the initial keywords extracted by the keyword
classifier, performing noise removal and shared keyword expansion with historical similar
bug reports to obtain the final query. The evaluation module aims to assess the effective-
ness of KBL by testing the performance of reformulated queries in bug localization tasks.
Before delving into the details of each module, we will first define several terms that will
be referenced throughout the description of our KBL, to facilitate a better understanding of
its core ideas. The dedicated algorithms used to identify them are presented in Section 3.1.

1) Preliminary keywords: A set of terms ultimately output by the genetic algorithm that
uses Effectiveness to measure individual fitness during its evolution process. The evolu-
tion process terminates when a constructed individual, i.e., a certain set of terms selected
from a bug report, makes one buggy code file ranked 1st in the buggy file recommenda-
tion list for the bug report, or when the maximum iteration (set as 30,000) is reached.

2) Noisy keywords: A subset of preliminary keywords. Each bug report would have a cor-
responding set of preliminary keywords after the genetic process. For any term from the
preliminary keyword set, if its exclusion would not negatively affect bug localization
performance, then it will be added to the noisy keyword set for the bug report.

3) Low-quality keywords: A subset of noisy keywords. If the exclusion of a certain noisy
keyword would not worsen the buggy-code-retrieval performance for any bug report
that contains it, then it would be taken as a low-quality keyword, characterized as non-
distinctive and uninformative.

4) Golden keywords: The terms retained after removing noisy keywords from a bug
report’s preliminary keyword set are considered the golden keywords for the report.
These golden keywords provide valuable guidance for bug localization and will be
utilized in the subsequent keyword classifier building.

3.1 Golden Keywords Benchmark Construction

Initially, we gather bug reports from six open-source projects (shared by Ye et al. 2014) and
extract their associated buggy code files from git repositories using bug-fixing commits (Dall-
meier and Zimmermann 2007). The entire text, including both the summary and description of
bug reports, along with the source code, undergoes preprocessing first (details in Section 4.1).
Subsequently, the GA takes the preprocessed bug reports and source code as input to generate
preliminary keywords for the bug reports (details in Section 3.1.1). After that, we use keywords
refinement heuristic rules to filter out unnecessary terms from the preliminary keywords, ulti-
mately producing cleaned keywords, i.e., the golden keywords (details in Section 3.1.2).

1 3

 135 Page 8 of 61

Empirical Software Engineering (2025) 30:135

3.1.1 Preliminary Keywords Selection

We employ a Genetic Algorithm-based approach to identify high-quality keywords from
each bug report for bug localization. As done by an earlier study (Mills et al. 2020), we use
a single-objective Genetic Algorithm to generate a high-quality query. The population of
individuals is maintained within a search space, where each individual which is coded as a
finite length vector represents a solution for the problem. In the context of our problem, each

Fig. 2 The overall framework of KBL

1 3

Page 9 of 61 135

Empirical Software Engineering (2025) 30:135

individual is represented as an integer array, where each element corresponds to a token in
the given bug report. If the value of the array element is 1, the corresponding token is part
of the query, otherwise, it is 0. The only constraint we set is that the individual must contain
at least one “1”, that is the formulated query contains at least one term (Mills et al. 2020).
To evaluate the individual obtained in every generation, we use the effectiveness metric (the
rank of the first truly buggy element in a recommendation list) as the fitness function for
our approach. In this way, the GA-based approach will attempt to formulate a query so that
the retrieval result can rank the target file at the top. Once the initial generation is created,
the algorithm evolves the generation using selection, crossover, and mutation operators as
follows.

1) Selection Operator: The idea behind selection is to select the individuals with better
fitness scores and allow them to pass their genes to successive generations. In our GA-
based approach, we choose the roulette selection as the selection operator. Roulette
selection is a stochastic method, where the probability for selection of an individual is
proportional to its fitness score. That is, the larger the fitness score of an individual is,
the more likely it is to be selected.

2) Crossover Operator: Crossover means mating between two individuals and repro-
ducing a new individual through choosing crossover sites randomly and exchanging
these sites. In our problem context, we perform the selection operator to choose two
fittest queries and generate a new query by randomly switching their keywords. In our
approach, the one-point crossover strategy is performed. In the one-point crossover, a
random crossover point is randomly selected, then all genes (i.e., keywords) behind the
point are exchanged between two parent individuals.

3) Mutation Operator: Mutation operation is to randomly modify the genes of the newly
generated individual. In particular, we randomly choose a gene and modify it by flip-
ping it, which can be translated to removing/adding a term to the query in our problem
context. With this operation, the diversity of the population could be increased, and the
new population will continue to evolve for the next round.

Our GA-based approach performs the operations above iteratively on each generation until
the generated individual achieves the best fitness score (i.e., the effectiveness of the query
is 1) or the generation count reaches the preset threshold (i.e., 30,000). After executing the
approach, each bug report will obtain a corresponding set of keywords, i.e., the prelimi-
nary keywords, as a query, which can achieve near-optimal effectiveness during retrieval
(detailed evaluations are presented in Section 5.1).

3.1.2 Keywords Refinement

Although the preliminary keywords have shown good performance in retrieving buggy
source code files (i.e., the median values of effectiveness for each project are all 1), we
observed that some noise terms still exist within them. To ensure the cleanliness of extracted
keyword sets, we propose keywords refinement heuristic rules to remove these redundant
and noise terms as much as possible while ensuring that the retrieval performance of key-
words is not compromised. Algorithm 1 and its callees Algorithms 2 and 4 shows the details

1 3

 135 Page 10 of 61

Empirical Software Engineering (2025) 30:135

of how we obtain a clean keyword set from the preliminary keywords. It mainly consists of
the following five steps.
Algorithm 1 Keywords refinement.

1 3

Page 11 of 61 135

Empirical Software Engineering (2025) 30:135

1) Construct sub-text set: We treat the text of the summary and the description as the whole
text T of a given bug report, which contains n sentences (i.e., T = {s1, s2, ..., sn}). To
construct the sub-text set, we design a text window to select the consecutive sentences
as the sub-text. The initial size of the text window is 1, and gradually increases until
the end of the text. Specifically, we start from the first sentence of the text T and keep
expanding the text window until the last sentence is selected, so that we can obtain n
sub-texts (i.e., {s1, s1s2, ..., s1s2...sn}). Then, we start from the second sentence, reset
the size of the text window to 1 and also keep expanding it, to continue extracting sub-
texts (i.e., we would obtain {s2, s2s3, ..., s2s3...sn}). We repeat the above process until
the last sentence of the text T is extracted separately as a sub-text. In the end, we can get
n(n+1)

2 sub-texts to form a sub-text set (Line 7, Algorithm 1).

2) Construct sub-keywords set and retrieval result: For each bug report, we have
the corresponding preliminary keywords achieved by GA. With the preliminary key-
words, we can label every term in the sub-text with key or non-key. That is, if the
term is one of the preliminary keywords, it will be labeled as key, otherwise it will be
labeled as non-key. Then, for each sub-text in the sub-text set, we keep only the terms
with key label to construct the sub-keywords set (i.e., sub-query set). To find out the
noise terms of the preliminary keywords, we still need to perform a retrieval action
on each sub-query to obtain the corresponding effectiveness value, which will be used
as the basis for comparison between sub-keywords in the following steps(Line 9-11,
Algorithm 1).

3) Compare sub-keywords: According to our strategy of constructing the sub-text set,
there is an inclusion relationship between two adjacent sub-texts in most cases. Cor-
respondingly, there is an inclusion relationship between two adjacent sub-keywords.
Therefore, we decide to compare the adjacent sub-keywords of the set in order(Line
17-32, Algorithm 1) and find out the noise tokens based on the token overlap. Spe-
cifically, for two sub-keywords k1, k2, we first check if their effectiveness value is
-1 (Line 2-8, Algorithm 2), if so, the corresponding sub-keywords are regarded as
both noisy keywords and local-low-quality keywords (i.e., terms considered being
low quality to the given bug report itself, but not necessarily being low quality for
other bug reports that contain them, hence called local). Otherwise, if there exist
overlapping keywords of k1 and k2, then it will be divided into three situations to
handle (Line 15-30, Algorithm 2). The main idea is that the difference between two
sub-keywords is the reason for the difference between the effectiveness of the two
sub-keywords.

a) k1 is a subset of k2: If the performance of k1 is better than k2, then the complement
of k1 in k2 are treated as noisy keywords (Line 15-18, Algorithm 2).

b) k2 is a subset of k1: Similarly, if the performance of k2 is better than k1, then the
complement of k2 in k1 is treated as noisy keywords (Line 19-22, Algorithm 2).

1 3

 135 Page 12 of 61

Empirical Software Engineering (2025) 30:135

c) k1 intersects k2: If the performance of k1 is better than k2, then the tokens in k2 but
not in k1 are taken as noisy keywords, and the vice versa (Line 23-30, Algorithm 2).

4) Find out the low-quality keywords: In the golden keyword benchmark construction
process, we also maintain a global set of low_quality_keywords for each project,
from its historical bug reports. Here, a global low-quality keyword means its exclu-
sion would not worsen the localization performance for any bug report that contains it.
This low_quality_keywords set could, to some extent, help filter some noise within
future bug reports whose golden keywords are not known. Specifically, after step 3),
each bug report would have its own set of local low-quality keywords, which are then
combined into low_quality_keywords(Line 40, Algorithm 1). To ensure each key-
word in low_quality_keywords is genuinely low-quality from the global perspec-
tive, we will examine the removal of all keywords found in low_quality_keywords
from the preliminary keywords of each bug report to determine if their removal reduces
the bug localization performance (Line 5-22, Algorithm 3). If the performance drops,
it suggests that some of the removed keywords (i.e., removedk) might not be truly
low-quality. In such cases, these removed keywords are re-added to the preliminary
keywords one by one to check if the performance improves; if it does, the re-added
keyword is removed from both low_quality_keywords and removedk. If not, the
keyword is removed again from the preliminary keywords, and the process continues
by re-adding the next removed keyword (Line 9-20, Algorithm 3). After validation,
the keywords that remain in removedk are those that can be removed from keywords
of the current bug report without causing a decrease in localization performance. The
keywords in removedk are also updated in the noisy keywords of the bug report, since
they may originate from the local low-quality keywords of other bug reports (Line 21,
Algorithm 3). Upon completing the above verification, the keywords that remain in
low_quality_keywords are those whose removal from keywords of any bug report
does not lead to a decrease in bug localization performance, and thus can be considered
true low-quality keywords.

5) Find out the best keywords: This step aims to ensure the retrieval effectiveness
of the final keywords will not decrease compared to the preliminary keywords. To
achieve this, we first compare the effectiveness of the best sub-keywords with the
preliminary keywords (Line 6, Algorithm 4) and set the better one as the initial best
keywords bestk . Next, we remove all noisy keywords from bestk and assess if its
performance decreases, if not, the filtered keywords are returned as the best key-
words (Line 8-11, Algorithm 4). Otherwise, we re-add the non-truly noisy keywords
back to the keywords and check whether the performance improves (Line 13-23,
Algorithm 4). Specifically, we reintroduce keywords from noisy keywords one by
one, checking the localization performance each time. If re-adding the keyword

1 3

Page 13 of 61 135

Empirical Software Engineering (2025) 30:135

improves the performance, the keyword will be retained, and the keywords will be
recorded as tmp_bestk . If there is no improvement, the re-added keyword will be
removed again and the process continues by re-adding the next removed keyword.
Finally, tmp_bestk will be compared with the initial best keywords bestk and the
better one will be returned as the best keywords(Line 24-25, Algorithm 4). The
returned best keywords are considered as the golden keywords for the correspond-
ing bug report. These keywords are expected to locate a bug with good effectiveness
performance.

Algorithm 2 Compare two groups of keywords.

1 3

 135 Page 14 of 61

Empirical Software Engineering (2025) 30:135

Algorithm 3 Find low-quality keywords.

Algorithm 4 Find best keywords.

1 3

Page 15 of 61 135

Empirical Software Engineering (2025) 30:135

After applying the noisy keywords removal, we are expected to get shorter but cleaner
or more precise queries that achieve the same or even better performance than the initial
queries consisting of the preliminary keywords obtained by GA (This has been validated in
our dataset evaluation in Section 5.1).

3.2 Keywords Classifier Construction

This module aims to build a keywords classifier that predicts which tokens of a given
bug report are keywords suitable for bug localization. We take keyword classification as
a machine learning task, which includes the general three steps, i.e., feature extraction,
class labeling and model building. In the feature extraction part, we retrieve three kinds
of semantic features for each token of a bug report after preprocessing. Then, we use the

Fig. 3 Differences among Bug Features, Code Features, and Bug&Code Features illustrated at the token
level using a bug report (bugID: 397842) on JDT project

1 3

 135 Page 16 of 61

Empirical Software Engineering (2025) 30:135

golden keywords benchmark to label each token. After that, we apply typical machine learn-
ing algorithms on labeled token instances to build prediction models.

3.2.1 Feature Extraction

We aim to extract the important features for keyword identification from bug reports and
source code files. We extracted 61 features and divided them into three categories based on

Feature Name Description
Term_Source Is the term from the title,

description, or both of
them?

Term_BR_TF The term frequency of the
term in the bug report.

Term_Title_TF The term frequency of the
term appeared in the title.

Term_Span The distance between the
first and the last occur-
rence of the term in the bug
report.

Term_Position The position information of
the term in the bug report.

Part-of-Speech_Tag The part-of-speech tag of
the term.

Term_Meaning_Variety The number of different
meanings that the term has.

Is_From_Camel_Case Whether the term is
obtained by splitting camel
case compound terms.

Is_From_Stack_Trace Whether the term is
obtained by splitting camel
case compound terms in
the stack trace of the bug
report.

BR_Term_Co-occurrence The maximum, mean, and
median co-occurrence fre-
quency of a term with other
tokens in the bug report.

Term_Dependency_Relationship The syntactic dependency
relationship of the term in
the bug report within the
corresponding syntactic
dependency tree of the
sentence it belongs to.

Term_Semantic_Importance The importance of the
term/phrase in the semantic
context of the bug report.

Term_Title_Similarity The similarity between the
term/phrase and the title of
the bug report.

Similar_BR_Term_Importance The importance of the term
in the top-N historical bug
reports similar to the given
bug report.

Table 1 Bug Features

1 3

Page 17 of 61 135

Empirical Software Engineering (2025) 30:135

the type of documents involved in their calculation. That is: (1) Bug Features; (2) Code
Features; (3) Bug&Code Features. Specifically, if the information used to calculate
a feature solely comes from a bug report, we place the feature into the Bug Features
category. Similarly, if the calculation of a feature only relies on the content of code files,
then we place the feature into the Code Features category. For the remaining features
whose calculation involves both the contents of bug reports and code files, we place them
into the Bug&Code Features category. Figure 3 provides an example using the term
“shown” of a bug report (with bugID 397842) from the Eclipse JDT project, to illustrate the
concrete data sources referred to during the calculation of three feature groups at the token
level for each bug report.

(1) Bug Features Table 1 illustrates the features we extracted from bug reports alone,
including the feature name and its brief description. More details of each feature are as
follows.

1) Term_Source: The text of the bug report consists of two parts, namely title and descrip-
tion, where the title is the summary of the description. We extract the source informa-
tion of the terms based on where they appear in the bug report: the title, the description,
or both of them.

2) Term_BR_TF: Term frequency (i.e., tf) represents the frequency of occurrence of the
term in the document, which can be used to characterize the document. It can be com-
puted as tf = dt

len(d) , where dt is the number of times that term t appears in the docu-
ment d and len(d) is the total number of terms in the document d. To extract this feature
for each term, we view the whole text of the bug report as the document d.

3) Term_Title_TF: Different from the Token_BR_TF feature, Token_Title_TF
treats the title of the bug report as a whole text when calculating the term frequency.

4) Term_Span: Term span is a feature commonly used in keyword extraction tasks, thus we
also extract this feature for each term in the bug report. The formula span = lastt−firstt

len(d)
shows how the term span is calculated, where firsti and lasti are the first and the last
occurrences of the term t in the bug report text respectively. If the term t appears only
once in the text, the corresponding term span value is 0.

5) Term_Position: Previous research has shown that the candidates’ position in the docu-
ment can be viewed as an effective statistical feature for keyword extraction (Kong
et al. 2023). For a term t in the bug report, we calculate its position feature as the for-
mula position = post

len(d) where post is the position of the first occurrence of the term t.

Component Feature Value Component Feature Value
root 1 cc 6
nsubj 2 compound 7
doubj 3 advmod 8
prep 4 det 9
probj 5 amod 10
other 0

Table 2 The mapping of term
dependency relationships to their
feature values

1 3

 135 Page 18 of 61

Empirical Software Engineering (2025) 30:135

6) Part-of-Speech_Tag: One of the actionable insights in previous study (Rahman et al.
2021) is that the optimal search keywords are more likely to be noun. Thus, we take
the part-of-speech (i.e., POS) of the term as one of the features. If a term is a noun, we
assign the tag as 1, if it is a verb, the corresponding tag is 2, and if it is an adjective, the
corresponding tag is 3. Except for these three POS, the corresponding tags of other POS
are all 0.

7) Term_Meaning_Variety: For many terms, they have many different meanings. We count
the number of different meanings of each term as the value of this feature since it may
be helpful for us to classify the terms. In particular, we use WordNet3, implemented in
NLTK, to obtain synsets for the token. Each synset represents a specific meaning asso-
ciated with the token.

8) Is_From_Camel_Case: In code files, a considerable part of the identifiers are camel
case compound terms. When such compound terms appear in the bug report text, they
can be regarded as localization hints. Hence, they could also be hints for localization
keyword extraction. Specifically, if a token belongs to camel case compound terms, the
value of the Is_From_Camel_Case feature is 1, otherwise, it is 0.

9) Is_From_Stack_Trace: Sometimes, bug reports would include stack trace information
that also contains localization hints. Hence, we also pay some attention to the terms
within stack traces. The following regular expression is used to extract the stack trace
in the bug report. Further, considering that stack traces are generally lengthy and also
contain much noise (Rahman and Roy 2018b) related to bug localization, we decided
to assign higher feature values to those tokens split from camel case compound terms
embedded in stack traces. That is, for these compound terms, we assign the feature
values of their split tokens to 1, while the values of other tokens in the stack trace and
tokens outside the stack trace are all 0.

(.*)?(.+)\.(.+)(\((.+)\.java:\d+\)| \(Unknown Source\)| \(Native Method\))

3 http://www.nltk.org/howto/wordnet.html

Feature Name Description
Term_DF The ratio of code files where the

term appears.
Is_From_Method_Name Whether the term also occurs in

the term set obtained by splitting
method names of code files.

Is_From_Class_Name Whether the term also occurs in
the term set obtained by splitting
class names of code files.

Term_Code_Similarity The max, mean, and median value
of the similarity between the term/
phrase and the source code files.

Term_ClassName_Similarity The max, mean, and median value
of the similarity between the term/
phrase and the class names of
code files.

Table 3 Code Features

1 3

Page 19 of 61 135

http://www.nltk.org/howto/wordnet.html

Empirical Software Engineering (2025) 30:135

10) BR_Term_Co-occurrence: In natural language processing, co-occurrence measures the
frequency of two or more terms appearing together in a text corpus. For bug reports,
we build a co-occurrence matrix to quantify how often a term appears adjacent to other
terms. We then extract the maximum, average, and median co-occurrence counts for
each term, we aim to encapsulate the importance of terms within the bug report’s con-
text. This feature is chosen for its ability to highlight the significant associations and
dependencies between terms, offering valuable insights into the semantic relationships
within bug reports.

11) Term_Dependency_Relationship: This feature leverages the dependency relationships
of the term within the sentence in bug reports for keyword classification. Analyzing
the syntactic connections between each term and other terms provides insights into

Feature Name Description
Term_TF_IDF The tf-idf value of

the term in the bug
report.

Similar_BR_Term_Statistic The value of tf
(maximum, mean,
and median), df, and
tf-idf of the term
in the buggy files
corresponding to the
top-N historical bug
reports similar to the
given bug report.

Similar_Code_Term_Statistic The value of tf
(maximum, mean,
and median), df, and
tf-idf of the Term
in the top-N source
code files similar to
the given bug report.

Term_Feedback_Similarity The maximum,
mean, and me-
dian value of the
similarity between
the term/phrase and
the pseudo-related
feedback files.

Term_Feedback_ClassName_Similarity The maximum,
mean, and median
value of the similar-
ity between the term/
phrase and the class
name of the pseudo-
related feedback files.

Feedback_Term_Statistic The value of tf
(maximum, mean,
and median), df, and
tf-idf of the Term in
the top-N code files
of the pseudo-related
feedback corre-
sponding to the bug
reports.

Table 4 Bug&Code Features

1 3

 135 Page 20 of 61

Empirical Software Engineering (2025) 30:135

the grammatical roles, contributing detailed features that enhance the understanding of
keyword context and semantics within the given sentences. In particular, we leverage
spaCy4 to identify the dependency relationship for each term, and we map each type of
dependency relationship to a specific value as a feature value. These mapping relation-
ships are presented in Table 2.

12) Term_Semantic_Importance: We think that if a crucial term is removed from a piece
of text, it may severely disrupt the text’s meaning. Thus, we assess term importance
based on the extent to which removing a term affects the semantic of the text. The more
important terms may be more likely to be keywords. To calculate the feature, we use
Word2Vec (Church 2017) to embed the entire bug report, employing max pooling for
a representation vector. Comparing the vectors with and without the term, we calculate
the Cosine Distance using the formula cos_dis = 1 − A·B

||A||·||B|| . A higher cosine dis-
tance indicates lower semantic similarity, signifying greater damage to the text’s mean-
ing. Besides removing one term at a time, we also consider removing a phrase at a time
to measure the semantic importance of a term. That is, we consider a five-term phrase
where the to-be-measured term lies in the central position of the phrase. The similar
term importance is calculated after removing the whole phrase from the text.

13) Term_Title_Similarity: The title of a bug report is the summary of a bug report. If the
semantics of a term are similar to the semantics of the title, then the probability of this
term being a keyword in the entire text is higher. The feature Term_Title_Similarity
is used to measure the similarity between a term and the title. Specifically, we also
employ Word2Vec and max pooling to represent the term/phrase and the title as
two numeric vectors and then calculate their cosine similarity using the formula
cos_sim = A·B

||A||·||B|| .
14) Similar_BR_Term_Importance: If a term is the keyword of a bug report, then it is very

likely to also be the keyword in those bug reports that are similar to the bug report.
Hence, we leverage historical similar bug reports to assist keyword classification for
a new bug report. For each term of a bug report, we calculate its Similar_BR_Term_
Importance as the number of times the term appears as a golden keyword in those
historical reports that are similar to the bug report. Given that VSM has been shown to
outperform word embedding models like Word2Vec in retrieving similar or duplicate
bug reports (Chen et al. 2024), we opted to use the revised VSM model proposed by
Zhou et al. (2012) for bug report representation. Cosine similarity is calculated with
a threshold of 0.6 to filter similar reports, and this approach is consistently applied
throughout the paper for identifying similar bug reports; for all other feature calculation
cases that require semantic similarity measurements between, e.g., terms and elements
like the bug report title, source code files, pseudo-relevant feedback files, and class
names, the Word2Vec built on experimental bug report corpus is used instead in this
study.”(2) Code Features Table 3 shows the features whose calculations only rely on
the contents of source code files. The details are as follows.

1) Term_DF: The document frequency (df) measures how often a term appears in a collec-
tion of documents. It is the ratio of documents containing a particular term to the total
number of documents in the collection (i.e, dft = numd

len(c)). We treat each source code file

4 https://spacy.io/

1 3

Page 21 of 61 135

https://spacy.io/

Empirical Software Engineering (2025) 30:135

in the project as a document, and all the source code files form the whole collection.
A higher df of a term indicates a lower likelihood of using the term to differentiate a
document.

2) Is_From_Method_Name: We first extract all method names for each source code file
in the project, and match the method names with the terms in the bug report text. If a
compound term matches a specific method name, then we suppose it is the localization
hint and assign a feature value of 1 to each simpler term obtained by splitting it. If a
term cannot match with any method names, then the feature values for its simpler terms
are 0.

3) Is_From_Class_Name: Similar to the Is_From_Method_Name feature, we extract
all the class names and match them with the compound terms in the bug report. If a term
matches any class names, the values for the simpler terms obtained by splitting it are 1,
otherwise, they are 0.

4) Term_Code_Similarity: If a term/phrase aligns closely with the source code file, then
it is more likely to be a keyword in the bug report because this term/phrase may more
accurately describe the connotation of the bug. We thus compute the similarity between
each term/phrase in the bug report and the source code files. In particular, the cosine
similarity is employed to compute the maximum, mean and median similarities between
each term/phrase in the bug report and each source file.

5) Term_ClassName_Similarity: When analyzing source files, we consider the class names
since they often indicate the primary purpose of the code. Therefore, we also assess the
similarity between each term/phrase in the bug report and the class name of each source
file. Similar to the feature code_sim, the maximum, mean, and median similarities are
calculated.(3) Bug&Code Features Table 4 present the features whose calculations
rely on the contents of both the bug reports and code files. They are detailed as follows.

1) Term_TF_IDF: Term frequency-inverse document frequency (tf-idf) is widely used to
measure how important a term is within a document (the bug report) relative to a corpus
(the whole codebase). Tf-idf is computed using the formula tf -idf = tf × idf , where
tf is the term frequency and idf = log len(c)

numd
, the len(c) is the number of code files, and

the numd is the number of code files containing the term t.

2) Similar_BR_Term_Statistic: Two similar bug reports may share similar buggy code
files. Hence, for a bug report, if a term appears more frequently in the buggy code files
corresponding to its similar bug reports, the term is more likely to be a key term. Simi-
lar_BR_Term_Statistic is used to capture the occurrence information of terms in the
buggy code files corresponding to the similar bug reports for the given bug report. In
particular, we calculate df and tf-idf for terms in the current bug report within the buggy
code files of selected historical reports. Features also include max term frequency, aver-
age term frequency, and median term frequency for each term.

3) Similar_Code_Term_Statistic: For a given bug report, its semantics may be similar to
the code files that it corresponds to, which means that similar code files can also be
used to assist in looking for keywords. If a term appears more frequently in code files
similar to a bug report, then the term is more likely to be the keyword of the bug report.
Specifically, we first calculate the similarity of the bug report and the source code files
using cosine similarity and keep the top-K (i.e., K=10) code files. The df and tf-idf

1 3

 135 Page 22 of 61

Empirical Software Engineering (2025) 30:135

values, as well as the maximum, mean, and median term frequency for each term are
then calculated.

4) Term_Feedback_Similarity: The feature Term_Code_Similarity considers the
similarity between the term and source code files. We also take the similarity between
the term and pseudo-relevance feedback (Haiduc et al. 2013) into consideration.
Pseudo-relevance feedback represents the initial top-k code files returned by search-
ing the engine with the original query (since no user feedback for result validation,
hence called Pseudo-relevance). These code files are considered useful to reformulate a
query (Rahman and Roy 2017). If a term of a bug report is semantically similar to the
feedback files, the term is likely to be keywords for the bug report. In this study, we
query the search engine with the entire bug report text to obtain the top-10 code files as
Pseudo-relevance feedback files. Then we calculate the maximum, mean, and median
similarities between each term/phrase in the bug report and the 10 feedback files.

5) Term_Feedback_ClassName_Similarity: In addition to assessing term similarity with
pseudo-relevance feedback files, we also evaluate term similarity with class names in
these feedback files. Specifically, we calculate the maximum, mean, and median simi-
larities between each term/phrase in the bug report and the class names of these feed-
back files.

6) Feedback_Term_Statistic: We also suppose the terms frequently appearing in pseudo-
relevance feedback files can be treated as potential keywords in the query text. These
terms are believed to reflect the topics related to the query. Hence, for each term in a
bug report, we introduce the feature Feedback_Term_Statistic to capture its occur-
rence information in the pseudo-relevance feedback files. Specifically, for each term,
we would calculate its df and tf-idf value in the top-10 pseudo-relevance feedback
files. We also track each term’s maximum, mean and median term frequencies in these
pseudo-relevance feedback files.

3.2.2 Class Labeling

For a given set of bug reports, we could obtain a list of tokens after preprocessing. As shown
in the feature extraction part, 61 features would be calculated for these tokens. The next step
is to label these tokens so that they could work as training instances for following model
building. In this study, we would label a token as key or non-key. The label of a token from a
bug report is determined by whether the token appears in the golden keywords set of the bug
report (which are obtained through the approach described in Section 3.1). In other words,
a token is labeled as key if it appears in the golden keywords of the bug report it belongs to;
otherwise, it is labeled as non-key.

3.2.3 Model Building

After the feature extraction and class labeling steps, we could then build our keywords clas-
sifier. The input of training includes all the features of the training tokens and their corre-
sponding labels. The output is the trained token-level classifier which could classify tokens
of a bug report into key or non-key.

During model building, we would encounter a problem that the dataset is heavily imbal-
anced among the instance numbers of two classes. This is because a bug report generally

1 3

Page 23 of 61 135

Empirical Software Engineering (2025) 30:135

contain a small fraction of keywords suitable for bug localization, with the majority of terms
being non-key. For example, among 449,399 training tokens of the Eclipse_Platform_UI
project, only 91,548 (<21%) are keywords. Without handling the imbalanced class problem,
the obtained machine learning classifiers would exhibit a bias towards the majority class by
for example always assigning the majority class labels to testing instances, so as to achieve
a high accuracy on the whole. To avoid the potential negative effects, we apply the widely
used random under-sampling (RUS) strategy (Shi et al. 2015; Seiffert et al. 2009) to balance
the original training dataset. The basic idea of RUS is to randomly remove an instance from
the majority class repeatedly until the instance numbers of different classes are balanced. In
our case, we randomly remove non-key terms from the training dataset until the number of
key terms and non-key terms is equal.

We then build a keywords classifier by applying the LightGBM5 (a gradient boosting
framework that uses tree based learning algorithms) to the balanced training dataset and
subsequently apply the obtained classifier to the testing dataset. This process generates
probability values for all terms in bug reports, where terms with higher probabilities are
more strongly recommended as golden keywords in a bug report.

3.3 Query Reformulation

This section mainly introduces how to obtain a final query for a new bug report with no
ground truth about its golden keywords. That is, for a new bug report, the keywords clas-
sifier (built on golden/non-golden keywords datasets of historical bug reports) would be
applied first to predict which terms are keywords for the bug report. Then, the initial key
terms predicted by the keywords classifier are further reduced through the noise removal
process and expanded with shared keywords from historical similar bug reports. The terms
kept after the above two steps are constructed as the final query for the bug report to do
buggy code retrieval. Details about noise removal and keyword expansion are as follows.

Noise Removal This step involves two main actions to those predicted-to-be keywords by the
classifier, including term filtering with low_quality keywords and limiting occurrence fre-
quency. Specifically, considering that the predicted-to-be keywords may also contain noise
that negatively affects the localization performance, we propose to use the low_quality
keywords (identified through Algorithm 3 in Section 3.1.2) from historical bug reports (that
are also used to build the keywords classifier) to filter noise terms. According to the defini-
tion of low_quality keywords in Section 3, the terms appearing in low_quality keywords
are generally non-distinctive and uninformative, hence, we think the terms that contribute
nothing positively to the whole historical bug reports in locating bugs are very likely to be
noise for future bug reports, and also should be removed. That is, the predicted-to-be key-
words that appear in the low_quality keywords of historical bug reports would be filtered
out in later buggy-code-retrieval for the current bug report whose golden keywords are not
known.

In addition to filtering out noise terms using low_quality keywords, we also impose
restrictions on the frequency of keyword repetition. The same term may appear multiple
times in a bug report, but the varying frequency of its occurrence in a query may impact

5 https://github.com/microsoft/LightGBM

1 3

 135 Page 24 of 61

https://github.com/microsoft/LightGBM

Empirical Software Engineering (2025) 30:135

the final retrieval outcome. Therefore, we impose restrictions on the frequency of a term
appearing in the query. That is, if a key term appears more frequently than the specified
limit (i.e., 4) in the initial key terms, we retain only the specified number of occurrences and
discard the excess. If a key term appears equal to or less than the specified limit, we maintain
its original count.

Expand with the Shared Keywords We not only utilize the set of low_quality keywords
to reduce the initial key terms, but also expand the initial key terms using shared keywords
from golden keywords of historical similar bug reports. The underlying assumption is that
if two bug reports are similar, then the source code files they require fixing should also be
similar. If the given bug report contains terms from buggy files corresponding to histori-
cal similar bug reports, then those terms might be among the keywords for the bug report.
Therefore, we define a set of shared keywords, which are common terms appearing in a
given bug report and golden keywords of each historical similar one. Specifically, we mea-
sure the similarity between a given bug report and historical bug reports using the rVSM
model, retaining only the top-3 historical bug reports with a similarity value greater than
the threshold (i.e., 0.6) as the historical similar bug report set for the given bug report. If the
number of historical bug reports with similarity values exceeding the threshold is smaller
than three, we keep all reports with similarity values greater than the threshold. We compare
the terms between the given bug report and golden keywords of each historical similar bug
report, and we retain the terms that overlap between them.

3.4 Evaluation Based on Bug Localization

Given that the core of KBL is to construct queries specifically tailored for bug localization
tasks, it is a natural choice for us to evaluate KBL by examining how effectively its gener-
ated queries perform in bug localization. We mainly conduct two kinds of evaluations to
assess KBL’s performance. The first one is to compare KBL with existing reformulation
techniques, while the second one is to examine whether KBL can enhance the localization
performance of representative IRBL methods, in terms of locating bugs.

In the first evaluation, we compare KBL with both traditional and state-of-the-art refor-
mulation strategies. That is, We feed the reformulated queries generated by KBL and the
reformulation baselines into the Lucene6 search engine to retrieve source code files related
to the bug reports and then compare their localization performance based on key metrics like

6 https://lucene.apache.org/

Project Domain LOC # of
Java
Files

AspectJ Aspect-oriented programming 1,515,849 6,879
Birt Business Intelligence and

Reporting
3,720,087 9,697

Platform.UI Software Development Infra-
structure for User Interface

4,195,084 6,243

JDT Java Development 1,114,440 10,544
SWT Cross-Platform GUI Library 1,256,595 2,795
Tomcat Web Application Deployment 822,225 2,042

Table 5 Basic Statistics about the
Domain and Size Scale for Six
Experimental Projects

1 3

Page 25 of 61 135

https://lucene.apache.org/

Empirical Software Engineering (2025) 30:135

Accuracy@K, MAP, and MRR. Lucene is an open-source full-text search engine widely
utilized for information retrieval tasks. It stands out as one of the most frequently utilized
search engines in previous IRBL research endeavors (Haiduc et al. 2013; Florez et al. 2021;
Moreno et al. 2015; Rahman and Roy 2018b). Lucene integrates Boolean search with a vec-
tor space model (VSM)-based search methodology, making it capable of delivering compre-
hensive search results. In our evaluation, we apply the BM25 similarity model in Lucene to
calculate similarity scores. The resulting potentially buggy source code files are returned in
a prioritized list, providing developers with suggestions for further examination.

The second evaluation is to explore whether KBL-generated queries can improve the
performance of representative IRBL techniques. This could help us further understand
the potential of KBL’s queries in advancing IRBL research. Seven representative IRBL
techniques are chosen for evaluation, including BugLocator (Zhou et al. 2012), BRTracer
(Wong et al. 2014), Locus (Wen et al. 2016), BLIA (Youm et al. 2015), BLUiR (Zhou et al.
2012), Amalgam (Wang and Lo 2014), and D&C (Koyuncu et al. 2019). During the evalu-
ation, we replaced the original bug report content required by these IRBL techniques with
the reformulated queries of our KBL.

4 Experiment Setup

In this section, we first describe how we construct the datasets for experiments. Then we
present the performance metrics for KBL evaluation. Last, we introduce four research ques-
tions we aim to answer in this study.

4.1 Experimental Datasets

Before presenting the details of constructing experimental datasets, we first briefly summa-
rize the data flow of our KBL, so that it becomes quite clear what data we need to prepare.
That is, we first need to collect a bunch of bug reports and match them to their associated
buggy code files. With the matched pairs of bug reports and buggy code files, we can run our
GA algorithm and keywords refinement heuristic rules to create the golden keywords bench-
mark. With the bug reports and their corresponding keywords benchmark, we can build a
keywords classifier. The keywords classifier would identify some keywords candidates from
a newly arrived bug report. After performing noise removal and shared keywords expansion
towards those candidates, a final list of keywords is output. These keywords are expected
to be good hints in locating bugs and would work as the final query to retrieve buggy code
files for the bug report.

The above dataflow indicates that a dataset of bug reports with buggy code files being
known is the starting point of our dataset construction. Related to this, we refer to a dataset
kindly shared by Ye et al. (2014). This dataset contains 22,747 bug reports from six soft-
ware projects and provides associated code files touched to fix these bugs. The six projects
are from different domains and are of various size scales (as shown in Table 5). We find
that some bugs only have adding code files by analyzing bug fixing code, which means no
modifications made to the original code but only adding new code files to fix the bug. In this
case, we remove these bugs (372 in total) from the dataset since it is inapplicable to running
the localization tool.

1 3

 135 Page 26 of 61

Empirical Software Engineering (2025) 30:135

After obtaining the pairs of bug reports and their associated buggy code files, we need to
preprocess them to prepare them for the following golden keywords benchmark construc-
tion. We follow the common preprocessing steps adopted by mainstream IRBL research
(Huo et al. 2019; Kim et al. 2021; Chaparro et al. 2019) to preprocess bug reports and
code files, including tokenizing, stopword removing, identifier splitting, and stemming, etc.
Specifically, we retrieve the textual summary and the description items of each fixed bug
report. Then we tokenize the text into different terms, among which camel case terms and
dotted terms would be split into simpler terms (e.g, ToolBarManagerRenderer, org.eclipse.
e4-> Tool Bar Manager Renderer, org eclipse e4). After that, non-alphabetic characters are
removed, and terms are converted into their lowercase. We also use the standard English
stop word list (Lee et al. 2018) to eliminate the terms that frequently appeared and contrib-
uted little to text understanding (e.g., the, an). At last, we apply the Porter stemming tool7 to
transform terms into their root case (e.g., downloaded->download). Code files undergo the
same preprocessing steps as those bug reports.

The bug reports and code files after preprocessing are then fed into our GA and keywords
refinement algorithms to obtain the golden keywords benchmark. Our GA is built upon the
jmetal framework8. By following (Mills et al. 2020), our parameter configurations are as
follows: population size: 500, crossover probability: 0.9, mutation probability: 1/n (n is the
number of terms of a bug report), and maximum number of generations: 30,000. Consider-
ing that keyword extraction with GA is a one-time process that can be completed offline in
advance for real applications, and that determining a proper value of maximum chromo-
some size is inherently challenging (Kim and De Weck 2005), we opt not to impose a limit
on the maximum chromosomes size for the GA in experiments.

During benchmark construction, we find that there exists a small number of bug reports
(i.e., 1,521) for which no keyword set could help locate a truly buggy file within the returned
top-10 file list. To ensure the quality of our golden keywords benchmark and the following
keywords classifier construction, we decide to remove these bug reports when training the
classifier. For each software project, we chronologically order its bug reports based on their
reporting time. The first 80% of bug reports are selected as the training set to build the key-
words classifier. The remaining 20% are used to evaluate our KBL. The reasons why we use
ordered bug reports like the above are: (1) The computation of some term features (used to
build the keyword classifier) relies on information from historical bug reports. (2) It is a rec-
ognized practice that future data should not appear in the model-building process (i.e., we
can only build models based on existing historical data to make future predictions) (Ye et al.

7 http://www.nltk.org/api/nltk.stem.html
8 http://jmetal.sourceforge.net

Project #All Bug
Reports

#Used Bug
Reports

#Train-
ing Set

#Test-
ing Set

AspectJ 593 576 406 116
Birt 4,178 4,063 2,665 813
Platform.UI 6,495 6,401 4,846 1,281
JDT 6,274 6,235 4,687 1,247
SWT 4,151 4,106 3,020 822
Tomcat 1,056 994 746 205
All 22,747 22,375 16,370 4,484

Table 6 Experimental Dataset

1 3

Page 27 of 61 135

http://www.nltk.org/api/nltk.stem.html
http://jmetal.sourceforge.net

Empirical Software Engineering (2025) 30:135

2014; Lam et al. 2017). For each bug report from the testing dataset, the keywords classifier
would predict the terms being golden keywords for bug localization. These terms would
undergo noise removal and keywords expansion. The final obtained term set would work
as the final query to retrieve buggy code files. The retrieval results are then used to evaluate
the performance of our KBL. Table 6 shows the basic statistics of our experimental datasets.

4.2 Performance Metrics

We use the following four metrics to evaluate the bug localization performance of the que-
ries generated by our proposed KBL.

1) Accuracy@K (Acc@K): It measures the percentage of bug reports for which at least
one buggy code file is correctly recommended to developers in the top-K ranked results.

2) Effectiveness (E): E represents the rank of the first truly buggy file in the recommenda-
tion list for a bug report. It provides a proxy approximation of how much effort devel-
opers would make to find a buggy element. The better the reformulated query is, the
smaller the corresponding effectiveness value should be.

3) Mean Average Precision (MAP): MAP is commonly used to measure an IR technol-
ogy based on the mean of average precision (AP) of each query in the query set. A
higher MAP value generally indicates a better retrieval performance. It can be calcu-
lated as follows:

MAP =

∑
q∈Q AP (q)

|Q|
 (1)

 where Q is the query set (i.e., bug reports in this study), and AP represents the average
precision over all buggy files in the result list for a query. The way to compute AP is as
follows:

AP =

n∑
k=1

Pk · buggyk

N
 (2)

 where k is the rank, n is the recommendation list size, Pk is the precision at the given
rank k (i.e., Pk = Number of relevant documents in top k

k). N is the number of truly buggy
files within the result list, and buggyk is a binary value showing whether the kth code
file is truly buggy or not.

4) Mean Reciprocal Rank (MRR): The reciprocal rank of a query is the multiplicative
inverse of the rank of the first correctly identified buggy file. MRR is the reciprocal rank
averaged over all queries and it can be calculated as follows:

MRR = 1

|Q|
∑
q∈Q

1
rankq

 (3)

 where rankq is the rank of the first correctly returned buggy file in the result list. Simi-
lar to MAP, the bigger the MRR value is, the better a technique is.

1 3

 135 Page 28 of 61

Empirical Software Engineering (2025) 30:135

4.3 Research Questions

We plan to answer the following questions to understand the performance of our KBL.

RQ1. How Good is our Constructed Keywords Benchmark? A keywords benchmark particu-
larly designed for bug localization plays a fundamental role in our supervised query refor-
mulation approach KBL. Hence, it is quite necessary to check whether the benchmark we
constructed is a good data basis for building our keywords classifier, and further research in
reformulation techniques designed for bug localization.

RQ2. What Impact Do Keywords Classifier Configurations Have on KBL Performance? The
keywords classifier built on the golden keywords benchmark holds a key position in our
KBL by predicting possible golden keywords for future bug reports. As a supervised classi-
fier, different configurations (such as the choice of classifiers, the data balancing strategies,
and the semantic features) may have different impacts on the performance of the keywords
classifier, thereby influencing the final bug localization performance of the reformulated
queries by KBL. Answering this RQ could help us better understand our KBL and improve
it in the future.

RQ3. How Does KBL Perform Compared to Traditional and Advanced Reformulation
Approaches in Bug Localization? This RQ aims to assess how KBL, as a reformulation tech-
nique, compares with other traditional and advanced reformulation strategies in terms of
bug localization effectiveness. We plan to answer two sub-questions that focus on compar-
ing KBL with both typical and state-of-the-art reformulation strategies separately.

RQ3.1. Does KBL Outperform Typical Reformulation Strategies? To the best of our knowl-
edge, a series of IRBL techniques directly use the title or the description, or both as the
proxy of the whole bug report during bug localization. Hence, knowing the performance of
our KBL over these strategies is the first step to validate the effectiveness of KBL for bug
localization.

RQ3.2. Does KBL Perform Better Than The State-of-the-Art Reformulation Approaches? In
typical reformulation strategies (RQ3.1), the content of the title or description would gener-
ally not be reformulated. The state-of-the-art reformulation approaches proposed to refor-
mulate the title/description themselves by removing embedded noise or complementing
additional information. Whether our KBL could perform better than these state-of-the-art

Table 7 The Effectiveness and Average Numbers of Preliminary Keywords and Golden Keywords
Preliminary Keywords Golden Keywords

 Project Median Eff. Avg. Eff. Avg. Num. Median Eff. Avg. Eff. Avg. Num.
AspectJ 1.0 85.1 65.31 1.0 84.1 31.74
Tomcat 1.0 35.8 31.63 1.0 35.8 13.55
SWT 1.0 23.3 39.02 1.0 6.6 17.71
Birt 1.0 206.1 37.53 1.0 43.0 18.67
Platform.UI 1.0 28.2 43.62 1.0 7.3 20.88
JDT 1.0 28.5 49.01 1.0 6.1 25.00

1 3

Page 29 of 61 135

Empirical Software Engineering (2025) 30:135

reformulation strategies would provide more convincing evidence on the effectiveness of
our KBL in bug localization.

RQ4.Could Queries Generated by KBL Further Enhance the Localization Performance of Rep-
resentative IRBL Techniques? This RQ aims to explore whether KBL-generated queries can
improve the performance of established IRBL techniques in locating bugs. Answering this
question will help identify how KBL’s query reformulation can complement and enhance
existing methods in bug localization, offering valuable insights for the development of
future localization technologies.

5 Experimental Results

5.1 RQ1. How Good is our Constructed Keywords Benchmark?

This RQ aims to check the quality of our keywords benchmark constructed by applying
genetic algorithms and keywords refinement heuristic rules. Our evaluation would include
two parts. In the first part, we would check the overall effectiveness of our benchmark used
for bug localization. The effectiveness can help us understand its ability to find the first
truly buggy code file. Meanwhile, how many keywords on average would be retrieved so
that buggy code files could be correctly located is another aspect we are concerned about.
After all, it would be more preferred if we could use fewer but good enough terms to well
locate bugs.

Table 7 shows the median/average effectiveness and average number of retrieved key-
words in the benchmark. To understand the effect of our GA and keyword refinement algo-
rithms, as shown in the table, we constructed two keyword datasets, i.e., the “Preliminary
Keywords” obtained by only running genetic algorithms (GA) to bug reports and code files,
and “Golden Keywords” obtained by further running our keywords refinement algorithm
after the GA. From Table 7, we can find that for both two keyword datasets, the median
effectiveness values for bug reports across six projects are 1 (the first truly buggy code file is
ranked at the first rank), which means the keywords obtained by GA and our GA+keywords
refinement can correctly locate the bugs. The results from only applying GA validate the
findings of Mills et al. (2020) that most bug reports contain sufficient information for bug
localization (they also use GA for their exploration). Related to the average effectiveness
and average number of keywords, we can find that our proposed keyword refinement heuris-
tic rules could substantially improve the results of the GA. For instance, in SWT, the average

Table 8 The Performance of the Golden Keywords Benchmark in Bug Localization
Project # BR Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ 576 71.00% 84.20% 87.84% 90.79% 50.65% 0.77
Birt 4,063 59.98% 74.57% 79.96% 84.29% 48.43% 0.67
Platform.UI 6,401 78.72% 89.93% 93.12% 95.50% 67.65% 0.84
JDT 6,235 78.86% 91.45% 94.14% 96.37% 65.56% 0.84
SWT 4,106 71.28% 86.87% 91.32% 95.05% 64.79% 0.78
Tomcat 994 75.25% 90.44% 93.46% 96.17% 71.13% 0.82

1 3

 135 Page 30 of 61

Empirical Software Engineering (2025) 30:135

effectiveness value for the preliminary keyword set is 23.3, while the average effectiveness
value for the golden keyword set is 6.6, representing a 72% improvement in average local-
ization performance. Across all six projects, the average length of the golden keyword set
decreases by an average of 52% compared to the preliminary keyword set.

Both GA and GA+keyword refinement approaches could retrieve keywords that
perform well in finding the first truly buggy code files. Our proposed keyword refinement
algorithm could substantially reduce (with a relative decrease of 52%) the number of
needed keywords in locating bugs and improve the overall effectiveness of keywords
(with a relative improvement of 51%).

In the second part, we would check the localization performance by using our bench-
mark (obtained by using GA+keyword refinement algorithms) to locate bugs in terms of
Accuracy@K, MAP, and MRR. Table 8 shows the locating results of using our constructed
benchmark from six projects. From the table, we can easily find that in six projects, the
Acc@20 metric exceeds 90% for five of them. This implies that using the golden key-
words benchmark, more than 90% of bug reports in these five projects can locate buggy
files within the top-20 retrieval results. Moreover, within these five projects, four of them
achieve Acc@10 values exceeding 90%, and even two projects can find over 90% buggy
files corresponding to bug reports within the top-5 retrieval results. This indicates that the
bug localization performance of the golden keywords benchmark we constructed is excel-
lent. The MAP and MRR values are also found to be high as shown in the table. In other
words, these retrieved keywords are truly golden keywords that are of high quality and are
good localization hints. This also lays a good data basis for us to train a golden keywords
classifier for bug reports to guide bug localization.

Our constructed keywords benchmark performs well in terms of Accuracy@K, MAP,
MRR. On average across all six projects, our constructed keywords benchmark achieves
72.51% on Acc@1, 86.24% on Acc@5, 89.97% on Acc@10, 93.02% on Acc@20,
61.36% on MAP, and 0.79 on MRR. This indicates that the keywords are indeed good
localization hints and can be perceived as golden keywords to guide the query reformu-
lation for bug locating.

Table 9 Bug Localization Performance of KBL with Different Classifier Settings
Model Acc@1 Acc@5 Acc@10 Acc@20
LightGBM (1000)22.30% (1974)44.02% (2426)54.10% (2885)64.33%
RF (956)21.40% (1936)43.17% (2404)53.61% (2869)63.98%
NB (879)19.60% (1877)41.85% (2355)52.52% (2812)61.71%
LG (737)16.43% (1636)36.48% (2073)46.23% (2500)55.75%
DT (588)13.11% (1409)31.42% (1802)40.18% (2234)49.84%
SVM (947)21.11% (1923)42.88% (2367)52.78% (2826)63.02%

1 3

Page 31 of 61 135

Empirical Software Engineering (2025) 30:135

5.2 RQ2. What Impact Do Keywords Classifier Configurations Have on KBL
Performance?

The classifier training phase of KBL includes several key configuration items. To gain
deeper insights into how these configurations affect KBL’s performance, we plan to focus
on exploring the following settings: (1) apply various machine learning (ML) techniques to
build the keyword classifier and identify the most appropriate classification algorithm; (2)
conducting feature importance analysis on the features used for classifier training to identify
the optimal feature combination; (3) experimenting with different data balancing algorithms
and sampling ratios to balance the training data and identifying the most suitable sampling
algorithm and ratio. By analyzing these training-phase configurations, we can better under-
stand and optimize KBL’s classifier.

Keywords Classifiers by Applying Different ML Algorithms To determine the most suitable
ML algorithm for KBL, we compare the performance of several widely-used classifiers,
including Random Forest (RF), Naive Bayes (NB), Logistic Regression (LG), Decision
Tree (DT), Support Vector Machine (SVM), and Light Gradient Boosting Machine (Light-
GBM), trained on all 61 features. Table 9 shows the comparison results among six classi-
fiers. As shown in Table 9, LightGBM consistently outperforms other classifiers across all
Acc@K metrics, demonstrating its superiority in bug localization tasks. For instance, in
the Acc@1 metric, KBL correctly localizes 1,000 bugs when utilizing LightGBM, which
corresponds to an accuracy of 22.30%. In contrast, when using RF, NB, LG, DT, and SVM
classifiers, KBL can only localize 956, 879, 737, 588, and 947 bugs, respectively. In other
words, when using RF, NB, LG, DT, and SVM instead of LightGBM, the Acc@1 metric
shows a relative performance drop of 4%, 12%, 26%, 41%, and 5%, respectively. Note
that, during the above classifier comparison, we employ grid search to fine-tune the hyper-
parameters for each classifier like (Koyuncu et al. 2019). The best hyper-parameter con-
figuration for LightGBM is as follows: (1) learning_rate: 0.03; (2) feature_fraction: 0.7; (3)
num_leaves: 104; (4) max_depth: 10; (5) min_child_weight: 0.001; (6) min_child_samples:
21; (7) reg_lambda: 0.001.

Using LightGBM as the classifier for KBL yields the best localization performance,
when compared to other five typical classifiers, including RF, NB, LG, DT, and SVM.
In subsequent experiments, LightGBM is used as the default classifier for KBL .

Project F1 score Precision Recall
AspectJ 0.45 0.31 0.71
Birt 0.42 0.38 0.47
Eclipse_Platform_UI 0.43 0.34 0.58
JDT 0.45 0.34 0.65
SWT 0.46 0.35 0.67
Tomcat 0.42 0.35 0.53

Table 10 The Classification Per-
formance of Keywords Classifier
across Six Projects

1 3

 135 Page 32 of 61

Empirical Software Engineering (2025) 30:135

Fig. 4 The impact of 61 features on keyword classifiers in terms of F1-score difference between keyword
classifiers with and without each feature in turn

1 3

Page 33 of 61 135

Empirical Software Engineering (2025) 30:135

Feature Importance Analysis To determine the optimal feature combination for KBL, we
first conduct a feature importance analysis experiment to identify whether any of the 61 fea-
tures negatively impact KBL’s classification performance. Our feature importance analysis
experiment involves constructing new classifiers by iteratively removing individual features
to assess their impact on classification performance. Specifically, we compare the F1 score
of the new classifier (with one feature removed) to that of the classifier trained with all
features (as shown in Table 10, the detail confusion matrices are presented in the Appendix
A.1). The difference in F1 scores (i.e., F1all − F1new) serves as the importance score for
the removed feature. A positive score indicates that classification performance decreased
after removing the feature, suggesting that the removed feature positively contributes to the
performance of the classifier. Conversely, a negative score suggests that the feature does not
contribute positively to the performance of the classifier.

Figure 4 presents the final importance scores of the 61 proposed features, evaluated across
six projects (the F1 score difference in the figure is the average difference across six proj-
ects). As shown, five features (namely Term Feedback ClassName Max Similarity, Similar
BR Term DF Statistic, Term Phrase ClassName Max Similarity, Term Code Max Similarity,
and BR Term Mean Co-occurrence) have negative importance scores, indicating that they

Table 11 The Bug Localization Performance of KBL after Removing Certain Features that Negatively Im-
pact the Keyword Classification Performance
Deleted Feature Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BR Term Mean Co-occurrence 22.05% 44.42% 53.50% 62.35% 26.45% 0.31
Term Code Max Similarity 21.69% 44.04% 52.09% 61.32% 25.79% 0.31
Term Phrase ClassName Max Similarity 22.19% 44.55% 53.75% 63.44% 26.05% 0.31
Similar BR Term DF Statistic 21.98% 44.09% 53.05% 62.75% 26.27% 0.31
Term Feedback ClassName Max Similarity 22.23% 43.93% 53.99% 62.48% 26.24% 0.31
All Five Features 21.20% 43.01% 52.02% 62.10% 25.81% 0.31
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Table 12 Bug Localization Performance of KBL with Keyword Classifier Built on Different Feature
Categories
Variant Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
without bug features 20.33% 41.94% 52.34% 62.48% 25.47% 0.31
without code features 19.38% 40.18% 50.31% 60.92% 24.40% 0.30
without bug&code features 20.56% 42.48% 52.78% 62.28% 25.63% 0.31
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Project # Non-Keywords # Keywords
AspectJ 55,531 11,805
Birt 217,747 53,262
Eclipse_Platform_UI 357,851 91,548
JDT 455,163 120,364
SWT 263,422 55,193
Tomcat 44,674 11,034

Table 13 The Number of
Keywords and Non-Keywords
for Each Project in the Original
Training Set

1 3

 135 Page 34 of 61

Empirical Software Engineering (2025) 30:135

negatively impact the performance of the classifier. To further verify the impact of these
five features on KBL’s bug localization performance, we remove these features individually
and collectively to observe any changes in localization performance. Table 11 compares
KBL’s localization performance with all 61 features against its performance after removing
specific features. From the table, we observe that KBL achieves the best bug localization
performance when all 61 features are retained. Removing any of these five features, or all
of them together, leads to a decline in the localization performance of KBL. For instance,
when we individually remove the features BR Term Mean Co-occurrence, Term Code Max
Similarity, Term Phrase ClassName Max Similarity, Similar BR Term DF Statistic, and
Term Feedback ClassName Max Similarity, the resulting models show relative declines
of 3%, 5%, 1%, 2%, and 3%, respectively, in the Acc@20 metric compared to KBL using
all 61 features. When we remove all five features together, the model also show a relative
decline of 3% in Acc@20 metric compared to KBL with all 61 features.

Additionally, we further examined the influence of three feature categories (i.e., bug
features, code features, bug&code features) on KBL through ablation experiments. Our
ablation experiments perform by removing one category of features at a time to build the
keyword classifier. Table 12 shows the localization performance of KBL with keyword
classifiers built on different feature categories. We can observe that the performance of all
three KBL variants is inferior to the KBL using all features. Specifically, compared to vari-
ant without bug features, KBL relatively improves by 10%, 6%, and 6% in acc@1, MAP,
and MRR, respectively. In comparison to the variant without code features, KBL relatively
improves by 15%, 11%, and 10% in these three metrics, respectively. Compared to variant
without bug&code features, KBL improves by 8%, 5%, and 6% in these three metrics. We
can observe that the removal of code features has a greater impact of KBL compared to the
other two variants, while the contribution of bug features and bug&code features to KBL
are relatively close.

KBL achieves the best localization performance when using all 61 features, with the
code features category contributing more to the localization performance than the other
two feature categories.

Table 14 Performance Comparison of KBL with Different Data Balancing Techniques
Balancing Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
RUS 22.30% 44.02% 54.10% 64.33% 27.03% 0.33
NCR 19.06% 41.05% 50.75% 60.32% 24.69% 0.30
Tomek Links 16.30% 36.41% 45.98% 55.90% 21.64% 0.26
ROS 17.48% 38.67% 48.81% 58.11% 22.96% 0.28

Table 15 Performance Comparison of KBL when RUS with Different Sampling ratios
Ratio Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
1:1 22.30% 44.02% 54.10% 64.33% 27.03% 0.33
2:1 20.85% 41.07% 51.00% 59.00% 24.06% 0.29
3:1 15.20% 34.99% 45.00% 52.00% 20.74% 0.25
4:1 13.02% 30.03% 41.00% 48.02% 19.32% 0.22
No Balancing 13.00% 30.01% 41.99% 48.03% 19.62% 0.22

1 3

Page 35 of 61 135

Empirical Software Engineering (2025) 30:135

Data Balancing Using Various Balancing Techniques and Sampling Ratios Balancing the
training data is an essential step in the classifier training phase to ensure fair and effective
learning. Table 13 shows the distribution of tokens labeled as key and non-key in the training
sets of six projects, revealing a noticeable imbalance in the number of tokens between the
two categories. This imbalance would introduce biases in the classifier, affecting its ability
to learn effectively from the training data and ultimately impacting KBL’s performance in
the bug localization task. To mitigate this issue and improve the localization performance
of KBL, we first explore the impact of various data balancing techniques on the localization
effectiveness of KBL. We experiment with four commonly used data balancing techniques,
namely Random Under Sampling (RUS), Tomek Links (Tomek 1976), Neighborhood
Cleaning Rule (NCR) (Laurikkala 2001), and Random Over Sampling (ROS), to balance
our original training data. RUS involves randomly reducing the number of instances in the
majority class to balance the dataset. Tomek Links (Tomek 1976) is a method that removes
overlapping instances between classes, refining the dataset by reducing the presence of
noisy data in the majority class. NCR (Laurikkala 2001) cleans the dataset by evaluating
the neighborhood of each instance to identify and remove noisy instances from the majority

Table 16 Performance of KBL in Bug Localization
Project Queries Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ Title 11.20% 21.55% 31.89% 38.79% 14.04% 0.17

Description 12.93% 24.14% 29.31% 37.06% 15.81% 0.19
Title + Description 18.10% 30.17% 38.79% 50.00% 21.44% 0.26
KBL 25.86% 37.06% 49.13% 56.89% 27.04% 0.32

Birt Title 8.61% 19.92% 27.55% 36.77% 11.21% 0.15
Description 5.16% 10.94% 14.14% 19.06% 6.27% 0.08
Title + Description 10.33% 21.52% 29.39% 39.36% 12.70% 0.17
KBL 12.30% 25.58% 33.70% 42.92% 14.66% 0.19

Platform.UI Title 17.25% 39.73% 49.64% 58.31% 23.50% 0.28
Description 10.38% 24.12% 29.97% 37.78% 14.29% 0.17
Title + Description 19.12% 40.74% 49.57% 60.18% 24.55% 0.29
KBL 20.92% 42.85% 53.00% 62.99% 26.56% 0.32

JDT Title 20.93% 46.27% 58.05% 70.40% 27.42% 0.33
Description 12.99% 28.62% 35.20% 40.89% 16.84% 0.20
Title + Description 23.57% 48.83% 59.58% 69.60% 29.20% 0.35
KBL 25.66% 52.12% 63.03% 73.45% 31.21% 0.38

SWT Title 17.63% 37.83% 47.93% 61.67% 24.16% 0.28
Description 12.16% 26.64% 33.81% 42.33% 16.48% 0.19
Title + Description 22.62% 43.18% 54.25% 66.05% 28.35% 0.33
KBL 24.69% 48.41% 59.24% 71.16% 30.09% 0.36

Tomcat Title 26.82% 52.19% 64.39% 76.09% 33.75% 0.39
Description 11.70% 25.36% 28.78% 32.68% 15.22% 0.17
Title + Description 27.80% 57.07% 68.29% 77.07% 35.73% 0.41
KBL 38.53% 61.46% 69.75% 79.02% 41.34% 0.48

All Title 17.06% 37.71% 47.88% 58.69% 22.71% 0.27
Description 10.61% 23.50% 29.19% 35.83% 14.03% 0.17
Title + Description 19.78% 40.43% 50.13% 60.61% 24.82% 0.30
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

1 3

 135 Page 36 of 61

Empirical Software Engineering (2025) 30:135

class. ROS involves randomly duplicating examples from the minority class to balance the
dataset. Table 14 presents a comparative analysis of these techniques.

As seen in the table, RUS consistently yields better results than the other balancing meth-
ods in all evaluation metrics. For example, using RUS relatively improves the localization
performance in the Acc@1 metric by 17% and 36% compared to NCR and Tomek Links,
respectively, and by 27% compared to ROS. These findings highlight RUS’s superior ability
to migate the effects of imbalance and contribute better localization performance. Based on
these results, we choose RUS as the data balancing method for KBL to enhance the perfor-
mance in the bug localization task.
In addition to examining the impact of different data balancing techniques on the localiza-
tion performance of KBL, we further explore how varying the sampling ratio in RUS affects
the performance of KBL. As shown in Table 13, the ratio of non-keywords to keywords in

Project Query Pair Improved Worsened Preserved
AspectJ KBL vs. Title 60.34% 24.14% 15.52%

KBL vs.
Description

63.79% 18.97% 17.24%

KBL vs. Title +
Description

47.41% 25.86% 26.72%

Birt KBL vs. Title 56.46% 19.31% 24.23%
KBL vs.
Description

82.16% 11.81% 6.03%

KBL vs. Title +
Description

53.14% 20.17% 26.69%

Platform.
UI

KBL vs. Title 45.04% 29.82% 25.14%

KBL vs.
Description

70.73% 16.08% 13.19%

KBL vs. Title +
Description

42.00% 22.79% 35.21%

JDT KBL vs. Title 41.30% 26.62% 32.08%
KBL vs.
Description

69.04% 15.48% 15.48%

KBL vs. Title +
Description

36.89% 23.66% 39.45%

SWT KBL vs. Title 50.85% 21.90% 27.25%
KBL vs.
Description

71.17% 13.50% 15.33%

KBL vs. Title +
Description

41.48% 22.26% 36.25%

Tomcat KBL vs. Title 45.37% 14.63% 40.00%
KBL vs.
Description

75.61% 11.71% 12.68%

KBL vs. Title +
Description

40.00% 16.10% 43.90%

All KBL vs. Title 49.89% 22.74% 27.37%
KBL vs.
Description

72.08% 14.59% 13.33%

KBL vs. Title +
Description

43.49% 21.81% 34.70%

Table 17 Query Improvement by
KBL over Typical Strategies

1 3

Page 37 of 61 135

Empirical Software Engineering (2025) 30:135

the six projects is less than 5. Therefore, we evaluate four sampling ratios, that is 4:1, 3:1,
2:1, and 1:1. Here N:1 indicates that the number of tokens labeled as non-key is N times the
number of tokens labeled as key after sampling. Table 15 shows the performance of KBL
when using RUS with different ratios. For comparison, the performance without balancing
the original data is also provided. Note that, the 4:1 ratio only applies to AspectJ, Birt, and
SWT, as only these projects present a > 4 ratio of the non-keywords and keywords before
applying RUS. As shown in the table, KBL achieves the best performance with an RUS
sampling ratio of 1:1, with all results being statistically significant at a p-value of 0.05. We
also observe that as the sampling ratio increases, the performance of KBL tends to decline.
For example, compared to using sampling ratios of 2:1, 3:1, 4:1, or no balancing, using the
1:1 sampling ratio improves KBL’s localization performance in the Acc@1 metric by 7%,
47%, 71%, and 72%, respectively. This indicates that the bias introduced by the disparity
between non-keywords and keywords becomes more pronounced as the difference grows,
negatively affecting KBL’s performance.

KBL achieves better performance with RUS data balancing compared to the other
three balancing techniques. When the number of non-keywords is balanced to match the
number of keywords in training (with a 1:1 ratio), KBL outperforms all other sampling
ratios.

5.3 RQ3 How does KBL Perform Compared to Traditional And Advanced
Reformulation Approaches in Bug Localization?

5.3.1 RQ3.1 Does KBL Outperform the Typical Reformulation Strategies?

It is common for existing studies to directly use the title, the description, or both as the
content proxy of a whole bug report to do bug localization. As a reformulation technique
that mainly retrieves localization-hinting keywords from the textual content of the title and
description, it is essential for us to check whether KBL could outperform these typical
reformulation strategies. For each bug report, we retrieve its title and description items and
then feed the title, the description, and both items to the Lucene search engine to retrieve
buggy code files from the codebase separately. Then, we compare the retrieved results of
these three typical strategies and that of KBL regarding Accuracy@K, MAP, and MRR
respectively.

Table 16 shows the comparison results. From the table, we can observe that our reformu-
lated queries are more effective than the typical queries (i.e., only using the title, the descrip-
tion, and both). In the six projects, KBL outperforms the Title, the Description, and the Title
+ Description. For example, for AspectJ, the buggy files of 25.86% bugs are returned as
the top-1, while using typical strategies, only 11.20%, 12.93% and 18.10% bugs have their
relevant files returned as top-1, respectively. Moreover, KBL achieves bug localization in
64.33% of the entire dataset consisting of 4,484 bug reports, with a mean average precision
of 27.03% and a mean reciprocal rank of 0.33. These values are 6%, 9%, and 10% higher,
respectively, than the performance of the Title + Description strategy.

For each project, we delve deeper into KBL’s performance relative to the strategies in
terms of the ranks of the first truly buggy code files of all bug reports. We compare our

1 3

 135 Page 38 of 61

Empirical Software Engineering (2025) 30:135

method with three strategies— Title, Description and Title + Description. If the rank of the
first truly buggy file returned by KBL is higher than that of the typical strategy, we label it
query improvement; conversely, if the rank is lower, we call it query worsening; otherwise,
if their ranks are the same, we say it query preserving. The improvement, worsening, and
preserving ratios for six projects are presented in Table 17. It can be observed that, com-
pared to the Description strategy, there is an improvement in over 70% of queries in four
projects. Across all six projects, there is an improvement in the effectiveness of over 60%
queries, and the average proportion of queries showing improvement across all six projects
reaches 72%. Compared with the Title strategy, we can see that, the proportion of the query
improvements exceeds 50% in three projects, and the query improvement surpasses 40%
in all six project systems. Moreover, in four projects, the improvement ratio surpasses the
worsening ratios by a factor of more than two, and the average improvement ratio across all
six systems is more than twice the worsening ratio. Although the improvement ratio in our
method compared to the Title + Description strategy is not as high as that compared to the
Title strategy and Description strategy, there is still one project with an improvement ratio

Table 18 Comparison with Query Reformulation-Based Bug Localization Techniques
Project Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ TextRank 10.34% 27.58% 35.34% 49.13% 16.68% 0.19

BLIZZARD 24.13% 43.96% 51.72% 56.89% 28.18% 0.33
KBL 25.86% 37.06% 49.13% 56.89% 27.04% 0.32

Birt TextRank 8.11% 19.31% 26.07% 34.56% 10.57% 0.14
BLIZZARD 6.76% 15.86% 19.68% 26.07% 9.00% 0.11
KBL 12.30% 25.58% 33.70% 42.92% 14.66% 0.19

Platform.UI TextRank 13.73% 33.17% 43.09% 52.92% 19.66% 0.24
BLIZZARD 10.30% 19.67% 24.98% 29.97% 12.67% 0.15
KBL 20.92% 42.85% 53.00% 62.99% 26.56% 0.32

JDT TextRank 17.96% 41.94% 52.28% 62.30% 23.87% 0.29
BLIZZARD 14.59% 31.99% 40.49% 48.27% 18.35% 0.23
KBL 25.66% 52.12% 63.03% 73.45% 31.21% 0.38

SWT TextRank 17.51% 37.10% 49.02% 61.92% 23.68% 0.28
BLIZZARD 21.41% 47.68% 58.39% 72.50% 29.11% 0.34
KBL 24.69% 48.41% 59.24% 71.16% 30.09% 0.36

Tomcat TextRank 29.26% 55.12% 67.31% 76.58% 35.34% 0.41
BLIZZARD 36.58% 65.36% 74.14% 82.43% 42.14% 0.49
KBL 38.53% 61.46% 69.75% 79.02% 41.34% 0.48

All TextRank 15.20% 34.67% 44.55% 54.83% 20.56% 0.25
BLIZZARD 14.45% 30.26% 37.39% 45.24% 18.35% 0.22
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Table 19 Basic Statistics on the Number of Terms for KBL Queries (Q: quartile)
Project Min Length Max Length Q1 Q2 Q3 Average Length
AspectJ 1 112 9 25 44 30
Birt 2 222 6 10 23 20
Platform_UI 2 412 9 16 32 38
JDT 2 384 10 20 36.5 38
SWT 1 222 7 17 32 25
Tomcat 2 122 5 8 16 15

1 3

Page 39 of 61 135

Empirical Software Engineering (2025) 30:135

exceeding 50%, four projects with improvement ratios exceeding 40%, and all six projects
with improvement ratios exceeding 35%. The improvements validates that our KBL is very
effective compared to typical reformulation strategies.

KBL achieved much better performance than typical query reformulation strategies
in terms of Accuracy@K, MAP, MRR, and effectiveness scores, with relative improve-
ments of 3%-110% on Acc@1, 9%-93% on MAP, 10%-94% on MRR, and improving
the effectiveness of 43% to 72% queries across six projects.

5.3.2 RQ3.2 Does KBL Perform Better Than The State-of-the-Art Reformulation
Approaches?

To further validate the effectiveness of KBL, we compare KBL with two strong query
reformulation techniques targeting feature/concept/bug location. We first compare with
TextRank, a text-ranking algorithm that not only serves as a standalone query reformula-
tion technique, but also acts as a crucial component in many other query reformulation
frameworks (Rahman and Roy 2017; Kim and Lee 2019a; Rahman and Roy 2018b). It is
a graph-based ranking model and it scores candidate keywords using word co-occurrences
determined by a sliding window. After we obtain the content of the title and description of
each bug report, we build a graph where a vertice is a term, an edge between two vertices
is added if two terms co-occur within a sliding window (we set window size=2, a recom-
mended value by Mihalcea and Tarau 2004). Once the text graph is constructed, we apply
TextRank to estimate the importance of each term, and select the top 10 (according to pre-
vious practices (Rahman and Roy 2017; Kim and Lee 2019b)) terms as the search terms.

Besides TextRank, we also use BLIZZARD, which is a state-of-the-art query reformu-
lation-based bug localization approach (with the replication package available) (Rahman
and Roy 2018b), to evaluate the usability of our work. BLIZZARD considers the quality
of bug reports by categorizing them into three types based on the content they contain
and applying different reformulation strategies to them so as to enhance bug localization

Table 20 The Bug Localization Performance of KBL and TextRank when Both Select Top-10 Terms for
Each Query
Project Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ TextRank 10.34% 27.58% 35.34% 49.13% 16.68% 0.19

KBL10 15.51% 28.44% 37.06% 45.68% 17.79% 0.22
Birt TextRank 8.11% 19.31% 26.07% 34.56% 10.57% 0.14

KBL10 8.73% 19.55% 27.67% 37.39% 11.24% 0.15
Platform.UI TextRank 13.73% 33.17% 43.09% 52.92% 19.66% 0.24

KBL10 16.39% 33.09% 43.09% 53.47% 21.02% 0.25
JDT TextRank 17.96% 41.94% 52.28% 62.30% 23.87% 0.29

KBL10 18.12% 39.29% 49.31% 58.78% 22.67% 0.28
SWT TextRank 17.51% 37.10% 49.02% 61.92% 23.68% 0.28

KBL10 18.00% 43.06% 52.06% 62.04% 26.35% 0.31
Tomcat TextRank 29.26% 55.12% 67.31% 76.58% 35.34% 0.41

KBL10 32.19% 57.56% 66.82% 74.63% 36.89% 0.43
All TextRank 15.20% 34.67% 44.55% 54.83% 20.56% 0.25

KBL10 16.48% 35.14% 44.60% 54.46% 21.32% 0.26

1 3

 135 Page 40 of 61

Empirical Software Engineering (2025) 30:135

performance. While newer techniques have emerged since BLIZZARD’s introduction in
2018, most (e.g., Kim et al. 2021, Chaparro et al. 2019) tend to focus on specific enhance-
ments rather than presenting fundamentally novel breakthroughs like BLIZZARD. Conse-
quently, BLIZZARD remains representative among query reformulation techniques and is
frequently used as a baseline in evaluating new IRBL methods (Shao and Yu 2023; Li et al.
2021), underscoring its continued relevance in the field.

Table 18 shows the comparative results of our method with TextRank and BLIZZARD. In
the table, we can find that TextRank performed less effectively than BLIZZARD on AspectJ,
SWT, and Tomcat, but better in the remaining three projects. By checking the overall perfor-
mance (i.e., putting bug reports of six projects together as a dataset) shown in the last row
of Table 18, TextRank is found to achieve better performance than BLIZZARD. Further,
we can find that KBL performs better than TextRank in all six projects. KBL provides rela-
tively 47% higher Acc@1, 27% higher Acc@5, 21% higher Acc@10, 17% higher Acc@20,
31% higher MAP and 32% higher MRR than TextRank for all six projects. As for BLIZ-
ZARD, we can see that KBL greatly outperforms BLIZZARD in four out of six projects
except for AspectJ and Tomcat regarding all performance metrics. For instance, compared
to Birt, KBL shows relative improvements of 82%, 61%, 71%, and 65% in Acc@1, Acc@5,
Acc@10, and Acc@20 metrics, respectively. Additionally, KBL achieves a 63% relative
improvement in MAP and a 73% relative improvement in MRR. For AspectJ and Tomcat,
KBL and BLIZZARD have similar performance in MAP and MRR. KBL only outperforms
BLIZZARD relatively by 7% and 5% in Acc@1. In Acc@5,10,15 and 20, BLIZZARD is
much better than KBL. In other words, our keywords-based reformulation approach is able
to obtain better localization performance than the state-of-the-art reformulation strategies.

Table 19 further presents the statistics on the length of reformulated queries generated
by KBL across different projects. As shown, the median length (i.e., the Q2 column) across
the six projects is 25, 10, 16, 20, 17, and 8, respectively, while the average query length is
30, 20, 38, 38, 25, and 15. These results indicate that KBL dynamically adjusts the length
of the reformulated queries based on the specific characteristics of each bug report. Simi-
larly, BLIZZARD reformulates queries based on the type of bug report, resulting in variable

Table 21 The Bug Localization Performance of KBL and TextRank when Aligning the Term Count of Tex-
tRank with KBL for Each Query
Project Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ T extRankalign 15.51% 28.44% 38.79% 50.00% 20.70% 0.23

KBL 25.86% 37.06% 49.13% 56.89% 27.04% 0.32
Birt T extRankalign 8.85% 18.94% 26.44% 34.93% 11.08% 0.15

KBL 12.30% 25.58% 33.70% 42.92% 14.66% 0.19
Platform.UI T extRankalign 18.03% 37.47% 49.33% 59.17% 23.40% 0.28

KBL 20.92% 42.85% 53.00% 62.99% 26.56% 0.32
JDT T extRankalign 22.05% 47.63% 57.65% 68.32% 27.64% 0.34

KBL 25.66% 52.12% 63.03% 73.45% 31.21% 0.38
SWT T extRankalign 18.73% 38.32% 50.60% 62.16% 24.84% 0.29

KBL 24.69% 48.41% 59.24% 71.16% 30.09% 0.36
Tomcat T extRankalign 26.82% 55.12% 67.80% 74.63% 33.88% 0.40

KBL 38.53% 61.46% 69.75% 79.02% 41.34% 0.48
All T extRankalign 17.95% 37.73% 48.28% 58.34% 23.01% 0.30

KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

1 3

Page 41 of 61 135

Empirical Software Engineering (2025) 30:135

query lengths rather than a fixed length for all bug reports. In contrast, as a default set-
ting, TextRank consistently selects the top-10 highest-scoring terms for each reformulation,
resulting in a fixed query length each time.

Given the differences in query length between KBL and TextRank, we conduct addi-
tional experiments to provide a fair comparison with TextRank. Specifically, we limit KBL
to the top-10 terms by probability score for query reformulation (denoted as KBL10) and
compare it with TextRank. Additionally, we adjust TextRank to output the same number of
terms as KBL for each query, referred to as TextRankalign. For example, if KBL outputs
N terms for a bug report, TextRank is adjusted to output its top-N terms for the same bug
report. Tables 20 and 21 present the comparison results between TextRank and KBL10, and
between TextRankalign and KBL, respectively.

As shown in Table 20, KBL10 outperforms TextRank across most evaluation metrics
in five out of six projects, with the exception of the JDT project, where TextRank achieves
better results. This suggests KBL10 generally provides more effective query for bug local-
ization compared to TextRank in the majority of cases. For example, in the SWT project,
KBL10 achieves relative improvements over TextRank of 3%, 16%, and 6% in Acc@1,
Acc@5, and Acc@10, respectively. KBL10 also shows relative improvements of 11% and
10% in MAP and MRR. Combining the results across all six projects, we observe that
KBL10 outperforms TextRank in all metrics except for Acc@20, indicating that KBL10 is
still slightly superior to TextRank overall.

As seen in Table 21, KBL consistently outperforms TextRankalign across all evalua-
tion metrics, showing a substantial performance advantage. Specifically, across all six proj-
ects, KBL shows notable relative improvements over TextRankalign, with increases of
24%, 16%, 12%, 10%, 17%, and 10% in the Acc@1, Acc@5, Acc@10, Acc@20, MAP, and
MRR, respectively. These improvements highlight KBL’s stronger capability to capture and
utilize key information of bug reports, resulting in more accurate localization outcomes.

KBL is found to exhibit relatively, 47% higher MAP and 50% higher MRR than
BLIZZARD, 32% higher MAP and 32% MRR than TextRank in six projects; KBL
outperforms TextRank in all six projects and performs better than BLIZZARD in most
cases at different accuracy@K. When the query length of KBL is limited to 10 terms
like default TextRank, its performance slightly surpasses that of TextRank. However,
when the query length of TextRank is adjusted to match that of KBL, the performance
of KBL significantly exceeds that of TextRank.

5.4 RQ4. Could Queries Generated by KBL Further Enhance the Localization
Performance of Representative IRBL Techniques?

To thoroughly assess the effectiveness of our KBL, we further combine KBL into seven
advanced IRBL techniques, including BugLocator (Zhou et al. 2012), BRTracer (Wong
et al. 2014), Locus (Wen et al. 2016), BLIA (Youm et al. 2015), BLUiR (Saha et al. 2013),
Amalgam (Wang and Lo 2014), and D&C (Koyuncu et al. 2019). BugLocator (Zhou et al.
2012) utilizes a revised Vector Space Model (rVSM) and leverages information from his-
torically similar bug reports to do bug localization. BRTracer (Wong et al. 2014) extends
BugLocator by incorporating stack trace from bug reports and source file segmentation to
improve the retrieval of buggy code files. Locus (Wen et al. 2016) uses textual and supple-

1 3

 135 Page 42 of 61

Empirical Software Engineering (2025) 30:135

mentary information from historical code changes to identify buggy code files in response
to the given bug report. BLIA (Youm et al. 2015) integrates various types of information,
such as stack traces, method names, similarity between bug reports and method names, and
comments from bug reports, to enhance bug localization performance. BLUiR (Saha et al.
2013) divides bug reports into summary and description, and extracts structured information
like class names, variable names, and comments from source code files to improve match-
ing accuracy. Amalgam (Wang and Lo 2014) integrates BugLocator and BLUiR, along with
version history analysis, to improve bug localization. Proposed by Koyuncu et al. (2019),
D&C employs a gradient boosting supervised learning approach for bug localization, focus-
ing on feature types that perform well across specific bug report collections. They train
multiple classifiers based on the strengths of various localization tools, assigning optimal
weights to similarity measurements between bug reports and source code files.

In this study, BugLocator, BRTracer, Locus, BLIA, BLUiR, and Amalgam are imple-
mented by directly using the replication packages provided by Bench4BL (Lee et al. 2018),
while D&C is implemented using the open-source code9 provided by its authors. We com-
bine KBL with the seven IRBL techniques by replacing the original bug report text used as
input in these IRBL techniques with the query reformulated by KBL. The specific integra-
tion methods for each IRBL technique are described in detail as follows.

BugLocatorKBL To integrate BugLocator with KBL, we replace the original bug report text
with the keywords generated by KBL, using this reformulated text as input for BugLoca-
tor. For previously fixed bug reports, we replace their text with the golden keywords we
constructed.

9 https://github.com/TruX-DTF/d-and-c

Table 22 Performance Comparison of BugLocator and BugLocatorKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BugLocator 20.11% 40.09% 50.04% 59.34% 24.13% 0.29
BugLocatorKBL 23.21% 46.11% 55.19% 65.56% 28.51% 0.34

Table 23 Performance Comparison of BRTracer and BRTracerKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BRTracer 23.19% 45.33% 54.90% 65.41% 28.67% 0.34
BRTracerKBL 25.91% 48.66% 57.87% 69.13% 32.49% 0.38

Table 24 Performance Comparison of Locus and LocusKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
Locus 24.50% 46.03% 56.08% 66.36% 30.35% 0.35
LocusKBL 26.36% 48.97% 58.47% 69.24% 33.33% 0.39

Table 25 Performance Comparison of BLIA and BLIAKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BLIA 21.63% 42.12% 51.13% 60.95% 26.01% 0.30
BLIAKBL 24.75% 48.84% 56.91% 67.17% 30.51% 0.36

1 3

Page 43 of 61 135

https://github.com/TruX-DTF/d-and-c

Empirical Software Engineering (2025) 30:135

BRTracerKBL Similar to the approach for integrating BugLocator with KBL, when combin-
ing BRTracer with KBL, we replace the bug report text used in BRTracer with the keywords
generated by KBL. Specifically, we use these keywords in place of the original bug report
text for calculating rVSMseg and SimiScore. Likewise, in line with the approach used in
BugLocatorKBL, we replace historical bug report texts with golden keywords.

LocusKBL In Locus, bug reports are primarily used to construct natural language (NL) que-
ries and code entity (CE) queries. When integrating KBL with Locus, we replace the origi-
nal bug report text with the keywords output by KBL, using them as the NL query for the
bug report.

BLIAKBL In BLIA, the bug report text is divided into two parts, the summary and the descrip-
tion, both used to calculate StructVsmScore. When integrating KBL with BLIA, we first
determine whether the keywords identified by KBL originate from the summary or the
description. We then replace the original summary with the keywords found in the sum-
mary, and replace the original description with the keywords found in the description. If no
keywords appear in either the summary or the description, we retain the original text for that
part of the bug report to ensure completeness. Additionally, for calculating the SimiBug-
Score, we also replace the text of historical bug reports with golden keywords, as done in
BugLocatorKBL.

BLUiRKBL To integrate BLUiR with KBL, we replace the summary and the description of
the bug report separately with keywords output by KBL, following the approach used in
BLIAKBL.

AmalgamKBL We primarily integrate KBL into the Similar Report Component and Struc-
ture Component of Amalgam. Specifically, in the Similar Report Component, we replace
the text of the new bug report with keywords output by KBL, and substitute historical bug
report texts with golden keywords. In the Structure Component, similar to the BLIAKBL, we
replace the keywords separately in the bug report’s summary and description.

Table 26 Performance Comparison of BLUiR and BLUiRKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BLUiR 15.90% 30.99% 41.61% 52.02% 19.15% 0.24
BLUiRKBL 21.61% 40.99% 51.24% 62.77% 25.40% 0.30

Table 27 Performance Comparison of Amalgam and AmalgamKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
Amalgam 15.96% 31.53% 42.79% 53.23% 19.48% 0.24
AmalgamKBL 21.21% 41.07% 50.82% 61.77% 25.66% 0.30

Table 28 Performance Comparison of D&C and D&CKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
D&C 26.31% 49.57% 57.87% 68.42% 32.05% 0.38
D&CKBL 29.17% 52.38% 61.30% 71.72% 35.54% 0.41

1 3

 135 Page 44 of 61

Empirical Software Engineering (2025) 30:135

D&CKBL When integrating D&C with KBL, we apply KBL-generated keywords for three
feature extraction, keywords from the summary are used for the summary feature, keywords
from the description are used for the description feature, and all keywords are used for
the rawBugReport feature. Additionally, we replace the original six IR techniques, namely
BugLocator, BRTracer, Locus, BLIA, BLUiR, and Amalgam, with their KBL-integrated
versions, that is BugLocatorKBL, BRTracerKBL, LocusKBL, BLIAKBL, BLUiRKBL, and
AmalgamKBL.

Tables 22, 23, 24, 25, 26, 27, and 28 show the comparison results between the original seven
IRBL techniques and their KBL-integrated variants. As shown in Table 22, BugLocator
combined with KBL demonstrates notable performance improvements across all metrics
compared to the original BugLocator. Specifically, in the Acc@1, Acc@5, Acc@10, and
Acc@20 metrics, BugLocatorKBL achieves relative improvements of 15%, 15%, 10%, and
10%, respectively. Furthermore, BugLocatorKBL also shows notable gains in ranking-based
metrics, with relative improvements of 18% in MAP and 17% in MRR over the original
BugLocator. These results indicate that the integration of KBL enhances BugLocator’s
effectiveness in accurately localizing buggy code files.

Table 23 presents the performance comparison between BRTracer and BRTracerKBL in
the bug localization task. It can be observed that BRTracer, when combined with KBL,
achieves relative improvements of 12%, 7%, 5%, 6%, 13%, and 12% over the original
BRTracer in the Acc@1, Acc@5, Acc@10, Acc@20, MAP and MRR metrics, respectively.
These improvements suggest that the integration of KBL helps BRTracer perform better in
identifying and locating buggy code, resulting in a more effective bug localization process.

Table 24 presents a comparison of the bug localization performance between Locus and
LocusKBL. The results indicate that LocusKBL outperforms the original Locus in all evalu-
ation metrics. Specifically, LocusKBL demonstrates relative improvements of 8%, 6%, 4%,
4%, 10%, and 11% in the Acc@1, Acc@5, Acc@10, Acc@20, MAP, and MRR metrics,
respectivel. These improvements reflect the positive impact of integrating KBL on Locus’s
effectiveness in bug localization.

In Table 25, we present the bug localization performance comparison between BLIA and
BLIAKBL. It is evident that integrating KBL enhances the overall performance of BLIA.
Specifically, BLIAKBL demonstrates relative improvements of 14%, 16%, 11%, 10%, 16%,
and 20% in the Acc@1, Acc@5, Acc@10, Acc@20, MAP, and MRR metrics, respectively,
compared to the original BLIA. These improvements indicate that KBL contributes to more
effective bug localization, making BLIA better equipped to accurately identify relevant
buggy code files.

Table 26 presents a comparison of the localization performance between BLUiRKBL and
BLUiR, showing that BLUiRKBL significantly enhances bug localization effectiveness. The
integration of KBL allows BLUiR to more accurately identify buggy code files related to
bug reports. Notably, BLUiRKBL achieves relative improvements of 36%, 32%, 24%, 21%,
33%, and 25% in Acc@1, Acc@5, Acc@10, Acc@20, MAP, and MRR, respectively, com-
pared to BLUiR.

Table 27 illustrates the localization performance between Amalgam and AmalgamKBL,
demonstrating that AmalgamKBL consistently outperforms the original Amalgam across all
evaluation metrics. This highlights the positive impact of integrating KBL into Amalgam, sig-
nificantly enhancing its bug localization effectiveness. In particular, AmalgamKBL achieves

1 3

Page 45 of 61 135

Empirical Software Engineering (2025) 30:135

relative improvements of 25%, 30%, 19%, and 16% for the Acc@1, Acc@5, Acc@10, and
Acc@20 metrics, respectively. Moreover, AmalgamKBL shows relative improvements of
32% and 25% in the MAP and MRR metrics compared to Amalgam, further confirming the
benefits of incorporating KBL for more accurate localization of buggy code files.

The above experimental results indicate that KBL enhances the performance of six
widely-used IRBL techniques to varying degrees. To further explore whether KBL can
similarly benefit the more advanced IRBL technique (i.e., D&C, an ensemble approach of
six IRBL techniques), we compare the bug localization performance of D&C and D&CKBL.
The comparison results are presented in Table 28. The results show that D&C combined
with KBL consistently outperforms D&C alone, confirming that KBL can also effectively
improve the performance of D&C. Specifically, D&CKBL achieves relative improvements of
11%, 6%, 6%, and 5% in Acc@1, Acc@5, Acc@10, and Acc@20, respectively, compared
to D&C. Additionally, D&CKBL shows relative improvements of 11% in MAP and 8% in
MRR, further emphasizing the positive impact of integrating KBL for more accurate bug
localization.

Overall, these findings demonstrate that the proposed KBL effectively enhances existing
IRBL techniques, resulting in recognizable improvements in the bug localization task. This
further highlights the potential of KBL as a valuable reformulation strategy for broader
applications in bug localization, showcasing its capacity to contribute to performance gains
across various IRBL techniques.

Using the reformulated queries generated by KBL, the performance of seven rep-
resentative IRBL techniques shows recognizable improvements, including relative
increases of 8%-36% in Acc@1, 6%-32% in Acc@5, 4%-24% in Acc@10, 4%-21%
in Acc@20, 10%-33% in MAP, and 8%-25% in MRR. These results further confirm
the effectiveness of KBL and highlight its considerable potential for improving bug
localization.

5.5 Statistical Significance Tests Over Observed Performance Differences

In the above four RQs, we observed different kinds of performance differences between
certain two approaches. This section mainly aims to do statistical significance tests to check
whether these observed differences have statistical significance or not. With such tests, the
effectiveness and potential of our KBL in bug localization could be better understood. Spe-
cifically, Wilcoxon Rank Sum test (Mann and Whitney 1947) and Cliff’s Delta effectsize
(Macbeth et al. 2011) are used to perform this task. Wilcoxon Rank Sum test is a nonpara-
metric statistical test commonly used to compare two groups of non-parametric interval
or not normally distributed data. It can tell us whether statistical significance exists or not.
With the help of Cliff’s delta effect size, we can measure how large the difference might be
quantitatively.

For those experiments involving comparing KBL (or its components) with baselines in
the above four RQs (i.e., Sections 5.1 to 5.4), we perform corresponding statistical tests
using the Wilcoxon Rank Sum test and Cliff’s Delta effect size. Due to the relatively large
number of such need-to-be-conducted tests, which take up considerable space, we choose
to place the testing results on GitHub10 instead of including them in the main text. The

10 https://github.com/Caiby0927/KBL

1 3

 135 Page 46 of 61

https://github.com/Caiby0927/KBL

Empirical Software Engineering (2025) 30:135

obtained testing results are all or, in most cases, have statistical significance at the p-value
of 0.05, with different degrees of effect sizes. This means, the major conclusions arrived in
Sections 5.1 to 5.4 still holds based on our testing results.

6 Discussion

The experimental results in Section 5 have validated the effectiveness of our KBL in bug
localization tasks. In this section, we mainly discuss some potential design improvements
of our KBL, the practical considerations in real-world adoption of KBL, and the potential
threats to our study.

6.1 Potential Design Improvements of KBL

Addressing Potential Local Optima in Keyword Selection In our study, we utilized a genetic
algorithm (GA) for keyword selection. Despite the constructed keyword benchmark having
proved to be rather effective in locating bugs (in RQ1), they may still not be the best bench-
mark but the suboptimal one, as theoretically speaking, the GA may yield results that are
local optima rather than global optima. It would be valuable to explore possible strategies
that help GA to generate global optimal results as much as possible. For example, future
research could try to combine GA with other optimization techniques such as simulated
annealing, to improve its ability to explore the solution space more thoroughly. Or, design
suitable multiple objective criteria to make GA generate more diverse initial populations
and explore the use of dynamic mutation rate to maintain and even enhance population
diversity throughout the GA evolution process.

Improving Noisy Terms Identification In our current approach, we utilize heuristic rules
to filter out noisy terms by comparing the retrieval performance of two consecutive sub-
sentences. While this method effectively identifies terms likely to be noise based on perfor-
mance discrepancies, it is possible that some retained keywords may still be noisy. Towards
this, future research could try to incorporate other useful measures like leveraging clustering
algorithms to group similar terms and use them to help identify outliers that could be flagged
as noise. Or, integrating suitable machine learning models that require minimal labeled data
to help predict the likelihood of noise for each term based on learned patterns. Or, not rely-
ing solely on the performance discrepancies, but comprehensively taking several metrics
like contextual semantic alignment within bug reports or the domain specificity of a term in
the field of bug localization.

Enhancing Keyword Classification Performance Keyword classifier is a key component of
our KBL. The reformulation process is based on the keywords predicted by the keyword
classifier. According to the performance table of our keyword classifier, we can see that
the current performance is still quite modest, far from satisfactory. Despite we have made
various attempts to improve classification accuracy, including testing different sampling
methods, training the classifier with the fine-tuned large language model, integrating fea-
tures extracted from the large language model with existing 61 features, performing feature
importance analysis to remove low-importance features, further refining the golden key-

1 3

Page 47 of 61 135

Empirical Software Engineering (2025) 30:135

words by removing more general terms, and experimenting with more complex neural net-
work models for classification (the results are available in our repository11), the results have
not yet surpassed the reported performance of KBL in this paper. From another perspective,
the findings of our RQ3 and RQ4 indicated that, even based on the not-so-satisfactory key-
word classification performance, our KBL still outperformed strong query reformulation
baselines and enhanced typical IRBL techniques based on our reformulated queries. We
believe that it is quite rewardable for more researchers to join us to address the keyword
prediction problem based on the already-constructed golden keyword benchmark by us.

6.2 Practical Considerations in Real-World Adoption of KBL

Adaption to Different Types of Bug Reports and Localization Scenarios Currently, KBL is
not specifically designed to particular types of bug reports or specific localization scenarios.
In other words, it serves as a general-purpose reformulation technique for bug reports from
open-source projects without distinguishing between report types. Theoretically, KBL can
be easily adapted to specific bug reports in both open-source and closed-source projects, as
long as the artifacts required—source/bug-fixing code and the textual problem description
of bug reports—are available in real-world software projects.

However, we acknowledge that the features we designed for KBL’s keyword classifier
may not be optimal for all types of bug reports. For example, security bug reports may con-
tain unique characteristics, such as vulnerability patterns, which could be highly effective
in identifying keywords for bug localization. In such cases, adapting the keyword classifi-
cation model to incorporate specialized features tailored to specific bug report types could
potentially enhance its performance. Additionally, several strategies could also be referred
to, to enhance KBL’s ability to process diverse bug reports without requiring specialized
adaptations to different contexts. One is to leverage feature learning through machine learn-
ing or deep learning models, allowing the keywords classification component of KBL to
automatically learn patterns from bug reports across various domains. Another one is to
replace the keywords classification component with pre-trained large language models and
introduce domain-specific fine-tuning for adaptation.

Data Availability and Time Cost of GA One potential challenge for real-world implementa-
tion of KBL, particularly in industry settings, is the requirement of a well-linked historical
bug report dataset with corresponding buggy code. This is crucial because KBL relies on
linked historical bug reports (knowing the buggy code files associated with each bug report)
to generate the golden keywords and to further train the keyword classifier. For projects
without their own or sufficient historical bug report data, a feasible solution is to train KBL
using bug reports from other projects, such as open-source datasets, and then apply it to
classify keywords in the current bug reports. While this cross-project application is a practi-
cal strategy, its effectiveness remains to be further verified, as the transferability of keyword
classification across different projects may vary.

Another aspect that needs to be noticed is that the process of obtaining these golden
keywords involves the use of a genetic algorithm, which does have some computational
cost. However, since keyword extraction using GA needs only to be done once for a project

11 https://github.com/Caiby0927/KBL

1 3

 135 Page 48 of 61

https://github.com/Caiby0927/KBL

Empirical Software Engineering (2025) 30:135

and could be conducted offline (i.e., the construction of the golden keyword benchmark can
be done in advance during idle periods), we think the time costly problem would not be so
significant in practical adoption of KBL. Once the keywords are constructed, KBL operates
efficiently in real-time (as shown by Fig. 5 in Appendix A.2 Section).

6.3 Threats to Validity

Internal Validity There are mainly three threats to the internal validity of our study. One is
that, we directly use a dataset shared by Ye et al. (2014) to construct our golden keywords
benchmark. This dataset provides a number of bug reports and their associated buggy code
files, and has been commonly used in existing IRBL studies (Lam et al. 2017; Shao and Yu
2023; Xiao et al. 2023, 2017). Still, we have to admit that any potential bias in linking bug
reports with their buggy code may negatively affect our study.

One more threat arises from the fact that some bug reports in the dataset may actually
be feature requests or other non-bug issues (Kochhar et al. 2014). In this study, we did not
apply a filtering process to identify and exclude these reports, aside from eliminating bug
reports that only involved code file additions for closing them (actually, the lack of ground
truth of the shared datasets also makes it challenging for us to construct a pure dataset that
contains only true positive bug reports). We acknowledge that this remains a potential limi-
tation and should be considered when interpreting our findings.

Another threat lies in the comparison with the reformulation techniques, as we failed
to find a replication package of the TextRank, we re-implement this technique based on its
description with recommended settings and parameters (Mihalcea and Tarau 2004), any
mistakes in implementation would threaten our arrived conclusions. To avoid this, we con-
duct several rounds of code reviews to make sure our re-implementations are correct.

External Validity The threats to external validity mainly lie in generalizing our findings to a
broader range of software projects and specific types of bug reports. As with most empiri-
cal studies, our experiments were conducted on a limited number of datasets. Although we
selected six widely studied open-source projects of different domains, scales, and complexi-
ties, these may not fully capture the diversity of real-world software systems, particularly in
commercial or large-scale environments. Extending future evaluations to more diverse and
representative projects remains a valuable effort to further strengthen the generalization of
our KBL in real-world scenarios.

Besides, the features designed for KBL’s keyword classifier may not generalize effec-
tively to different types of bug reports. For instance,security bug reports may exhibit unique
characteristics, like vulnerability patterns or exploit scenarios, that may not be fully cap-
tured by a generalized feature set. It is appreciated that future research explores adapting
the keyword classification model with specialized features tailored to the target type of bug
reports.

1 3

Page 49 of 61 135

Empirical Software Engineering (2025) 30:135

Labels Key Non-Key
Key 109,087 35,539
Non-Key 13,715 18,013

Table 31 Confusion Matrix for
the Eclipse_Platform_UI Project

Labels Key Non-Key
Key 36,141 9,083
Non-Key 6,322 5,393

Table 30 Confusion Matrix for
the Birt Project

Labels Key Non-Key
Key 6,604 3,615
Non-Key 848 1,731

Table 29 Confusion Matrix for
the AspectJ Project

7 Conclusion

To mitigate the weakness of existing reformulation strategies, we propose to develop KBL, a
golden keywords-guided query reformulation technique for bug localization. First, we com-
bine genetic algorithms and summarize keywords refinement rules to construct a benchmark
that contains keywords which perform quite well in locating bugs. Then, we use this bench-
mark to build a keywords classifier to identify keyword candidates from a bug report that
may be good hints for bug localization. These candidates would go through noise removal
and shared keywords expansion, the output of which would work as the final query used to
retrieve buggy code for the bug report. The experimental results demonstrate that our con-
structed keywords benchmark is of high quality. The KBL is found to outperform existing
reformulation strategies with substantial improvements and could advance representative
IRBL techniques with noticeable enhancements to their performance. In the future, we plan
to explore additional bug-related semantic features to enhance both the classification perfor-
mance of the keywords classifier and the retrieval effectiveness of the reformulated queries.
Furthermore, we also plan to apply our technique to more complex scenarios, such as bug
auto-repair, to explore its applicability in broader contexts.

A Appendix

A.1 Confusion Matrices of Keywords Classifier Over Six Projects

Tables 29, 30, 31, 32, 33, and 34, present the detailed confusion matrices of keywords clas-
sifier for the six experimental projects.

Labels Key Non-Key
Key 71,993 26,892
Non-Key 7,631 13,759

Table 32 Confusion Matrix for
the JDT Project

1 3

 135 Page 50 of 61

Empirical Software Engineering (2025) 30:135

A.2 Time Cost of Extracting Features for Bug Reports

To better understand the practical use of our KBL, we also investigate the time required to
extract term features from bug reports (required by keywords classifier). The experiment
is conducted on a Windows-based machine equipped with an Intel i5-12600KF CPU and
64GB of RAM. Following the sampling strategy in Krejcie (1970), which ensures repre-
sentativeness and reliability with a 95% confidence level and a 5% margin of error, we ran-
domly sampled 384 bug reports from six projects (with an average length of 124.3 terms).
We record the total feature extraction time for each report as well as the number of terms
in each report. Our results show that the average time per term is approximately 0.4964
seconds. For a bug report containing around 100 terms, feature extraction would thus take
roughly 49.64 seconds. In our experimental setup, the 61 features are calculated sequen-
tially for each report, with each feature computation starting only after the previous one
is completed. However, using distributed or parallel computing could significantly reduce
the time cost, greatly enhancing the practical usability of our KBL. To better illustrate time
distribution, we’ve included box plots depicting the time cost for these 384 bug reports in
Fig. 5.

Labels Key Non-Key
Key 8,665 2,650
Non-Key 1,240 1,349

Table 34 Confusion Matrix for
the Tomcat Project

Labels Key Non-Key
Key 33,211 13,582
Non-Key 3,650 7,245

Table 33 Confusion Matrix for
the SWT Project

Fig. 5 The time cost distribution of feature extraction for sampled 384 bug reports

1 3

Page 51 of 61 135

Empirical Software Engineering (2025) 30:135

A.3 Performance Comparison Between Doing RUS Ten Times and Once

During keyword classifier building, we set a fixed sampling seed of 1,391 for RUS and
applied RUS only once. To mitigate any potential biases introduced by RUS, we also repeat
the RUS process 10 times without setting a sampling seed and average the experimental
results. Table 35 shows their performance differences in terms of F1 score of keywords clas-
sifier and the final obtained Acc@K, MAP and MRR bug locating performance. From the
table, we only find a slight performance difference. This indicates that the findings of our
study are not significantly impacted by whether RUS is performed once or multiple times.

A.4 Query Reformulation With or Without Keyword Expansion or Low-Quality Term
Removal

The query reformulation module of KBL default applies keyword expansion and low-qual-
ity term removal to an initial query output by the keywords classifier. To understand the
impact of these two reformulation strategies, we built two variants of the query reformula-
tion module. They are as follows: (1) without expansion: in this variant, shared keywords
are not used for expanding and augmenting a query. (2) without noise removal: in this vari-
ant, the low-quality term is not removed, and only performs the shared keywords expansion.
After we obtain the corresponding queries for the above reformulation variants, we use them
to retrieve buggy code files and do further results comparison. Table 36 shows the results.
It reveals that the model KBL with both steps (i.e., applying shared keywords expansion
and noise removal) demonstrates superior performance in bug localization compared to the
two variants (i.e., without expansion, and without noise removal). We can observe that the
performance of both variants decreases to some extent compared to KBL. Among them, the
without expansion variant experiences a smaller decrease compared to KBL, with a rela-
tive decrease of 1% in acc@1 metric. On the other hand, the without noise removal variant
shows a relatively larger decrease, with a 6% relative decrease in acc@1 metric.

Table 35 The Keyword Classification Performance and Bug Localization Performance after Applying RUS
Ten times (TenTimesAverage) or Once (KBL)
Project Technique F1 Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ TenTimesAverage 0.44 24.48% 37.40% 47.41% 57.24% 27.30% 0.32

KBL 0.45 25.86% 37.06% 49.19% 56.89% 27.04% 0.32
Birt TenTimesAverage 0.42 11.79% 24.54% 33.11% 42.51% 14.31% 0.19

KBL 0.42 12.30% 25.58% 33.70% 42.92% 14.66% 0.19
Platform.UI TenTimesAverage 0.42 20.53% 42.05% 52.56% 62.53% 26.16% 0.31

KBL 0.43 20.92% 42.85% 53.00% 62.99% 26.56% 0.32
JDT TenTimesAverage 0.45 25.01% 52.04% 62.74% 73.20% 31.03% 0.38

KBL 0.45 25.66% 52.12% 63.03% 73.45% 31.21% 0.38
SWT TenTimesAverage 0.45 24.29% 47.38% 59.01% 70.84% 29.76% 0.35

KBL 0.46 24.69% 48.41% 59.24% 71.16% 30.09% 0.36
Tomcat TenTimesAverage 0.41 36.10% 61.03% 71.12% 79.66% 40.45% 0.47

KBL 0.42 38.53% 61.46% 60.75% 79.02% 41.34% 0.48

1 3

 135 Page 52 of 61

Empirical Software Engineering (2025) 30:135

A.5 The Settings of Similarity Threshold and Repetition Time

Similarity threshold is a key parameter used to filter similar historical bug reports for con-
structing shared keywords. We test four candidate values for the parameter similarity thresh-
old: (0.6, 0.7, 0.8, 0.9). Repetition time is another key parameter used to limit the maximum
number of occurrences of the same term in a query (belonging to the noise removal part).
We test five value settings, i.e., (1, 2, 3, 4, 5) for this parameter. To better understand the
individual impact of each parameter on localization performance, we assess how perfor-
mance changes when adjusting each parameter independently. Specifically, when testing
Similarity threshold, we vary its value from 0.6 to 0.9 in increments of 0.1, while keeping
repetition time fixed at 4 (the optimal value in determined in our analysis). Similarly, when
testing repetition time, we vary its value from 1 to 5 in increments of 1, with the Similar-
ity threshold fixed at 0.6 (also identified as the optimal value). Table 37 and 38 present the
localization performance of KBL under different settings for similarity threshold and repeti-
tion time, respectively.

From Table 37, we see that when the similarity threshold parameter increases from 0.6
to 0.9, the acc@1, acc@5, acc@10 and acc@20 metrics of the queries show a generally
decreasing trend. For example, as the similarity threshold value increases from 0.6 to 0.9,
the accuracy@10 metric for KBL decreases from 54.10% to 53.67%, and the number of
successfully localized bugs decreases from 2426 to 2407. Meanwhile, we can also observe
that the performance decrease is quite small when the similarity threshold is increased. This
means KBL demonstrates a certain level of robustness to variations in the similarity thresh-
old parameter (when set >=0.6).

From Table 38, we can observe that as the repetition time increases, the query perfor-
mance initially improves and then declines. When the repetition time reaches 4, the query
performance is optimal, while it is worst when the repetition time is 1. Compared to the opti-
mal repetition time, queries with a repetition time of 1 experience a relatively 7% decrease
in the acc@1 metric. This indicates that the query performance is sensitive to the repeti-
tion time of keywords, which however is not taken into consideration by TextRank and
BLIZZARD.

Table 36 Bug Localization Performance of KBL with/without Keyword Expansion or Noise Removal
Model Varaint Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
without expansion 22.03% 43.53% 53.56% 64.07% 26.85% 0.32
without noise removal 21.05% 43.19% 53.18% 63.40% 26.40% 0.32
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Table 37 Bug Localization Performance of KBL with Different Similarity Threshold
Similarity Threshold Acc@1 Acc@5 Acc@10 Acc@20
0.6 (1000)22.30% (1974)44.02% (2426)54.10% (2885)64.33%
0.7 (990)22.07% (1961)43.73% (2420)53.96% (2879)64.20%
0.8 (990)22.07% (1959)43.68% (2411)53.76% (2878)64.18%
0.9 (993)22.14% (1957)43.64% (2407)53.67% (2875)64.11%

1 3

Page 53 of 61 135

Empirical Software Engineering (2025) 30:135

A.6 The Performance of Applying Golden Keywords Beyond Bug Localization Tasks

In this study, with the aim of providing good localization guidance for bug localization
tasks, we constructed a golden keywords dataset based on historical bug-locating data and
used it to build a keyword classifier to retrieve bug-revealing keywords. The experimental
results have demonstrated the effectiveness of our extracted keywords in facilitating bug
localization performance. To understand whether the benefits of golden keywords extend
beyond bug localization, we extended our evaluation to another four bug report manage-
ment tasks, including bug severity prediction, bug priority prediction, bug reopen predic-
tion, and bug field reassignment prediction. The four tasks are generally resolved as a clas-
sification problem that mainly involves the content analysis of bug reports.

We followed the strategy of Chen et al. (2024) to label each bug report. Then, we ran-
domly selected 80% of the bug reports as the training dataset, while the remaining 20%
were reserved as the test dataset. Table 39 shows the number of instances belonging to dif-
ferent classes in the four tasks. From the table, we could observe a notable class imbalance
problem across the training datasets (i.e., some classes have many more instances than oth-
ers). Such imbalance may make the built model biased towards the majority classes during
prediction. Toward this, we designed a data augmentation strategy centered on synonym
replacement to fix the class imbalance problem, which proved to help achieve better clas-
sification performance than purely using traditional balancing strategies, e.g., random under
or over-sampling, in our preliminary experiments.

Specifically, we generated additional instances by randomly selecting existing instances
from the minority class and replacing 50% of their tokens with synonyms. This synonym
replacement was facilitated using the BERT model fine-tuned on the original bug reports,
with stopwords and standard keywords excluded from the replacement process. The aug-
mentation process continues until the number of minority class instances triples its original
size. If the expanded minority class still has fewer instances than the majority class, random

Table 38 Bug Localization Performance of KBL with Different Repetition Time
Repetition Time Acc@1 Acc@5 Acc@10 Acc@20
1 (934)20.82% (1888)42.10% (2358)52.58% (2808)62.62%
2 (985)21.96% (1958)43.66% (2409)53.72% (2891)64.47%
3 (994)22.16% (1966)43.84% (2434)54.28% (2893)64.51%
4 (1000)22.30% (1974)44.02% (2426)54.10% (2885)64.38%
5 (994)22.16% (1966)43.84% (2427)54.12% (2879)64.20%

Table 39 Instance Counts per Class in the Four Bug Report Management Tasks
Dataset Bug Severity Bug Priority Bug Reopen Bug Field

Reassignment
Severe Non- Severe High Medium Low Reopen Non- Re-

open
Reas-
sign

Non-
Reas-
sign

Training 3,029 2,289 2,283 15,638 226 1,473 16,681 6,180 11,968
Test 758 572 571 3,910 57 367 4,171 1,545 2,992

1 3

 135 Page 54 of 61

Empirical Software Engineering (2025) 30:135

undersampling (RUS) is applied to the majority class to achieve balance. Conversely, if the
minority class surpasses the majority class in size after augmentation, additional instances
for the majority class instances will be generated through synonym replacements until both
classes are equal in size. Table 40 shows the instance distribution after balancing. Note that
we only performed class balancing on the training dataset while keeping the testing dataset
imbalanced to mimic real-world scenarios.

After the class labeling and balancing process, we applied the vector space model with
tf-idf term weighting to represent the original content of bug reports and their corresponding
golden keywords. Then, we trained random forest models based on the constructed datasets
to perform predictions separately. Table 41 shows the classification performance for four
studied tasks related to using the original bug reports and golden keywords. From the table,
we can find that, when compared to models trained on the original contents of bug reports,
using golden keywords did not lead to better classification performance but a slight per-
formance decline across the four studied tasks beyond bug localization. This also provides
some support for our claim that providing supervised locating guidance is necessary for
facilitating bug localization; our construction and further leveraging of golden keywords is
such an attempt in this direction.

Table 40 Instance Counts per Class in the Four Bug Report Management Tasks after Performing Class Bal-
ancing based on the Data Augmentation Strategy
Dataset Bug Severity Bug Priority Bug Reopen Bug Field

Reassignment
Severe Non- Severe High Medium Low Reopen Non- Re-

open
Reas-
sign

Non-
Reas-
sign

Training 6,867 6,867 678 678 678 4,419 4,419 18,540 18,540
Test 758 572 571 3,910 57 367 4,171 1,545 2,992

Task Item F1
score

Precision Re-
call

Bug Severity
Prediction

Original Content 0.67 0.74 0.62

Golden Keywords 0.65 0.71 0.60
Bug Priority
Prediction

Original Content 0.56 0.56 0.56

Golden Keywords 0.53 0.53 0.53
Bug Reopen
Prediction

Original Content 0.74 0.79 0.70

Golden Keywords 0.71 0.76 0.67
Bug Field
Reassignment
Prediction

Original Content 0.65 0.78 0.56

Golden Keywords 0.62 0.72 0.55

Table 41 The Classification Per-
formance Comparison Between
Using Original Contents of Bug
Reports and Their Corresponding
Golden Keywords

1 3

Page 55 of 61 135

Empirical Software Engineering (2025) 30:135

A.7 Replacing Word2Vec with BERT During Keyword Classifier Building

In the keyword-classifier building step, we have several instance features involving seman-
tic similarity calculation based on semantic vectors generated by the typical Word2Vec
that was trained on bug reports. To explore whether the use of more advanced embedding
techniques would lead to better keyword classification performance, we tried to replace
Word2Vec with BERT during instance feature extraction. Like Word2Vec, we also fine-
tuned BERT with bug reports (using its built-in masked language modeling task). Table 42
presents the corresponding keyword classification performance for using Word2Vec and
BERT, respectively. From the table, we can find that the F1 scores are almost the same. In
other words, replacing Word2Vec with BERT does not lead to a substantial improvement
in the classification performance of our keyword classifier. This may be because the num-
ber of features computed using the word embedding technique during feature extraction is
relatively small; these features themselves did not play a dominant role in keyword clas-
sification (which could also, to some extent, be revealed by our feature importance analysis
in Section 5.2).

Author Contributions Biyu Cai: Writing – review & editing, Writing – original draft, Methodology, Investi-
gation, Data Curation, Software. Weiqin Zou: Writing – review & editing, Polish. Qianshuang Meng: Meth-
odology. Hui Xu: Methdology. Jingxuan Zhang: Writing – review & editing, Polish.

Funding This work is supported by the National Natural Science Foundation of China (No.62002161,
62272225), partly supported by Key Laboratory of Safety-Critical Software (Nanjing University of Aeronau-
tics and Astronautics), Ministry of Industry and Information Technology (Grant No. 56XCA2002605), the
Open Project Foundation of State Key Lab. for Novel Software Technology, Nanjing University (Grant No.
KFKT2024B35), and Collaborative Innovation Center of Novel Software Technology and Industrialization.

Data Availibility The datasets and code scripts for replication are available in the KBL r e p o s i t o r y (h t t p s : / / g i t
h u b . c o m / C a i b y 0 9 2 7 / K B L) .

Declarations

Conflicts of interest The authors declare no conflict of interest.

Project Method F1 score Precision Recall
AspectJ Word2Vec 0.45 0.31 0.71

BERT 0.45 0.46 0.45
Birt Word2Vec 0.42 0.38 0.47

BERT 0.43 0.41 0.45
Eclipse.Platform.UI Word2Vec 0.43 0.34 0.58

BERT 0.42 0.32 0.62
JDT Word2Vec 0.45 0.34 0.65

BERT 0.45 0.38 0.56
SWT Word2Vec 0.46 0.35 0.67

BERT 0.45 0.37 0.58
Tomcat Word2Vec 0.42 0.35 0.53

BERT 0.43 0.38 0.5

Table 42 The Classification
Performance of Keyword Clas-
sifiers When Using Word2Vec
and BERT to Calculate Relevant
Instance Features

1 3

 135 Page 56 of 61

https://github.com/Caiby0927/KBL
https://github.com/Caiby0927/KBL

Empirical Software Engineering (2025) 30:135

Ethical Approval Ethical approval not applicable.

Informed Consent Informed consent not applicable.

Clinical Trial Number Clinical Trial Number not applicable.

References

Bettenburg N, Just S, Schröter A, Weiss C, Premraj R, Zimmermann T (2008) What makes a good bug report?
In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engi-
neering, pp 308–318

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022
Carpineto C, Romano G (2012) A survey of automatic query expansion in information retrieval. Acm Com-

put Surv (CSUR) 44(1):1–50
Chaparro O, Marcus A (2016) On the reduction of verbose queries in text retrieval based software main-

tenance. In: Proceedings of the 38th International Conference on Software Engineering Companion,
Association for Computing Machinery, New York, NY, USA, ICSE ’16, p 716–718, h t t p s : / / d o i . o r g / 1 0
. 1 1 4 5 / 2 8 8 9 1 6 0 . 2 8 9 2 6 4 7

Chaparro O, Florez JM, Marcus A (2017) Using observed behavior to reformulate queries during text
retrieval-based bug localization. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp 376–387, https://doi.org/10.1109/ICSME.2017.100

Chaparro O, Florez JM, Marcus A (2019) Using bug descriptions to reformulate queries during text-retrieval-
based bug localization. Empir Softw Eng 24:2947–3007

Chen B, Zou W, Cai B, Meng Q, Liu W, Li P, Chen L (2024) An empirical study on the potential of word
embedding techniques in bug report management tasks. Empir Softw Eng 29(5):122

Church KW (2017) Word2vec. Natural Language Eng 23(1):155–162
Dallmeier V, Zimmermann T (2007) Extraction of bug localization benchmarks from history. In: Proceed-

ings of the 22nd IEEE/ACM international conference on automated software engineering, pp 433–436
Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic analy-

sis. J American Soc Inf Sci 41(6):391–407
Florez JM, Chaparro O, Treude C, Marcus A (2021) Combining query reduction and expansion for text-

retrieval-based bug localization. In: 2021 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pp 166–176, h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / S A N E R 5 0 9 6 7 . 2 0 2 1 . 0 0 0 2 4

Gay G, Haiduc S, Marcus A, Menzies T (2009) On the use of relevance feedback in ir-based concept location.
In: 2009 IEEE International Conference on Software Maintenance, pp 351–360, h t t p s : / / d o i . o r g / 1 0 . 1 1 0
9 / I C S M . 2 0 0 9 . 5 3 0 6 3 1 5

Haiduc S, Bavota G, Marcus A, Oliveto R, De Lucia A, Menzies T (2013) Automatic query reformulations
for text retrieval in software engineering. In: 2013 35th International Conference on Software Engineer-
ing (ICSE), pp 842–851. https://doi.org/10.1109/ICSE.2013.6606630

Huo X, Thung F, Li M, Lo D, Shi ST (2019) Deep transfer bug localization. IEEE Trans Softw Eng
47(7):1368–1380

Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula automatic fault-localization technique.
In: Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering,
Association for Computing Machinery, New York, NY, USA, ASE ’05, p 273–282. h t t p s : / / d o i . o r g / 1 0 .
1 1 4 5 / 1 1 0 1 9 0 8 . 1 1 0 1 9 4 9

Kevic K, Fritz T (2014) Automatic search term identification for change tasks. In: Companion Proceedings
of the 36th International Conference on Software Engineering, Association for Computing Machinery,
New York, NY, USA, ICSE Companion 2014, p 468–471. https://doi.org/10.1145/2591062.2591117

Kim D, Tao Y, Kim S, Zeller A (2013) Where should we fix this bug? a two-phase recommendation model.
IEEE Trans Softw Eng 39(11):1597–1610

Kim IY, De Weck O (2005) Variable chromosome length genetic algorithm for progressive refinement in
topology optimization. Struct Multidiscip Optimiz 29:445–456

Kim M, Lee E (2019a) A novel approach to automatic query reformulation for ir-based bug localization. In:
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Association for Computing
Machinery, New York, NY, USA, SAC ’19, p 1752–1759. https://doi.org/10.1145/3297280.3297451

Kim M, Lee E (2019b) A novel approach to automatic query reformulation for ir-based bug localization. In:
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Association for Computing
Machinery, New York, NY, USA, SAC ’19, p 1752–1759, https://doi.org/10.1145/3297280.3297451

1 3

Page 57 of 61 135

https://doi.org/10.1145/2889160.2892647
https://doi.org/10.1145/2889160.2892647
https://doi.org/10.1109/ICSME.2017.100
https://doi.org/10.1109/SANER50967.2021.00024
https://doi.org/10.1109/ICSM.2009.5306315
https://doi.org/10.1109/ICSM.2009.5306315
https://doi.org/10.1109/ICSE.2013.6606630
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/2591062.2591117
https://doi.org/10.1145/3297280.3297451
https://doi.org/10.1145/3297280.3297451

Empirical Software Engineering (2025) 30:135

Kim M, Kim Y, Lee E (2021) A novel automatic query expansion with word embedding for ir-based bug
localization. In: 2021 IEEE 32nd International Symposium on Software Reliability Engineering
(ISSRE), IEEE, pp 276–287

Kochhar PS, Tian Y, Lo D (2014) Potential biases in bug localization: Do they matter? In: Proceedings of the
29th ACM/IEEE international conference on Automated software engineering, pp 803–814

Kong A, Zhao S, Chen H, Li Q, Qin Y, Sun R, Bai X (2023) Promptrank: Unsupervised keyphrase extraction
using prompt. arXiv:2305.04490

Koyuncu A, Bissyandé TF, Kim D, Liu K, Klein J, Monperrus M, Traon YL (2019) D &c: A divide-and-
conquer approach to ir-based bug localization. CoRR arXiv:1902.02703

Krejcie R (1970) Determining sample size for research activities. Education Psychol Meas
Lam AN, Nguyen AT, Nguyen HA, Nguyen TN (2017) Bug localization with combination of deep learning

and information retrieval. In: 2017 IEEE/ACM 25th International Conference on Program Comprehen-
sion (ICPC), IEEE, pp 218–229

Laurikkala J (2001) Improving identification of difficult small classes by balancing class distribution. In:
Artificial Intelligence in Medicine: 8th Conference on Artificial Intelligence in Medicine in Europe,
AIME 2001 Cascais, Portugal, July 1–4, 2001, Proceedings 8, Springer, pp 63–66

Le TDB, Oentaryo RJ, Lo D (2015) Information retrieval and spectrum based bug localization: Better together.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pp 579–590

Lee J, Kim D, Bissyandé TF, Jung W, Le Traon Y (2018) Bench4bl: Reproducibility study on the perfor-
mance of ir-based bug localization. In: Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, Association for Computing Machinery, New York, NY, USA,
ISSTA 2018, p 61–72. https://doi.org/10.1145/3213846.3213856

Li Z, Jiang Z, Chen X, Cao K, Gu Q (2021) Laprob: a label propagation-based software bug localization
method. Inf Softw Technol 130:106410

Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet alloca-
tion. In: 2008 15th Working Conference on Reverse Engineering, pp 155–164. h t t p s : / / d o i . o r g / 1 0 . 1 1 0 9 / W
C R E . 2 0 0 8 . 3 3

Luo Z, Wang W, Caichun C (2023) Improving bug localization with effective contrastive learning representa-
tion. IEEE Access 11:32523–32533. https://doi.org/10.1109/ACCESS.2022.3228802

Macbeth G, Razumiejczyk E, Ledesma RD (2011) Cliff’s delta calculator: A non-parametric effect size pro-
gram for two groups of observations. Universitas Psych 10(2):545–555

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. The Annal Math Stat pp 50–60

Mihalcea R, Tarau P (2004) Textrank: Bringing order into text. In: Proceedings of the 2004 conference on
empirical methods in natural language processing, pp 404–411

Mills C, Parra E, Pantiuchina J, Bavota G, Haiduc S (2020) On the relationship between bug reports and
queries for text retrieval-based bug localization. Empir Softw Eng 25:3086–3127

Moreno L, Treadway JJ, Marcus A, Shen W (2014) On the use of stack traces to improve text retrieval-based
bug localization. In: 2014 IEEE International Conference on Software Maintenance and Evolution, pp
151–160. https://doi.org/10.1109/ICSME.2014.37

Moreno L, Bavota G, Haiduc S, Di Penta M, Oliveto R, Russo B, Marcus A (2015) Query-based configura-
tion of text retrieval solutions for software engineering tasks. In: Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, Association for Computing Machinery, New York,
NY, USA, ESEC/FSE 2015, p 567–578. https://doi.org/10.1145/2786805.2786859

Rahman MM, Roy CK (2017) Strict: Information retrieval based search term identification for concept loca-
tion. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp 79–90. https://doi.org/10.1109/SANER.2017.7884611

Rahman MM, Roy CK (2018a) Improving bug localization with report quality dynamics and query refor-
mulation. In: Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, Association for Computing Machinery, New York, NY, USA, ICSE ’18, p 348–349. h t t p
s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 1 8 3 4 4 0 . 3 1 9 5 0 0 3

Rahman MM, Roy CK (2018) Improving ir-based bug localization with context-aware query reformulation. Ass
Comput Mach, New York, NY, USA, ESEC/FSE 2018:621–632. h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5 / 3 2 3 6 0 2 4 . 3 2 3 6 0 6 5

Rahman MM, Khomh F, Yeasmin S, Roy CK (2021) The forgotten role of search queries in ir-based bug
localization: an empirical study. Empir Softw Eng 26(6):116

Rao S, Kak A (2011) Retrieval from software libraries for bug localization: A comparative study of generic
and composite text models. In: Proceedings of the 8th Working Conference on Mining Software Reposi-
tories, Association for Computing Machinery, New York, NY, USA, MSR ’11, p 43–52. h t t p s : / / d o i . o r g
/ 1 0 . 1 1 4 5 / 1 9 8 5 4 4 1 . 1 9 8 5 4 5 1

Roldan-Vega M, Mallet G, Hill E, Fails JA (2013) Conquer: A tool for nl-based query refinement and contextualiz-
ing code search results. In: 2013 IEEE International Conference on Software Maintenance, IEEE, pp 512–515

1 3

 135 Page 58 of 61

http://arxiv.org/abs/2305.04490
http://arxiv.org/abs/1902.02703
https://doi.org/10.1145/3213846.3213856
https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1109/ACCESS.2022.3228802
https://doi.org/10.1109/ICSME.2014.37
https://doi.org/10.1145/2786805.2786859
https://doi.org/10.1109/SANER.2017.7884611
https://doi.org/10.1145/3183440.3195003
https://doi.org/10.1145/3183440.3195003
https://doi.org/10.1145/3236024.3236065
https://doi.org/10.1145/1985441.1985451
https://doi.org/10.1145/1985441.1985451

Empirical Software Engineering (2025) 30:135

Saha RK, Lease M, Khurshid S, Perry DE (2013) Improving bug localization using structured informa-
tion retrieval. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp 345–355. https://doi.org/10.1109/ASE.2013.6693093

Sampson JR (1976) Adaptation in natural and artificial systems (john h. holland)
Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A (2009) Rusboost: A hybrid approach to alleviating

class imbalance. IEEE Trans Syst, Man, Cybern-Part A: Syst Humans 40(1):185–197
Shao S, Yu T (2023) Information retrieval-based fault localization for concurrent programs. In: 2023 38th

IEEE/ACM International Conference on Automated Software Engineering (ASE), pp 1467–1479.
https://doi.org/10.1109/ASE56229.2023.00122

Shi X, Xu G, Shen F, Zhao J (2015) Solving the data imbalance problem of p300 detection via random under-
sampling bagging svms. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp 1–5.
https://doi.org/10.1109/IJCNN.2015.7280834

Sisman B, Kak AC (2012) Incorporating version histories in information retrieval based bug localization. In:
2012 9th IEEE working conference on mining software repositories (MSR), IEEE, pp 50–59

Sisman B, Kak AC (2013) Assisting code search with automatic query reformulation for bug localization. In:
2013 10th Working Conference on Mining Software Repositories (MSR), pp 309–318. h t t p s : / / d o i . o r g /
1 0 . 1 1 0 9 / M S R . 2 0 1 3 . 6 6 2 4 0 4 4

Tomek I (1976) Two modifications of cnn. In: IEEE Transactions on Systems Man & Cybernetics, h t t p s : / / d o
i . o r g / 1 0 . 1 1 0 9 / T S M C . 1 9 7 6 . 4 3 0 9 4 5 2

Wang S, Lo D (2014) Version history, similar report, and structure: Putting them together for improved bug
localization. In: Proceedings of the 22nd International Conference on Program Comprehension, Asso-
ciation for Computing Machinery, New York, NY, USA, ICPC 2014, p 53–63. h t t p s : / / d o i . o r g / 1 0 . 1 1 4 5
/ 2 5 9 7 0 0 8 . 2 5 9 7 1 4 8

Wang S, Lo D (2016) Amalgam+: Composing rich information sources for accurate bug localization. J Softw:
Evol Process 28(10):921–942

Wen M, Wu R, Cheung SC (2016) Locus: Locating bugs from software changes. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, pp 262–273

Wong CP, Xiong Y, Zhang H, Hao D, Zhang L, Mei H (2014) Boosting bug-report-oriented fault localization
with segmentation and stack-trace analysis. In: 2014 IEEE international conference on software main-
tenance and evolution, IEEE, pp 181–190

Xiao X, Xiao R, Li Q, Lv J, Cui S, Liu Q (2023) Bugradar: Bug localization by knowledge graph link predic-
tion. Inf Softw Technol p 107274

Xiao Y, Keung J, Mi Q, Bennin KE (2017) Improving bug localization with an enhanced convolutional neural
network. In: 2017 24th Asia-Pacific Software Engineering Conference (APSEC), IEEE, pp 338–347

Yan M, Xia X, Fan Y, Hassan AE, Lo D, Li S (2020) Just-in-time defect identification and localization: A
two-phase framework. IEEE Trans Softw Eng 48(1):82–101

Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowledge. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, Association for Computing Machinery, New York, NY, USA, FSE 2014, p 689–699. h t t p s : / / d
o i . o r g / 1 0 . 1 1 4 5 / 2 6 3 5 8 6 8 . 2 6 3 5 8 7 4

Ye X, Shen H, Ma X, Bunescu R, Liu C (2016) From word embeddings to document similarities for improved
information retrieval in software engineering. In: Proceedings of the 38th international conference on
software engineering, pp 404–415

Yoo S, Xie X, Kuo FC, Chen TY, Harman M (2017) Human competitiveness of genetic programming in
spectrum-based fault localisation: Theoretical and empirical analysis. ACM Trans Softw Eng Method
26(1). https://doi.org/10.1145/3078840

Youm KC, Ahn J, Kim J, Lee E (2015) Bug localization based on code change histories and bug reports. In:
2015 Asia-Pacific Software Engineering Conference (APSEC), IEEE, pp 190–197

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more accurate information retrieval-based
bug localization based on bug reports. In: 2012 34th International conference on software engineering
(ICSE), IEEE, pp 14–24

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manu-
script version of this article is solely governed by the terms of such publishing agreement and applicable law.

1 3

Page 59 of 61 135

https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE56229.2023.00122
https://doi.org/10.1109/IJCNN.2015.7280834
https://doi.org/10.1109/MSR.2013.6624044
https://doi.org/10.1109/MSR.2013.6624044
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.1109/TSMC.1976.4309452
https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1145/2597008.2597148
https://doi.org/10.1145/2635868.2635874
https://doi.org/10.1145/2635868.2635874
https://doi.org/10.1145/3078840

Empirical Software Engineering (2025) 30:135

Biyu Cai She received her master’s degree from Nanjing University of
Aeronautics and Astronautics. Her main research interests include bug
localization.

Weiqin Zou She is an associate professor in the College of Computer
Science and Technology at Nanjing University of Aeronautics and
Astronautics. She received her Ph.D degree at the Software Institute,
Nanjing University, China, advised by Prof. Baowen Xu and Prof.
Zhenyu Chen in 2019. Her research focuses on mining software repos-
itories (e.g., bug reports, GitHub data) to uncover interesting and
actionable information to help improve software quality and developer
productivity.

Qianshuang Meng He received his postgraduate degree from Nanjing
University of Aeronautics and Astronautics, China. His research inter-
ests include bug report analysis and natural language processing.

1 3

 135 Page 60 of 61

Empirical Software Engineering (2025) 30:135

Hui Xu She is a graduate student at Nanjing University of Aeronautics
and Astronautics, China. Her research interest includes natural lan-
guage processing and bug localization.

Jingxuan Zhang He is an associate professor in the College of Com-
puter Science and Technology, Nanjing University of Aeronautics and
Astronautics, China. Zhang received the Ph.D degree in software engi-
neering from the Dalian University of Technology, China. His current
research interests include mining software repositories and software
data analysis.

Authors and Affiliations

Biyu Cai1 · Weiqin Zou1 · Qianshuang Meng1 · Hui Xu1 · Jingxuan Zhang1

 Weiqin Zou
weiqin@nuaa.edu.cn

Biyu Cai
caibiyu@nuaa.edu.cn

Qianshuang Meng
qs_meng@nuaa.edu.cn

Hui Xu
lyraxv@nuaa.edu.cn

Jingxuan Zhang
jxzhang@nuaa.edu.cn

1 Department of Computer Science and Technology, Nanjing University of Aeronautics and
Astronautics, Nanjing, China

1 3

Page 61 of 61 135

http://orcid.org/0009-0006-6876-6768

	﻿KBL: a golden keywords-based query reformulation approach for bug localization
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Background and Related Work
	﻿2.1﻿ ﻿Information Retrieval-Based Bug localization
	﻿2.2﻿ ﻿Query Reformulation
	﻿2.3﻿ ﻿Genetic Algorithm

	﻿﻿3﻿ ﻿Methodology
	﻿﻿3.1﻿ ﻿Golden Keywords Benchmark Construction
	﻿﻿3.1.1﻿ ﻿Preliminary Keywords Selection
	﻿﻿3.1.2﻿ ﻿Keywords Refinement

	﻿3.2﻿ ﻿Keywords Classifier Construction
	﻿3.2.1﻿ ﻿Feature Extraction
	﻿3.2.2﻿ ﻿Class Labeling
	﻿3.2.3﻿ ﻿Model Building

	﻿3.3﻿ ﻿Query Reformulation
	﻿3.4﻿ ﻿Evaluation Based on Bug Localization
	﻿4﻿ ﻿Experiment Setup
	﻿﻿4.1﻿ ﻿Experimental Datasets
	﻿4.2﻿ ﻿Performance Metrics
	﻿4.3﻿ ﻿Research Questions

	﻿﻿5﻿ ﻿Experimental Results
	﻿﻿5.1﻿ ﻿RQ1. How Good is our Constructed Keywords Benchmark?
	﻿﻿5.2﻿ ﻿RQ2. What Impact Do Keywords Classifier Configurations Have on KBL Performance?
	﻿5.3﻿ ﻿RQ3 How does KBL Perform Compared to Traditional And Advanced Reformulation Approaches in Bug Localization?
	﻿5.3.1﻿ ﻿RQ3.1 Does KBL Outperform the Typical Reformulation Strategies?
	﻿5.3.2﻿ ﻿RQ3.2 Does KBL Perform Better Than The State-of-the-Art Reformulation Approaches?

	﻿﻿5.4﻿ ﻿RQ4. Could Queries Generated by KBL Further Enhance the Localization Performance of Representative IRBL Techniques?
	﻿5.5﻿ ﻿Statistical Significance Tests Over Observed Performance Differences
	﻿6﻿ ﻿Discussion
	﻿6.1﻿ ﻿Potential Design Improvements of KBL
	﻿6.2﻿ ﻿Practical Considerations in Real-World Adoption of KBL
	﻿6.3﻿ ﻿Threats to Validity

	﻿7﻿ ﻿Conclusion
	﻿A Appendix
	﻿A.1 Confusion Matrices of Keywords Classifier Over Six Projects
	﻿A.2 Time Cost of Extracting Features for Bug Reports
	﻿A.3 Performance Comparison Between Doing RUS Ten Times and Once
	﻿A.4 Query Reformulation With or Without Keyword Expansion or Low-Quality Term Removal
	﻿A.5 The Settings of Similarity Threshold and Repetition Time
	﻿A.6 The Performance of Applying Golden Keywords Beyond Bug Localization Tasks
	﻿A.7 Replacing Word2Vec with BERT During Keyword Classifier Building

	﻿References

