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Abstract
Reformulating initial bug reports to obtain better queries for buggy code retrieval is an 
important research direction in the bug localization area. Existing query reformulation 
strategies of bug reports are generally unsupervised and may lack localization guidance, 
which prevents the generation of better queries for bug localization. Towards this, we 
propose to develop KBL, a golden keywords-based query reformulation approach for bug 
localization. Specifically, we first leverage the genetic algorithm and keywords refine-
ment heuristic rules to build a golden keywords benchmark targeted at bug localization. 
Taking this benchmark as bug localization guidance, we create a keywords classifier for 
bug reports based on three categories of semantic features. The extracted keywords by 
the classifier for a bug report are taken as the reformulated start point upon which noise 
removal and shared keyword expansion with historical bug reports are further performed. 
The final achieved query, as a replacement for the original bug report, is expected to 
enhance buggy code retrieval performance. Our experiments show that the contributed 
keywords benchmark is of high quality in locating bugs, establishing a good basis for 
further query reformulation to improve localization techniques. Through an analysis of 
different classifier choices, data balancing strategies, and feature importance, we validate 
the suitability of the configuration settings for our keyword classifier. A testing dataset 
of 4,484 bug reports from six projects is used to evaluate our KBL. The results show 
that KBL is found to substantially outperform both the typical (with a relatively 8%-85% 
higher Acc@10, 9%-93% higher MAP, and 10%-94% higher MRR), and state-of-the-art 
(with a relatively 21%-45% higher Acc@10, 31%-47% higher MAP and 32%-50% higher 
MRR) reformulation strategies. Moreover, based on the reformulated queries of our KBL, 
the performance of seven representative information retrieval-based bug localization tech-
niques also showed recognizable improvements, including relative increases of 8%-36% 
in Acc@1, 6%-32% in Acc@5, 4%-24% in Acc@10, 4%-21% in Acc@20, 10%-33% in 
MAP, and 8%-25% in MRR.
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1 Introduction

Software users and testers could submit a bug report to bug tracking systems when they encounter 
software problems. Developers who are assigned to fix the bug first need to reproduce the bug and 
locate where it appears. To successfully reproduce and locate the bug, the bug report should pro-
vide clear and correct information about the bug; the developer should also have a comprehensive 
understanding of the bug as well as the software project. In other words, bug localization cannot 
be said to be an easy task for developers during their daily routine, the situation is even more 
challenging when they have to handle a large number of bug reports. For example, the Mozilla1 
project received as many as more than 10K bug reports in just two months (Luo et al. 2023).

To reduce the burden of developers on locating bugs, various bug localization techniques 
have been proposed to automatically identify buggy code elements for given bug reports. As 
a major category of bug localization, information retrieval-based bug localization (IRBL) 
techniques attract much attention from researchers and practitioners (Rahman and Roy 
2018b; Florez et al. 2021; Lukins et al. 2008; Sisman and Kak 2012; Wang and Lo 2014). 
The basic idea of IRBL techniques is to take bug localization as an information retrieval 
task where a bug report is a query, the code base is the corpus, and the localization process 
equals retrieving a list of relevant code files for the bug report query from the code corpus.

As an important input, the quality of a bug report would greatly affect the retrieval performance 
of IRBL techniques. Previous studies have found that bug reports especially of open-source proj-
ects are of different qualities (Rahman and Roy 2018a; Bettenburg et al. 2008). To improve the 
locating performance, some researchers propose to reformulate the bug report first and then use 
the generally better query to do bug localization (Rahman and Roy 2018b; Florez et al. 2021; Kim 
and Lee 2019a; Chaparro et al. 2017). For instance, Rahman and Roy developed a tool named 
BLIZZARD that classifies bug reports into different types and applies different reformulation strat-
egies to reformulate the bug report (Rahman and Roy 2018b). Meanwhile, Florez et al. focus on 
information items of a bug report such as observed behavior (OB), expected behavior (EB), steps 
to reproduce (S2R), based on which performing query reduction and/or expansion strategies to do 
bug report reformulation (Florez et al. 2021). Sisman and Kak proposed the Spatial Code Proxim-
ity model to measure term-term positional proximity. Candidate terms with close proximity are 
then used to expand the initial query (Sisman and Kak 2013). Haiduc et al. proposed Refoqus, a 
technique that automatically selects a more suitable reformulation strategy based on the properties 
of the incoming query, thereby enabling query expansion of reduction (Haiduc et al. 2013), etc.

While the aforementioned reformulation studies have made some progress in facilitating 
bug localization, there remains substantial room for further performance improvement. Cur-
rent query reformulation strategies for bug localization primarily focus on utilizing unsuper-
vised graph-based (e.g., TextRank) or frequency-based ranking algorithms. These algorithms 
are applied to either the entire bug report, parts of it (e.g., stack traces), or pseudo-relevant 
code files. Pseudo-relevant code files are a set of files initially assumed to be relevant to a 
bug report based on a retrieval model, even if their actual relevance is unconfirmed. These 
algorithms weigh terms and select important ones to either expand (completing extra infor-
mation) or reduce (removing noise) the initial bug report query. Few studies propose using 
certain items like Observed Behavior plus Title to replace the whole bug report for buggy-
code retrieval or adopting explicit relevance feedback to enhance search effectiveness, where 
developers are required to provide feedback on retrieval results.

1 https://bugzilla.mozilla.org/home
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The potential problems behind these studies are: (1) Pseudo relevant code files can only work 
if the original bug report is reasonably strong in its power to retrieve at least some of the relevant 
code files; and explicit relevance feedback would increase the user’s burden, be affected by sub-
jective (or wrong) feedback, and generally suffers from scalability issues. (2) Focusing on spe-
cific items such as observed behavior or stack traces would lead to missing useful information 
from other items of a bug report, which makes them not a good enough data basis for keyword 
extraction. (3) The nature of unsupervised keyword extraction algorithms can only indicate that 
the selected terms may be real keywords regarding the content of the software artifacts them-
selves. Still, they may not be the optimal option for the bug localization task. For example, dif-
ferent bug-related tasks, such as priority prediction, bug triage, or localization, are expected to 
weigh the terms in bug reports with varying emphasis. It is questionable that the terms obtained 
by applying, e.g., TextRank, to a bug report would have the same effect on all these tasks.

The aforementioned issues lead us to explore an intriguing possibility: could we poten-
tially achieve better localization hints for bug localization if we build a supervised keyword 
extraction model on a dataset where keywords are labeled based on their buggy-code-retrieval 
capability? This forms the foundational assumption of the reformulation technique we pro-
posed in this paper, i.e., the KBL — a golden keywords-based query reformulation approach 
for bug localization. Specifically, we first construct a golden keywords benchmark for bug 
reports aimed at providing effective localization guidance, by using a genetic algorithm and 
keywords refinement heuristic rules towards historical bug reports and their fixing data. One 
main characteristic of the extracted golden keywords lies in their capacity to guide bug local-
ization, as evidenced by their effectiveness in retrieving the correct buggy code. Taking this 
benchmark as reformulation guidance, we create a supervised keyword classifier based on 
three categories of semantic features and use the classifier to obtain potential keywords for 
newly arrived bug reports. The extracted keywords by the classifier for a bug report are 
taken as the reformulated start point upon which noise removal and keyword expansion with 
historical bug reports are further performed. The final query achieved could then be fed into 
an IR search engine (as a substitution for the initial bug report) to locate buggy code files.

We perform our experiments on six open-source projects with 22,747 bug reports in total. 
The experimental results show that our constructed golden keywords benchmark is of high 
quality in locating bugs. Through an analysis of different classifier choices, data balanc-
ing strategies, and feature importance, we validate the suitability of the configuration set-
tings for our keyword classifier. Compared to traditional reformulation baselines, the KBL 
shows a relative improvement of 8%-85% in Acc@10, 9%-93% in MAP, and 10%-94% 
in MRR. In comparison to state-of-the-art reformulation strategies, KBL demonstrates a 
relative improvement of 21%-45% in Acc@10, 31%-47% in MAP, and 32%-50% in MRR. 
Moreover, with the leveraging of the reformulated queries generated by our KBL, the per-
formance of seven representative IRBL techniques demonstrated noticeable improvements, 
with relative increases of 8%-36% in Acc@1, 6%-32% in Acc@5, 4%-24% in Acc@10, 
4%-21% in Acc@20, 10%-33% in MAP, and 8%-25% in MRR.

In summary, our study mainly makes the following contributions: 

1) We propose to develop KBL, a golden keywords-based reformulation technique for bug 
localization. By using keywords that provide localization guidance as reformulation 
start, KBL could generate better bug report queries for locating bugs.
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2) We develop an effective way that integrates genetic algorithms and keywords refine-
ment heuristic rules to create a golden keywords benchmark, which provides a valuable 
starting point for researchers who aim to develop more advanced reformulation tech-
niques tailored for bug localization.

3) We conduct a comprehensive evaluation of KBL based on bug localization tasks, using 
a testing dataset of 4,484 bug reports. The results demonstrate that KBL outperforms 
both traditional and state-of-the-art reformulation strategies in key performance met-
rics; leveraging reformulated queries by KBL enhanced the performance of several 
representative IRBL techniques.

2 Background and Related Work

In this section, we will first describe the concept of information retrieval-based bug localiza-
tion and associated research studies. Then, we present current query reformulation strategies 
and their use in bug localization. Last, we introduce the genetic algorithms that we use to 
construct golden keywords for reformulation-based bug localization in our study. Details 
are as follows.

2.1 Information Retrieval-Based Bug localization

Information retrieval bug localization techniques are one main-stream category of existing 
bug localization techniques. To provide a clearer understanding of the role and importance 
of IRBL techniques, we begin by briefly introducing the categorization of bug localization 
methods. Broadly speaking, existing bug localization techniques can be roughly divided 
into two categories: dynamic bug localization and static bug localization (Le et al. 2015).

Dynamic bug localization mainly leverages program execution traces to associate code 
elements with program failures (Saha et al. 2013). These techniques typically begin with 
instrumenting the program to collect execution data during test runs, which contain detailed 
logs of which parts of the code are executed during successful and/or failed test cases. By 
comparing the behavior of passing (successful) and failing test cases, a suspiciousness score 
is computed and assigned to individual code elements (such as lines, methods, etc.). These 
code elements are then ranked based on their suspiciousness scores, with higher scores indi-
cating larger probabilities of being buggy. Dynamic bug localization’s main advantage lies 
in its ability to leverage real execution data to provide fine-grained fault localization, often 
down to the line or method level. Accompanying, this precision comes at the cost of higher 
computational resources and increased execution overhead. Spectrum-based bug localization 
techniques are representatives of such techniques (Jones and Harrold 2005; Yoo et al. 2017).

Static techniques focus on analyzing static artifacts like source code and bug reports 
without requiring program execution. For static bug localization, some static semantic fea-
tures of bug reports and code snippets are extracted first. Then, semantic similarities of those 
features are calculated and used to locate buggy code elements, where a code element with 
a higher semantic similarity with a bug report is considered more relevant to the bug (Zhou 
et al. 2012; Ye et al. 2016). These techniques are helpful for situations where runtime data is 
unavailable, difficult to collect, or when resource efficiency is paramount. They can quickly 
scan large codebases and provide a broader overview to help developers identify relevant 
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files or classes that may contain bugs without needing to run the code. Information retrieval-
based bug localization (IRBL) techniques are representatives of such techniques (Saha et al. 
2013; Kim and Lee 2019a; Chaparro et al. 2017; Zhou et al. 2012; Sisman and Kak 2012).

IRBL treats bug localization as a text retrieval task, where a bug report is treated as a 
query, code files represent the document collection, and the location process is equivalent to 
retrieving relevant code documents from the collection for a given bug report. Figure 1 illus-
trates a real bug report2 from the Eclipse JDT project. A typical bug report usually consists 
of (1) bug title, (2) bug description (which may include steps to reproduce and observed 
behavior), and (3) metadata (containing information such as status, report time, etc.).

For IRBL, bug reports and code files are generally taken as textual contents whose seman-
tics are extracted with traditional information retrieval techniques such as vector space model 

2  h t t p s :   /  / b u g  s . e c l i p s  e  . o  r g  / b u  g s  / s  h o w  _  b u g   . c g  i ? i d = 3 9 7 8 4 2

Fig. 1 A bug report example with bugID=397842 in Eclipse JDT project
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(VSM) (Rao and Kak 2011; Zhou et al. 2012), latent dirichlet allocation (LDA) (Blei et al. 
2003; Lukins et al. 2008), and latent semantic indexing (LSI) (Deerwester et al. 1990). Based 
on e.g., semantic vectors extracted by VSM for a bug report and a code element, a similar-
ity score (generally a cosine similarity) would be calculated. Code elements with the highest 
scores are returned as buggy candidates to users for further checking. In the early stage, mainly 
the contents of bug reports and the code themselves are used to do localization. In recent 
years, researchers have tried to leverage other information sources such as code version con-
trol systems or historical bug reports, to improve localizing performance. For instance, Sisman 
and Kak integrate defect histories and modification histories into their bug localization tech-
nique (Sisman and Kak 2012). Zhou et al. propose BugLocator, which utilizes a revised Vec-
tor Space Model (rVSM) to rank files based on the textual similarity between the bug report 
and the source code, and also leverages information from historically similar bug reports to 
facilitate bug localization (Zhou et al. 20120. Wang and Lo integrate version history, similar 
bug reports, and structural information to enhance the localization of buggy files (Wang and 
Lo 2014). Moreno et al. combine textual and structural similarities between code elements 
in stack traces and source code files for bug localization (Moreno et al. 2014). AmaLgam+ 
integrates five information sources to locate bugs, including the code version history, similar 
bug reports, code structures, stack traces, and reporter information (Wang and Lo 2016). With 
the aim to bridge the possible lexical gap problem within buggy code retrieval process, Ye et 
al. propose to introduce word embedding technique to better represent the semantics of bug 
reports and code snippets, so as to further facilitate bug localization (Ye et al. 2016).

Meanwhile, some researchers propose to further combine machine learning techniques 
to facilitate bug localization. Kim et al. extract features from bug reports and employ Naive 
Bayes to predict files to be addressed for each bug report (Kim et al. 2013). Ye et al. intro-
duce an adaptive ranking approach that utilizes features extracted from source code files, 
API descriptions, bug-fixing history, and code change history (Ye et al. 2014). Lam presents 
an approach named DNNLOC, which combines a deep neural network with an information 
retrieval technique (i.e., rVSM) and bug-fixing history to recommend potentially buggy 
source code files for a given bug report (Lam et al. 2017). Yan et al. propose a just-in-time 
defect localization tool, applying a classifier with 14 change-level features to identify the 
buggy change lines in committed changes (Yan et al. 2020). We also focus on IRBL tech-
niques. Our goal is to reformulate a bug report by keeping its most informative words and 
removing its redundant/noisy terms, so as to facilitate bug localization.

2.2 Query Reformulation

In search engines, if an initial query yields unsatisfactory results, users would generally reformu-
late the query and use the reformulated one to do the search again. The practice of query reformu-
lation is widely applied in various retrieval and location tasks, including bug localization (Sisman 
and Kak 2013; Chaparro et al. 2017; Rahman and Roy 2018b; Kim and Lee 2019a), concept loca-
tion (Rahman and Roy 2017; Chaparro and Marcus 2016; Gay et al. 2009) and feature location 
(Kevic and Fritz 2014), etc. Over time, a list of techniques have been developed to assist users to 
do query reformulation (Haiduc et al. 2013; Roldan-Vega et al. 2013). These approaches involve 
either query expansion (Carpineto and Romano 2012), where additional terms are incorporated 
to broaden the query, or query reduction (Chaparro and Marcus 2016), where terms unlikely to 
contribute to the inherent meaning of the query are eliminated to diminish noise.

1 3

  135  Page 6 of 61



Empirical Software Engineering          (2025) 30:135 

Sisman and Kak were pioneers in introducing query reformulation to the realm of IR-
based bug localization (Sisman and Kak 2013). They achieved query reformulation by 
extracting terms related to the original query from pseudo relevance feedback and using 
these terms as extensions to the original query. Chaparro et al. enhance the performance of 
low-quality queries by identifying observed behavior from the bug report as the reformu-
lated query (Chaparro et al. 2017). Considering the quality of bug reports, Rahman and Roy 
analyzed both structured and unstructured content, and adopted different query expansion 
or query reduction strategies based on the variations in bug report quality (Rahman and Roy 
2018b). Kim and Lee extended bug reports through attachments, and if the quality of the 
expanded bug reports remained poor, they further reformulated the query by incorporating 
relevance feedback for additional expansion (Kim and Lee 2019a).

Gay et al. combined IR-based concept location with explicit relevance feedback to 
enhance the effectiveness of concept location, thereby reducing the burden on developers 
to reformulate queries (Gay et al. 2009). Haiduc et al. introduce Refoqus, a technique that 
automatically selects the most appropriate reformulation strategy based on the characteris-
tics of the incoming query, allowing for query expansion or reduction (Haiduc et al. 2013). 
Chaparro and Marcus demonstrated that removing certain terms from verbose queries can 
significantly improve the retrieval effectiveness of concept location (Chaparro and Marcus 
2016). Rahman and Roy employed term weighting techniques such as TextRank to select 
the most important terms from the original query and construct a new query to accomplish 
the concept location task (Rahman and Roy 2017).

Unlike the above query reformulation strategies which mainly rely on applying unsuper-
vised graph-based or frequency-based ranking algorithms to weigh terms within bug reports 
(or specific items like stack trace) or pseudo/explicit relevant code files for query expansion 
or reduction. We propose a supervised reformulation strategy driven by golden keywords 
that can locate bugs with high accuracy.

2.3 Genetic Algorithm

Genetic algorithms (GAs) are search algorithms based on the principles of natural selection 
and genetics, introduced by J Holland in the 1970’s and inspired by the biological evolution 
of living beings (Sampson 1976). GAs are stochastic global search optimization methods 
that simulate the replication, crossover, and mutation that occur in natural selection and 
inheritance. Starting from an initial population, through random selection, crossover, and 
mutation operations, a group of individuals that are more suitable for the environment is 
generated. In this way, they continue to reproduce and evolve from generation to generation 
and finally converge to a group of individuals that are most suitable for the environment. 
Thus, GAs are widely used to address complex optimization problems in various research 
fields including Software Engineering (Rahman et al. 2021). Considering that it is verbose 
to use the whole text (i.e., summary + description) of a bug report as a search query for bug 
localization, Mills et al. (2020) conduct an empirical study to explore whether a bug report 
contains enough information for IRBL tasks. With knowing the buggy code files in advance, 
the authors apply GAs to bug reports and check whether they can find a set of keywords with 
which a buggy code file can be located accurately. They obtain a yes answer. Their findings 
inspire our idea of retrieving bug-indicative keywords as guidance for bug report reformula-
tion to improve bug localization.
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3 Methodology

In this work, we propose KBL, a golden keywords-based query reformulation approach for 
bug localization. KBL consists of four modules, which are illustrated in Fig. 2: golden key-
words benchmark construction, keywords classifier construction, query reformulation, and 
evaluation based on bug localization. KBL takes bug reports and source files as input. The 
benchmark construction module is primarily responsible for building a golden keywords 
benchmark using the genetic algorithm and the keywords refinement heuristic rules. The 
keywords classifier construction module focuses on extracting three categories of semantic 
features from bug reports and source code files, as well as training the keywords classifier. 
The query reformulation module builds on the initial keywords extracted by the keyword 
classifier, performing noise removal and shared keyword expansion with historical similar 
bug reports to obtain the final query. The evaluation module aims to assess the effective-
ness of KBL by testing the performance of reformulated queries in bug localization tasks. 
Before delving into the details of each module, we will first define several terms that will 
be referenced throughout the description of our KBL, to facilitate a better understanding of 
its core ideas. The dedicated algorithms used to identify them are presented in Section 3.1. 

1) Preliminary keywords: A set of terms ultimately output by the genetic algorithm that 
uses Effectiveness to measure individual fitness during its evolution process. The evolu-
tion process terminates when a constructed individual, i.e., a certain set of terms selected 
from a bug report, makes one buggy code file ranked 1st in the buggy file recommenda-
tion list for the bug report, or when the maximum iteration (set as 30,000) is reached.

2) Noisy keywords: A subset of preliminary keywords. Each bug report would have a cor-
responding set of preliminary keywords after the genetic process. For any term from the 
preliminary keyword set, if its exclusion would not negatively affect bug localization 
performance, then it will be added to the noisy keyword set for the bug report.

3) Low-quality keywords: A subset of noisy keywords. If the exclusion of a certain noisy 
keyword would not worsen the buggy-code-retrieval performance for any bug report 
that contains it, then it would be taken as a low-quality keyword, characterized as non-
distinctive and uninformative.

4) Golden keywords: The terms retained after removing noisy keywords from a bug 
report’s preliminary keyword set are considered the golden keywords for the report. 
These golden keywords provide valuable guidance for bug localization and will be 
utilized in the subsequent keyword classifier building.

3.1 Golden Keywords Benchmark Construction

Initially, we gather bug reports from six open-source projects (shared by Ye et al. 2014) and 
extract their associated buggy code files from git repositories using bug-fixing commits (Dall-
meier and Zimmermann 2007). The entire text, including both the summary and description of 
bug reports, along with the source code, undergoes preprocessing first (details in Section 4.1). 
Subsequently, the GA takes the preprocessed bug reports and source code as input to generate 
preliminary keywords for the bug reports (details in Section 3.1.1). After that, we use keywords 
refinement heuristic rules to filter out unnecessary terms from the preliminary keywords, ulti-
mately producing cleaned keywords, i.e., the golden keywords (details in Section 3.1.2).
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3.1.1 Preliminary Keywords Selection

We employ a Genetic Algorithm-based approach to identify high-quality keywords from 
each bug report for bug localization. As done by an earlier study (Mills et al. 2020), we use 
a single-objective Genetic Algorithm to generate a high-quality query. The population of 
individuals is maintained within a search space, where each individual which is coded as a 
finite length vector represents a solution for the problem. In the context of our problem, each 

Fig. 2 The overall framework of KBL
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individual is represented as an integer array, where each element corresponds to a token in 
the given bug report. If the value of the array element is 1, the corresponding token is part 
of the query, otherwise, it is 0. The only constraint we set is that the individual must contain 
at least one “1”, that is the formulated query contains at least one term (Mills et al. 2020). 
To evaluate the individual obtained in every generation, we use the effectiveness metric (the 
rank of the first truly buggy element in a recommendation list) as the fitness function for 
our approach. In this way, the GA-based approach will attempt to formulate a query so that 
the retrieval result can rank the target file at the top. Once the initial generation is created, 
the algorithm evolves the generation using selection, crossover, and mutation operators as 
follows. 

1) Selection Operator: The idea behind selection is to select the individuals with better 
fitness scores and allow them to pass their genes to successive generations. In our GA-
based approach, we choose the roulette selection as the selection operator. Roulette 
selection is a stochastic method, where the probability for selection of an individual is 
proportional to its fitness score. That is, the larger the fitness score of an individual is, 
the more likely it is to be selected.

2) Crossover Operator: Crossover means mating between two individuals and repro-
ducing a new individual through choosing crossover sites randomly and exchanging 
these sites. In our problem context, we perform the selection operator to choose two 
fittest queries and generate a new query by randomly switching their keywords. In our 
approach, the one-point crossover strategy is performed. In the one-point crossover, a 
random crossover point is randomly selected, then all genes (i.e., keywords) behind the 
point are exchanged between two parent individuals.

3) Mutation Operator: Mutation operation is to randomly modify the genes of the newly 
generated individual. In particular, we randomly choose a gene and modify it by flip-
ping it, which can be translated to removing/adding a term to the query in our problem 
context. With this operation, the diversity of the population could be increased, and the 
new population will continue to evolve for the next round.

Our GA-based approach performs the operations above iteratively on each generation until 
the generated individual achieves the best fitness score (i.e., the effectiveness of the query 
is 1) or the generation count reaches the preset threshold (i.e., 30,000). After executing the 
approach, each bug report will obtain a corresponding set of keywords, i.e., the prelimi-
nary keywords, as a query, which can achieve near-optimal effectiveness during retrieval 
(detailed evaluations are presented in Section 5.1).

3.1.2 Keywords Refinement

Although the preliminary keywords have shown good performance in retrieving buggy 
source code files (i.e., the median values of effectiveness for each project are all 1), we 
observed that some noise terms still exist within them. To ensure the cleanliness of extracted 
keyword sets, we propose keywords refinement heuristic rules to remove these redundant 
and noise terms as much as possible while ensuring that the retrieval performance of key-
words is not compromised. Algorithm 1 and its callees Algorithms 2 and 4 shows the details 
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of how we obtain a clean keyword set from the preliminary keywords. It mainly consists of 
the following five steps.
Algorithm 1 Keywords refinement.
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1) Construct sub-text set: We treat the text of the summary and the description as the whole 
text T of a given bug report, which contains n sentences (i.e., T = {s1, s2, ..., sn}). To 
construct the sub-text set, we design a text window to select the consecutive sentences 
as the sub-text. The initial size of the text window is 1, and gradually increases until 
the end of the text. Specifically, we start from the first sentence of the text T and keep 
expanding the text window until the last sentence is selected, so that we can obtain n 
sub-texts (i.e., {s1, s1s2, ..., s1s2...sn}). Then, we start from the second sentence, reset 
the size of the text window to 1 and also keep expanding it, to continue extracting sub-
texts (i.e., we would obtain {s2, s2s3, ..., s2s3...sn}). We repeat the above process until 
the last sentence of the text T is extracted separately as a sub-text. In the end, we can get 
n(n+1)

2  sub-texts to form a sub-text set (Line 7, Algorithm 1).

2) Construct sub-keywords set and retrieval result: For each bug report, we have 
the corresponding preliminary keywords achieved by GA. With the preliminary key-
words, we can label every term in the sub-text with key or non-key. That is, if the 
term is one of the preliminary keywords, it will be labeled as key, otherwise it will be 
labeled as non-key. Then, for each sub-text in the sub-text set, we keep only the terms 
with key label to construct the sub-keywords set (i.e., sub-query set). To find out the 
noise terms of the preliminary keywords, we still need to perform a retrieval action 
on each sub-query to obtain the corresponding effectiveness value, which will be used 
as the basis for comparison between sub-keywords in the following steps(Line 9-11, 
Algorithm 1).

3) Compare sub-keywords: According to our strategy of constructing the sub-text set, 
there is an inclusion relationship between two adjacent sub-texts in most cases. Cor-
respondingly, there is an inclusion relationship between two adjacent sub-keywords. 
Therefore, we decide to compare the adjacent sub-keywords of the set in order(Line 
17-32, Algorithm 1) and find out the noise tokens based on the token overlap. Spe-
cifically, for two sub-keywords k1, k2, we first check if their effectiveness value is 
-1 (Line 2-8, Algorithm 2), if so, the corresponding sub-keywords are regarded as 
both noisy keywords and local-low-quality keywords (i.e., terms considered being 
low quality to the given bug report itself, but not necessarily being low quality for 
other bug reports that contain them, hence called local). Otherwise, if there exist 
overlapping keywords of k1 and k2, then it will be divided into three situations to 
handle (Line 15-30, Algorithm 2). The main idea is that the difference between two 
sub-keywords is the reason for the difference between the effectiveness of the two 
sub-keywords. 

a) k1 is a subset of k2: If the performance of k1 is better than k2, then the complement 
of k1 in k2 are treated as noisy keywords (Line 15-18, Algorithm 2).

b) k2 is a subset of k1: Similarly, if the performance of k2 is better than k1, then the 
complement of k2 in k1 is treated as noisy keywords (Line 19-22, Algorithm 2).
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c) k1 intersects k2: If the performance of k1 is better than k2, then the tokens in k2 but 
not in k1 are taken as noisy keywords, and the vice versa (Line 23-30, Algorithm 2).

4) Find out the low-quality keywords: In the golden keyword benchmark construction 
process, we also maintain a global set of low_quality_keywords for each project, 
from its historical bug reports. Here, a global low-quality keyword means its exclu-
sion would not worsen the localization performance for any bug report that contains it. 
This low_quality_keywords set could, to some extent, help filter some noise within 
future bug reports whose golden keywords are not known. Specifically, after step 3), 
each bug report would have its own set of local low-quality keywords, which are then 
combined into low_quality_keywords( Line 40, Algorithm 1). To ensure each key-
word in low_quality_keywords is genuinely low-quality from the global perspec-
tive, we will examine the removal of all keywords found in low_quality_keywords 
from the preliminary keywords of each bug report to determine if their removal reduces 
the bug localization performance (Line 5-22, Algorithm 3). If the performance drops, 
it suggests that some of the removed keywords (i.e., removedk) might not be truly 
low-quality. In such cases, these removed keywords are re-added to the preliminary 
keywords one by one to check if the performance improves; if it does, the re-added 
keyword is removed from both low_quality_keywords and removedk. If not, the 
keyword is removed again from the preliminary keywords, and the process continues 
by re-adding the next removed keyword (Line 9-20, Algorithm 3). After validation, 
the keywords that remain in removedk are those that can be removed from keywords 
of the current bug report without causing a decrease in localization performance. The 
keywords in removedk are also updated in the noisy keywords of the bug report, since 
they may originate from the local low-quality keywords of other bug reports (Line 21, 
Algorithm 3). Upon completing the above verification, the keywords that remain in 
low_quality_keywords are those whose removal from keywords of any bug report 
does not lead to a decrease in bug localization performance, and thus can be considered 
true low-quality keywords.

5) Find out the best keywords: This step aims to ensure the retrieval effectiveness 
of the final keywords will not decrease compared to the preliminary keywords. To 
achieve this, we first compare the effectiveness of the best sub-keywords with the 
preliminary keywords (Line 6, Algorithm 4) and set the better one as the initial best 
keywords bestk . Next, we remove all noisy keywords from bestk  and assess if its 
performance decreases, if not, the filtered keywords are returned as the best key-
words (Line 8-11, Algorithm 4). Otherwise, we re-add the non-truly noisy keywords 
back to the keywords and check whether the performance improves (Line 13-23, 
Algorithm 4). Specifically, we reintroduce keywords from noisy keywords one by 
one, checking the localization performance each time. If re-adding the keyword 
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improves the performance, the keyword will be retained, and the keywords will be 
recorded as tmp_bestk . If there is no improvement, the re-added keyword will be 
removed again and the process continues by re-adding the next removed keyword. 
Finally, tmp_bestk  will be compared with the initial best keywords bestk  and the 
better one will be returned as the best keywords(Line 24-25, Algorithm 4). The 
returned best keywords are considered as the golden keywords for the correspond-
ing bug report. These keywords are expected to locate a bug with good effectiveness 
performance.

Algorithm 2 Compare two groups of keywords.
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Algorithm 3 Find low-quality keywords.

Algorithm 4 Find best keywords.
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After applying the noisy keywords removal, we are expected to get shorter but cleaner 
or more precise queries that achieve the same or even better performance than the initial 
queries consisting of the preliminary keywords obtained by GA (This has been validated in 
our dataset evaluation in Section 5.1).

3.2 Keywords Classifier Construction

This module aims to build a keywords classifier that predicts which tokens of a given 
bug report are keywords suitable for bug localization. We take keyword classification as 
a machine learning task, which includes the general three steps, i.e., feature extraction, 
class labeling and model building. In the feature extraction part, we retrieve three kinds 
of semantic features for each token of a bug report after preprocessing. Then, we use the 

Fig. 3 Differences among Bug Features, Code Features, and Bug&Code Features illustrated at the token 
level using a bug report (bugID: 397842) on JDT project
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golden keywords benchmark to label each token. After that, we apply typical machine learn-
ing algorithms on labeled token instances to build prediction models.

3.2.1 Feature Extraction

We aim to extract the important features for keyword identification from bug reports and 
source code files. We extracted 61 features and divided them into three categories based on 

Feature Name Description
Term_Source Is the term from the title, 

description, or both of 
them?

Term_BR_TF The term frequency of the 
term in the bug report.

Term_Title_TF The term frequency of the 
term appeared in the title.

Term_Span The distance between the 
first and the last occur-
rence of the term in the bug 
report.

Term_Position The position information of 
the term in the bug report.

Part-of-Speech_Tag The part-of-speech tag of 
the term.

Term_Meaning_Variety The number of different 
meanings that the term has.

Is_From_Camel_Case Whether the term is 
obtained by splitting camel 
case compound terms.

Is_From_Stack_Trace Whether the term is 
obtained by splitting camel 
case compound terms in 
the stack trace of the bug 
report.

BR_Term_Co-occurrence The maximum, mean, and 
median co-occurrence fre-
quency of a term with other 
tokens in the bug report.

Term_Dependency_Relationship The syntactic dependency 
relationship of the term in 
the bug report within the 
corresponding syntactic 
dependency tree of the 
sentence it belongs to.

Term_Semantic_Importance The importance of the 
term/phrase in the semantic 
context of the bug report.

Term_Title_Similarity The similarity between the 
term/phrase and the title of 
the bug report.

Similar_BR_Term_Importance The importance of the term 
in the top-N historical bug 
reports similar to the given 
bug report.

Table 1 Bug Features 
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the type of documents involved in their calculation. That is: (1) Bug Features; (2) Code 
Features; (3) Bug&Code Features. Specifically, if the information used to calculate 
a feature solely comes from a bug report, we place the feature into the Bug Features 
category. Similarly, if the calculation of a feature only relies on the content of code files, 
then we place the feature into the Code Features category. For the remaining features 
whose calculation involves both the contents of bug reports and code files, we place them 
into the Bug&Code Features category. Figure 3 provides an example using the term 
“shown” of a bug report (with bugID 397842) from the Eclipse JDT project, to illustrate the 
concrete data sources referred to during the calculation of three feature groups at the token 
level for each bug report.

(1) Bug Features Table 1 illustrates the features we extracted from bug reports alone, 
including the feature name and its brief description. More details of each feature are as 
follows. 

1) Term_Source: The text of the bug report consists of two parts, namely title and descrip-
tion, where the title is the summary of the description. We extract the source informa-
tion of the terms based on where they appear in the bug report: the title, the description, 
or both of them.

2) Term_BR_TF: Term frequency (i.e., tf) represents the frequency of occurrence of the 
term in the document, which can be used to characterize the document. It can be com-
puted as tf = dt

len(d) , where dt is the number of times that term t appears in the docu-
ment d and len(d) is the total number of terms in the document d. To extract this feature 
for each term, we view the whole text of the bug report as the document d.

3) Term_Title_TF: Different from the Token_BR_TF  feature, Token_Title_TF  
treats the title of the bug report as a whole text when calculating the term frequency.

4) Term_Span: Term span is a feature commonly used in keyword extraction tasks, thus we 
also extract this feature for each term in the bug report. The formula span = lastt−firstt

len(d)  
shows how the term span is calculated, where firsti and lasti are the first and the last 
occurrences of the term t in the bug report text respectively. If the term t appears only 
once in the text, the corresponding term span value is 0.

5) Term_Position: Previous research has shown that the candidates’ position in the docu-
ment can be viewed as an effective statistical feature for keyword extraction (Kong 
et al. 2023). For a term t in the bug report, we calculate its position feature as the for-
mula position = post

len(d)  where post is the position of the first occurrence of the term t.

Component Feature Value Component Feature Value
root 1 cc 6
nsubj 2 compound 7
doubj 3 advmod 8
prep 4 det 9
probj 5 amod 10
other 0

Table 2 The mapping of term 
dependency relationships to their 
feature values
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6) Part-of-Speech_Tag: One of the actionable insights in previous study (Rahman et al. 
2021) is that the optimal search keywords are more likely to be noun. Thus, we take 
the part-of-speech (i.e., POS) of the term as one of the features. If a term is a noun, we 
assign the tag as 1, if it is a verb, the corresponding tag is 2, and if it is an adjective, the 
corresponding tag is 3. Except for these three POS, the corresponding tags of other POS 
are all 0.

7) Term_Meaning_Variety: For many terms, they have many different meanings. We count 
the number of different meanings of each term as the value of this feature since it may 
be helpful for us to classify the terms. In particular, we use WordNet3, implemented in 
NLTK, to obtain synsets for the token. Each synset represents a specific meaning asso-
ciated with the token.

8) Is_From_Camel_Case: In code files, a considerable part of the identifiers are camel 
case compound terms. When such compound terms appear in the bug report text, they 
can be regarded as localization hints. Hence, they could also be hints for localization 
keyword extraction. Specifically, if a token belongs to camel case compound terms, the 
value of the Is_From_Camel_Case feature is 1, otherwise, it is 0.

9) Is_From_Stack_Trace: Sometimes, bug reports would include stack trace information 
that also contains localization hints. Hence, we also pay some attention to the terms 
within stack traces. The following regular expression is used to extract the stack trace 
in the bug report. Further, considering that stack traces are generally lengthy and also 
contain much noise (Rahman and Roy 2018b) related to bug localization, we decided 
to assign higher feature values to those tokens split from camel case compound terms 
embedded in stack traces. That is, for these compound terms, we assign the feature 
values of their split tokens to 1, while the values of other tokens in the stack trace and 
tokens outside the stack trace are all 0. 

(.*)?(.+)\.(.+)(\((.+)\.java:\d+\)| \(Unknown Source\)| \(Native Method\))

3 http://www.nltk.org/howto/wordnet.html

Feature Name Description
Term_DF The ratio of code files where the 

term appears.
Is_From_Method_Name Whether the term also occurs in 

the term set obtained by splitting 
method names of code files.

Is_From_Class_Name Whether the term also occurs in 
the term set obtained by splitting 
class names of code files.

Term_Code_Similarity The max, mean, and median value 
of the similarity between the term/
phrase and the source code files.

Term_ClassName_Similarity The max, mean, and median value 
of the similarity between the term/
phrase and the class names of 
code files.

Table 3 Code Features 
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10) BR_Term_Co-occurrence: In natural language processing, co-occurrence measures the 
frequency of two or more terms appearing together in a text corpus. For bug reports, 
we build a co-occurrence matrix to quantify how often a term appears adjacent to other 
terms. We then extract the maximum, average, and median co-occurrence counts for 
each term, we aim to encapsulate the importance of terms within the bug report’s con-
text. This feature is chosen for its ability to highlight the significant associations and 
dependencies between terms, offering valuable insights into the semantic relationships 
within bug reports.

11) Term_Dependency_Relationship: This feature leverages the dependency relationships 
of the term within the sentence in bug reports for keyword classification. Analyzing 
the syntactic connections between each term and other terms provides insights into 

Feature Name Description
Term_TF_IDF The tf-idf value of 

the term in the bug 
report.

Similar_BR_Term_Statistic The value of tf 
(maximum, mean, 
and median), df, and 
tf-idf of the term 
in the buggy files 
corresponding to the 
top-N historical bug 
reports similar to the 
given bug report.

Similar_Code_Term_Statistic The value of tf 
(maximum, mean, 
and median), df, and 
tf-idf of the Term 
in the top-N source 
code files similar to 
the given bug report.

Term_Feedback_Similarity The maximum, 
mean, and me-
dian value of the 
similarity between 
the term/phrase and 
the pseudo-related 
feedback files.

Term_Feedback_ClassName_Similarity The maximum, 
mean, and median 
value of the similar-
ity between the term/
phrase and the class 
name of the pseudo-
related feedback files.

Feedback_Term_Statistic The value of tf 
(maximum, mean, 
and median), df, and 
tf-idf of the Term in 
the top-N code files 
of the pseudo-related 
feedback corre-
sponding to the bug 
reports.

Table 4 Bug&Code Features 
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the grammatical roles, contributing detailed features that enhance the understanding of 
keyword context and semantics within the given sentences. In particular, we leverage 
spaCy4 to identify the dependency relationship for each term, and we map each type of 
dependency relationship to a specific value as a feature value. These mapping relation-
ships are presented in Table 2.

12) Term_Semantic_Importance: We think that if a crucial term is removed from a piece 
of text, it may severely disrupt the text’s meaning. Thus, we assess term importance 
based on the extent to which removing a term affects the semantic of the text. The more 
important terms may be more likely to be keywords. To calculate the feature, we use 
Word2Vec (Church 2017) to embed the entire bug report, employing max pooling for 
a representation vector. Comparing the vectors with and without the term, we calculate 
the Cosine Distance using the formula cos_dis = 1 − A·B

||A||·||B|| . A higher cosine dis-
tance indicates lower semantic similarity, signifying greater damage to the text’s mean-
ing. Besides removing one term at a time, we also consider removing a phrase at a time 
to measure the semantic importance of a term. That is, we consider a five-term phrase 
where the to-be-measured term lies in the central position of the phrase. The similar 
term importance is calculated after removing the whole phrase from the text.

13) Term_Title_Similarity: The title of a bug report is the summary of a bug report. If the 
semantics of a term are similar to the semantics of the title, then the probability of this 
term being a keyword in the entire text is higher. The feature Term_Title_Similarity 
is used to measure the similarity between a term and the title. Specifically, we also 
employ Word2Vec and max pooling to represent the term/phrase and the title as 
two numeric vectors and then calculate their cosine similarity using the formula 
cos_sim = A·B

||A||·||B|| .
14) Similar_BR_Term_Importance: If a term is the keyword of a bug report, then it is very 

likely to also be the keyword in those bug reports that are similar to the bug report. 
Hence, we leverage historical similar bug reports to assist keyword classification for 
a new bug report. For each term of a bug report, we calculate its Similar_BR_Term_
Importance as the number of times the term appears as a golden keyword in those 
historical reports that are similar to the bug report. Given that VSM has been shown to 
outperform word embedding models like Word2Vec in retrieving similar or duplicate 
bug reports (Chen et al. 2024), we opted to use the revised VSM model proposed by 
Zhou et al. (2012) for bug report representation. Cosine similarity is calculated with 
a threshold of 0.6 to filter similar reports, and this approach is consistently applied 
throughout the paper for identifying similar bug reports; for all other feature calculation 
cases that require semantic similarity measurements between, e.g., terms and elements 
like the bug report title, source code files, pseudo-relevant feedback files, and class 
names, the Word2Vec built on experimental bug report corpus is used instead in this 
study.”(2) Code Features Table 3 shows the features whose calculations only rely on 
the contents of source code files. The details are as follows. 

1) Term_DF: The document frequency (df) measures how often a term appears in a collec-
tion of documents. It is the ratio of documents containing a particular term to the total 
number of documents in the collection (i.e, dft = numd

len(c) ). We treat each source code file 

4 https://spacy.io/
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in the project as a document, and all the source code files form the whole collection. 
A higher df of a term indicates a lower likelihood of using the term to differentiate a 
document.

2) Is_From_Method_Name: We first extract all method names for each source code file 
in the project, and match the method names with the terms in the bug report text. If a 
compound term matches a specific method name, then we suppose it is the localization 
hint and assign a feature value of 1 to each simpler term obtained by splitting it. If a 
term cannot match with any method names, then the feature values for its simpler terms 
are 0.

3) Is_From_Class_Name: Similar to the Is_From_Method_Name feature, we extract 
all the class names and match them with the compound terms in the bug report. If a term 
matches any class names, the values for the simpler terms obtained by splitting it are 1, 
otherwise, they are 0.

4) Term_Code_Similarity: If a term/phrase aligns closely with the source code file, then 
it is more likely to be a keyword in the bug report because this term/phrase may more 
accurately describe the connotation of the bug. We thus compute the similarity between 
each term/phrase in the bug report and the source code files. In particular, the cosine 
similarity is employed to compute the maximum, mean and median similarities between 
each term/phrase in the bug report and each source file.

5) Term_ClassName_Similarity: When analyzing source files, we consider the class names 
since they often indicate the primary purpose of the code. Therefore, we also assess the 
similarity between each term/phrase in the bug report and the class name of each source 
file. Similar to the feature code_sim, the maximum, mean, and median similarities are 
calculated.(3) Bug&Code Features Table 4 present the features whose calculations 
rely on the contents of both the bug reports and code files. They are detailed as follows. 

1) Term_TF_IDF: Term frequency-inverse document frequency (tf-idf) is widely used to 
measure how important a term is within a document (the bug report) relative to a corpus 
(the whole codebase). Tf-idf is computed using the formula tf -idf = tf × idf , where 
tf is the term frequency and idf = log len(c)

numd
, the len(c) is the number of code files, and 

the numd is the number of code files containing the term t.

2) Similar_BR_Term_Statistic: Two similar bug reports may share similar buggy code 
files. Hence, for a bug report, if a term appears more frequently in the buggy code files 
corresponding to its similar bug reports, the term is more likely to be a key term. Simi-
lar_BR_Term_Statistic is used to capture the occurrence information of terms in the 
buggy code files corresponding to the similar bug reports for the given bug report. In 
particular, we calculate df and tf-idf for terms in the current bug report within the buggy 
code files of selected historical reports. Features also include max term frequency, aver-
age term frequency, and median term frequency for each term.

3) Similar_Code_Term_Statistic: For a given bug report, its semantics may be similar to 
the code files that it corresponds to, which means that similar code files can also be 
used to assist in looking for keywords. If a term appears more frequently in code files 
similar to a bug report, then the term is more likely to be the keyword of the bug report. 
Specifically, we first calculate the similarity of the bug report and the source code files 
using cosine similarity and keep the top-K (i.e., K=10) code files. The df and tf-idf 
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values, as well as the maximum, mean, and median term frequency for each term are 
then calculated.

4) Term_Feedback_Similarity: The feature Term_Code_Similarity considers the 
similarity between the term and source code files. We also take the similarity between 
the term and pseudo-relevance feedback (Haiduc et al. 2013) into consideration. 
Pseudo-relevance feedback represents the initial top-k code files returned by search-
ing the engine with the original query (since no user feedback for result validation, 
hence called Pseudo-relevance). These code files are considered useful to reformulate a 
query (Rahman and Roy 2017). If a term of a bug report is semantically similar to the 
feedback files, the term is likely to be keywords for the bug report. In this study, we 
query the search engine with the entire bug report text to obtain the top-10 code files as 
Pseudo-relevance feedback files. Then we calculate the maximum, mean, and median 
similarities between each term/phrase in the bug report and the 10 feedback files.

5) Term_Feedback_ClassName_Similarity: In addition to assessing term similarity with 
pseudo-relevance feedback files, we also evaluate term similarity with class names in 
these feedback files. Specifically, we calculate the maximum, mean, and median simi-
larities between each term/phrase in the bug report and the class names of these feed-
back files.

6) Feedback_Term_Statistic: We also suppose the terms frequently appearing in pseudo-
relevance feedback files can be treated as potential keywords in the query text. These 
terms are believed to reflect the topics related to the query. Hence, for each term in a 
bug report, we introduce the feature Feedback_Term_Statistic to capture its occur-
rence information in the pseudo-relevance feedback files. Specifically, for each term, 
we would calculate its df and tf-idf value in the top-10 pseudo-relevance feedback 
files. We also track each term’s maximum, mean and median term frequencies in these 
pseudo-relevance feedback files.

3.2.2 Class Labeling

For a given set of bug reports, we could obtain a list of tokens after preprocessing. As shown 
in the feature extraction part, 61 features would be calculated for these tokens. The next step 
is to label these tokens so that they could work as training instances for following model 
building. In this study, we would label a token as key or non-key. The label of a token from a 
bug report is determined by whether the token appears in the golden keywords set of the bug 
report (which are obtained through the approach described in Section 3.1). In other words, 
a token is labeled as key if it appears in the golden keywords of the bug report it belongs to; 
otherwise, it is labeled as non-key.

3.2.3 Model Building

After the feature extraction and class labeling steps, we could then build our keywords clas-
sifier. The input of training includes all the features of the training tokens and their corre-
sponding labels. The output is the trained token-level classifier which could classify tokens 
of a bug report into key or non-key.

During model building, we would encounter a problem that the dataset is heavily imbal-
anced among the instance numbers of two classes. This is because a bug report generally 
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contain a small fraction of keywords suitable for bug localization, with the majority of terms 
being non-key. For example, among 449,399 training tokens of the Eclipse_Platform_UI 
project, only 91,548 (<21%) are keywords. Without handling the imbalanced class problem, 
the obtained machine learning classifiers would exhibit a bias towards the majority class by 
for example always assigning the majority class labels to testing instances, so as to achieve 
a high accuracy on the whole. To avoid the potential negative effects, we apply the widely 
used random under-sampling (RUS) strategy (Shi et al. 2015; Seiffert et al. 2009) to balance 
the original training dataset. The basic idea of RUS is to randomly remove an instance from 
the majority class repeatedly until the instance numbers of different classes are balanced. In 
our case, we randomly remove non-key terms from the training dataset until the number of 
key terms and non-key terms is equal.

We then build a keywords classifier by applying the LightGBM5 (a gradient boosting 
framework that uses tree based learning algorithms) to the balanced training dataset and 
subsequently apply the obtained classifier to the testing dataset. This process generates 
probability values for all terms in bug reports, where terms with higher probabilities are 
more strongly recommended as golden keywords in a bug report.

3.3 Query Reformulation

This section mainly introduces how to obtain a final query for a new bug report with no 
ground truth about its golden keywords. That is, for a new bug report, the keywords clas-
sifier (built on golden/non-golden keywords datasets of historical bug reports) would be 
applied first to predict which terms are keywords for the bug report. Then, the initial key 
terms predicted by the keywords classifier are further reduced through the noise removal 
process and expanded with shared keywords from historical similar bug reports. The terms 
kept after the above two steps are constructed as the final query for the bug report to do 
buggy code retrieval. Details about noise removal and keyword expansion are as follows.

Noise Removal This step involves two main actions to those predicted-to-be keywords by the 
classifier, including term filtering with low_quality keywords and limiting occurrence fre-
quency. Specifically, considering that the predicted-to-be keywords may also contain noise 
that negatively affects the localization performance, we propose to use the low_quality 
keywords (identified through Algorithm 3 in Section 3.1.2) from historical bug reports (that 
are also used to build the keywords classifier) to filter noise terms. According to the defini-
tion of low_quality keywords in Section 3, the terms appearing in low_quality keywords 
are generally non-distinctive and uninformative, hence, we think the terms that contribute 
nothing positively to the whole historical bug reports in locating bugs are very likely to be 
noise for future bug reports, and also should be removed. That is, the predicted-to-be key-
words that appear in the low_quality keywords of historical bug reports would be filtered 
out in later buggy-code-retrieval for the current bug report whose golden keywords are not 
known.

In addition to filtering out noise terms using low_quality keywords, we also impose 
restrictions on the frequency of keyword repetition. The same term may appear multiple 
times in a bug report, but the varying frequency of its occurrence in a query may impact 

5 https://github.com/microsoft/LightGBM
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the final retrieval outcome. Therefore, we impose restrictions on the frequency of a term 
appearing in the query. That is, if a key term appears more frequently than the specified 
limit (i.e., 4) in the initial key terms, we retain only the specified number of occurrences and 
discard the excess. If a key term appears equal to or less than the specified limit, we maintain 
its original count.

Expand with the Shared Keywords We not only utilize the set of low_quality keywords 
to reduce the initial key terms, but also expand the initial key terms using shared keywords 
from golden keywords of historical similar bug reports. The underlying assumption is that 
if two bug reports are similar, then the source code files they require fixing should also be 
similar. If the given bug report contains terms from buggy files corresponding to histori-
cal similar bug reports, then those terms might be among the keywords for the bug report. 
Therefore, we define a set of shared keywords, which are common terms appearing in a 
given bug report and golden keywords of each historical similar one. Specifically, we mea-
sure the similarity between a given bug report and historical bug reports using the rVSM 
model, retaining only the top-3 historical bug reports with a similarity value greater than 
the threshold (i.e., 0.6) as the historical similar bug report set for the given bug report. If the 
number of historical bug reports with similarity values exceeding the threshold is smaller 
than three, we keep all reports with similarity values greater than the threshold. We compare 
the terms between the given bug report and golden keywords of each historical similar bug 
report, and we retain the terms that overlap between them.

3.4 Evaluation Based on Bug Localization

Given that the core of KBL is to construct queries specifically tailored for bug localization 
tasks, it is a natural choice for us to evaluate KBL by examining how effectively its gener-
ated queries perform in bug localization. We mainly conduct two kinds of evaluations to 
assess KBL’s performance. The first one is to compare KBL with existing reformulation 
techniques, while the second one is to examine whether KBL can enhance the localization 
performance of representative IRBL methods, in terms of locating bugs.

In the first evaluation, we compare KBL with both traditional and state-of-the-art refor-
mulation strategies. That is, We feed the reformulated queries generated by KBL and the 
reformulation baselines into the Lucene6 search engine to retrieve source code files related 
to the bug reports and then compare their localization performance based on key metrics like 

6 https://lucene.apache.org/

Project Domain LOC # of 
Java 
Files

AspectJ Aspect-oriented programming 1,515,849 6,879
Birt Business Intelligence and 

Reporting
3,720,087 9,697

Platform.UI Software Development Infra-
structure for User Interface

4,195,084 6,243

JDT Java Development 1,114,440 10,544
SWT Cross-Platform GUI Library 1,256,595 2,795
Tomcat Web Application Deployment 822,225 2,042

Table 5 Basic Statistics about the 
Domain and Size Scale for Six 
Experimental Projects

 

1 3

Page 25 of 61   135 

https://lucene.apache.org/


Empirical Software Engineering          (2025) 30:135 

Accuracy@K, MAP, and MRR. Lucene is an open-source full-text search engine widely 
utilized for information retrieval tasks. It stands out as one of the most frequently utilized 
search engines in previous IRBL research endeavors (Haiduc et al. 2013; Florez et al. 2021; 
Moreno et al. 2015; Rahman and Roy 2018b). Lucene integrates Boolean search with a vec-
tor space model (VSM)-based search methodology, making it capable of delivering compre-
hensive search results. In our evaluation, we apply the BM25 similarity model in Lucene to 
calculate similarity scores. The resulting potentially buggy source code files are returned in 
a prioritized list, providing developers with suggestions for further examination.

The second evaluation is to explore whether KBL-generated queries can improve the 
performance of representative IRBL techniques. This could help us further understand 
the potential of KBL’s queries in advancing IRBL research. Seven representative IRBL 
techniques are chosen for evaluation, including BugLocator (Zhou et al. 2012), BRTracer 
(Wong et al. 2014), Locus (Wen et al. 2016), BLIA (Youm et al. 2015), BLUiR (Zhou et al. 
2012), Amalgam (Wang and Lo 2014), and D&C (Koyuncu et al. 2019). During the evalu-
ation, we replaced the original bug report content required by these IRBL techniques with 
the reformulated queries of our KBL.

4 Experiment Setup

In this section, we first describe how we construct the datasets for experiments. Then we 
present the performance metrics for KBL evaluation. Last, we introduce four research ques-
tions we aim to answer in this study.

4.1 Experimental Datasets

Before presenting the details of constructing experimental datasets, we first briefly summa-
rize the data flow of our KBL, so that it becomes quite clear what data we need to prepare. 
That is, we first need to collect a bunch of bug reports and match them to their associated 
buggy code files. With the matched pairs of bug reports and buggy code files, we can run our 
GA algorithm and keywords refinement heuristic rules to create the golden keywords bench-
mark. With the bug reports and their corresponding keywords benchmark, we can build a 
keywords classifier. The keywords classifier would identify some keywords candidates from 
a newly arrived bug report. After performing noise removal and shared keywords expansion 
towards those candidates, a final list of keywords is output. These keywords are expected 
to be good hints in locating bugs and would work as the final query to retrieve buggy code 
files for the bug report.

The above dataflow indicates that a dataset of bug reports with buggy code files being 
known is the starting point of our dataset construction. Related to this, we refer to a dataset 
kindly shared by Ye et al. (2014). This dataset contains 22,747 bug reports from six soft-
ware projects and provides associated code files touched to fix these bugs. The six projects 
are from different domains and are of various size scales (as shown in Table 5). We find 
that some bugs only have adding code files by analyzing bug fixing code, which means no 
modifications made to the original code but only adding new code files to fix the bug. In this 
case, we remove these bugs (372 in total) from the dataset since it is inapplicable to running 
the localization tool.
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After obtaining the pairs of bug reports and their associated buggy code files, we need to 
preprocess them to prepare them for the following golden keywords benchmark construc-
tion. We follow the common preprocessing steps adopted by mainstream IRBL research 
(Huo et al. 2019; Kim et al. 2021; Chaparro et al. 2019) to preprocess bug reports and 
code files, including tokenizing, stopword removing, identifier splitting, and stemming, etc. 
Specifically, we retrieve the textual summary and the description items of each fixed bug 
report. Then we tokenize the text into different terms, among which camel case terms and 
dotted terms would be split into simpler terms (e.g, ToolBarManagerRenderer, org.eclipse.
e4-> Tool Bar Manager Renderer, org eclipse e4). After that, non-alphabetic characters are 
removed, and terms are converted into their lowercase. We also use the standard English 
stop word list (Lee et al. 2018) to eliminate the terms that frequently appeared and contrib-
uted little to text understanding (e.g., the, an). At last, we apply the Porter stemming tool7 to 
transform terms into their root case (e.g., downloaded->download). Code files undergo the 
same preprocessing steps as those bug reports.

The bug reports and code files after preprocessing are then fed into our GA and keywords 
refinement algorithms to obtain the golden keywords benchmark. Our GA is built upon the 
jmetal framework8. By following (Mills et al. 2020), our parameter configurations are as 
follows: population size: 500, crossover probability: 0.9, mutation probability: 1/n (n is the 
number of terms of a bug report), and maximum number of generations: 30,000. Consider-
ing that keyword extraction with GA is a one-time process that can be completed offline in 
advance for real applications, and that determining a proper value of maximum chromo-
some size is inherently challenging (Kim and De Weck 2005), we opt not to impose a limit 
on the maximum chromosomes size for the GA in experiments.

During benchmark construction, we find that there exists a small number of bug reports 
(i.e., 1,521) for which no keyword set could help locate a truly buggy file within the returned 
top-10 file list. To ensure the quality of our golden keywords benchmark and the following 
keywords classifier construction, we decide to remove these bug reports when training the 
classifier. For each software project, we chronologically order its bug reports based on their 
reporting time. The first 80% of bug reports are selected as the training set to build the key-
words classifier. The remaining 20% are used to evaluate our KBL. The reasons why we use 
ordered bug reports like the above are: (1) The computation of some term features (used to 
build the keyword classifier) relies on information from historical bug reports. (2) It is a rec-
ognized practice that future data should not appear in the model-building process (i.e., we 
can only build models based on existing historical data to make future predictions) (Ye et al. 

7 http://www.nltk.org/api/nltk.stem.html
8 http://jmetal.sourceforge.net

Project #All Bug 
Reports

#Used Bug 
Reports

#Train-
ing Set

#Test-
ing Set

AspectJ 593 576 406 116
Birt 4,178 4,063 2,665 813
Platform.UI 6,495 6,401 4,846 1,281
JDT 6,274 6,235 4,687 1,247
SWT 4,151 4,106 3,020 822
Tomcat 1,056 994 746 205
All 22,747 22,375 16,370 4,484

Table 6 Experimental Dataset 
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2014; Lam et al. 2017). For each bug report from the testing dataset, the keywords classifier 
would predict the terms being golden keywords for bug localization. These terms would 
undergo noise removal and keywords expansion. The final obtained term set would work 
as the final query to retrieve buggy code files. The retrieval results are then used to evaluate 
the performance of our KBL. Table 6 shows the basic statistics of our experimental datasets.

4.2 Performance Metrics

We use the following four metrics to evaluate the bug localization performance of the que-
ries generated by our proposed KBL. 

1) Accuracy@K (Acc@K): It measures the percentage of bug reports for which at least 
one buggy code file is correctly recommended to developers in the top-K ranked results.

2) Effectiveness (E): E represents the rank of the first truly buggy file in the recommenda-
tion list for a bug report. It provides a proxy approximation of how much effort devel-
opers would make to find a buggy element. The better the reformulated query is, the 
smaller the corresponding effectiveness value should be.

3) Mean Average Precision (MAP): MAP is commonly used to measure an IR technol-
ogy based on the mean of average precision (AP) of each query in the query set. A 
higher MAP value generally indicates a better retrieval performance. It can be calcu-
lated as follows: 

 
MAP =

∑
q∈Q AP (q)

|Q|
 (1)

  where Q is the query set (i.e., bug reports in this study), and AP represents the average 
precision over all buggy files in the result list for a query. The way to compute AP is as 
follows: 

 
AP =

n∑
k=1

Pk · buggyk

N
 (2)

  where k is the rank, n is the recommendation list size, Pk is the precision at the given 
rank k (i.e., Pk = Number of relevant documents in top k

k ). N is the number of truly buggy 
files within the result list, and buggyk is a binary value showing whether the kth code 
file is truly buggy or not.

4) Mean Reciprocal Rank (MRR): The reciprocal rank of a query is the multiplicative 
inverse of the rank of the first correctly identified buggy file. MRR is the reciprocal rank 
averaged over all queries and it can be calculated as follows: 

 
MRR = 1

|Q|
∑
q∈Q

1
rankq

 (3)

  where rankq  is the rank of the first correctly returned buggy file in the result list. Simi-
lar to MAP, the bigger the MRR value is, the better a technique is.
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4.3 Research Questions

We plan to answer the following questions to understand the performance of our KBL.

RQ1. How Good is our Constructed Keywords Benchmark? A keywords benchmark particu-
larly designed for bug localization plays a fundamental role in our supervised query refor-
mulation approach KBL. Hence, it is quite necessary to check whether the benchmark we 
constructed is a good data basis for building our keywords classifier, and further research in 
reformulation techniques designed for bug localization.

RQ2. What Impact Do Keywords Classifier Configurations Have on KBL Performance? The 
keywords classifier built on the golden keywords benchmark holds a key position in our 
KBL by predicting possible golden keywords for future bug reports. As a supervised classi-
fier, different configurations (such as the choice of classifiers, the data balancing strategies, 
and the semantic features) may have different impacts on the performance of the keywords 
classifier, thereby influencing the final bug localization performance of the reformulated 
queries by KBL. Answering this RQ could help us better understand our KBL and improve 
it in the future.

RQ3. How Does KBL Perform Compared to Traditional and Advanced Reformulation 
Approaches in Bug Localization? This RQ aims to assess how KBL, as a reformulation tech-
nique, compares with other traditional and advanced reformulation strategies in terms of 
bug localization effectiveness. We plan to answer two sub-questions that focus on compar-
ing KBL with both typical and state-of-the-art reformulation strategies separately.

RQ3.1. Does KBL Outperform Typical Reformulation Strategies? To the best of our knowl-
edge, a series of IRBL techniques directly use the title or the description, or both as the 
proxy of the whole bug report during bug localization. Hence, knowing the performance of 
our KBL over these strategies is the first step to validate the effectiveness of KBL for bug 
localization.

RQ3.2. Does KBL Perform Better Than The State-of-the-Art Reformulation Approaches? In 
typical reformulation strategies (RQ3.1), the content of the title or description would gener-
ally not be reformulated. The state-of-the-art reformulation approaches proposed to refor-
mulate the title/description themselves by removing embedded noise or complementing 
additional information. Whether our KBL could perform better than these state-of-the-art 

Table 7 The Effectiveness and Average Numbers of Preliminary Keywords and Golden Keywords
Preliminary Keywords Golden Keywords

 Project Median Eff. Avg. Eff. Avg. Num. Median Eff. Avg. Eff. Avg. Num.
AspectJ 1.0 85.1 65.31 1.0 84.1 31.74
Tomcat 1.0 35.8 31.63 1.0 35.8 13.55
SWT 1.0 23.3 39.02 1.0 6.6 17.71
Birt 1.0 206.1 37.53 1.0 43.0 18.67
Platform.UI 1.0 28.2 43.62 1.0 7.3 20.88
JDT 1.0 28.5 49.01 1.0 6.1 25.00
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reformulation strategies would provide more convincing evidence on the effectiveness of 
our KBL in bug localization.

RQ4.Could Queries Generated by KBL Further Enhance the Localization Performance of Rep-
resentative IRBL Techniques? This RQ aims to explore whether KBL-generated queries can 
improve the performance of established IRBL techniques in locating bugs. Answering this 
question will help identify how KBL’s query reformulation can complement and enhance 
existing methods in bug localization, offering valuable insights for the development of 
future localization technologies.

5 Experimental Results

5.1 RQ1. How Good is our Constructed Keywords Benchmark?

This RQ aims to check the quality of our keywords benchmark constructed by applying 
genetic algorithms and keywords refinement heuristic rules. Our evaluation would include 
two parts. In the first part, we would check the overall effectiveness of our benchmark used 
for bug localization. The effectiveness can help us understand its ability to find the first 
truly buggy code file. Meanwhile, how many keywords on average would be retrieved so 
that buggy code files could be correctly located is another aspect we are concerned about. 
After all, it would be more preferred if we could use fewer but good enough terms to well 
locate bugs.

Table 7 shows the median/average effectiveness and average number of retrieved key-
words in the benchmark. To understand the effect of our GA and keyword refinement algo-
rithms, as shown in the table, we constructed two keyword datasets, i.e., the “Preliminary 
Keywords” obtained by only running genetic algorithms (GA) to bug reports and code files, 
and “Golden Keywords” obtained by further running our keywords refinement algorithm 
after the GA. From Table 7, we can find that for both two keyword datasets, the median 
effectiveness values for bug reports across six projects are 1 (the first truly buggy code file is 
ranked at the first rank), which means the keywords obtained by GA and our GA+keywords 
refinement can correctly locate the bugs. The results from only applying GA validate the 
findings of Mills et al. (2020) that most bug reports contain sufficient information for bug 
localization (they also use GA for their exploration). Related to the average effectiveness 
and average number of keywords, we can find that our proposed keyword refinement heuris-
tic rules could substantially improve the results of the GA. For instance, in SWT, the average 

Table 8 The Performance of the Golden Keywords Benchmark in Bug Localization
Project # BR Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ 576 71.00% 84.20% 87.84% 90.79% 50.65% 0.77
Birt 4,063 59.98% 74.57% 79.96% 84.29% 48.43% 0.67
Platform.UI 6,401 78.72% 89.93% 93.12% 95.50% 67.65% 0.84
JDT 6,235 78.86% 91.45% 94.14% 96.37% 65.56% 0.84
SWT 4,106 71.28% 86.87% 91.32% 95.05% 64.79% 0.78
Tomcat 994 75.25% 90.44% 93.46% 96.17% 71.13% 0.82
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effectiveness value for the preliminary keyword set is 23.3, while the average effectiveness 
value for the golden keyword set is 6.6, representing a 72% improvement in average local-
ization performance. Across all six projects, the average length of the golden keyword set 
decreases by an average of 52% compared to the preliminary keyword set.

Both GA and GA+keyword refinement approaches could retrieve keywords that
perform well in finding the first truly buggy code files. Our proposed keyword refinement
algorithm could substantially reduce (with a relative decrease of 52%) the number of
needed keywords in locating bugs and improve the overall effectiveness of keywords
(with a relative improvement of 51%).

In the second part, we would check the localization performance by using our bench-
mark (obtained by using GA+keyword refinement algorithms) to locate bugs in terms of 
Accuracy@K, MAP, and MRR. Table 8 shows the locating results of using our constructed 
benchmark from six projects. From the table, we can easily find that in six projects, the 
Acc@20 metric exceeds 90% for five of them. This implies that using the golden key-
words benchmark, more than 90% of bug reports in these five projects can locate buggy 
files within the top-20 retrieval results. Moreover, within these five projects, four of them 
achieve Acc@10 values exceeding 90%, and even two projects can find over 90% buggy 
files corresponding to bug reports within the top-5 retrieval results. This indicates that the 
bug localization performance of the golden keywords benchmark we constructed is excel-
lent. The MAP and MRR values are also found to be high as shown in the table. In other 
words, these retrieved keywords are truly golden keywords that are of high quality and are 
good localization hints. This also lays a good data basis for us to train a golden keywords 
classifier for bug reports to guide bug localization. 

Our constructed keywords benchmark performs well in terms of Accuracy@K, MAP,
MRR. On average across all six projects, our constructed keywords benchmark achieves
72.51% on Acc@1, 86.24% on Acc@5, 89.97% on Acc@10, 93.02% on Acc@20,
61.36% on MAP, and 0.79 on MRR. This indicates that the keywords are indeed good
localization hints and can be perceived as golden keywords to guide the query reformu-
lation for bug locating.

Table 9 Bug Localization Performance of KBL with Different Classifier Settings
Model Acc@1 Acc@5 Acc@10 Acc@20
LightGBM (1000)22.30% (1974)44.02% (2426)54.10% (2885)64.33%
RF (956)21.40% (1936)43.17% (2404)53.61% (2869)63.98%
NB (879)19.60% (1877)41.85% (2355)52.52% (2812)61.71%
LG (737)16.43% (1636)36.48% (2073)46.23% (2500)55.75%
DT (588)13.11% (1409)31.42% (1802)40.18% (2234)49.84%
SVM (947)21.11% (1923)42.88% (2367)52.78% (2826)63.02%
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5.2 RQ2. What Impact Do Keywords Classifier Configurations Have on KBL 
Performance?

The classifier training phase of KBL includes several key configuration items. To gain 
deeper insights into how these configurations affect KBL’s performance, we plan to focus 
on exploring the following settings: (1) apply various machine learning (ML) techniques to 
build the keyword classifier and identify the most appropriate classification algorithm; (2) 
conducting feature importance analysis on the features used for classifier training to identify 
the optimal feature combination; (3) experimenting with different data balancing algorithms 
and sampling ratios to balance the training data and identifying the most suitable sampling 
algorithm and ratio. By analyzing these training-phase configurations, we can better under-
stand and optimize KBL’s classifier.

Keywords Classifiers by Applying Different ML Algorithms To determine the most suitable 
ML algorithm for KBL, we compare the performance of several widely-used classifiers, 
including Random Forest (RF), Naive Bayes (NB), Logistic Regression (LG), Decision 
Tree (DT), Support Vector Machine (SVM), and Light Gradient Boosting Machine (Light-
GBM), trained on all 61 features. Table 9 shows the comparison results among six classi-
fiers. As shown in Table 9, LightGBM consistently outperforms other classifiers across all 
Acc@K metrics, demonstrating its superiority in bug localization tasks. For instance, in 
the Acc@1 metric, KBL correctly localizes 1,000 bugs when utilizing LightGBM, which 
corresponds to an accuracy of 22.30%. In contrast, when using RF, NB, LG, DT, and SVM 
classifiers, KBL can only localize 956, 879, 737, 588, and 947 bugs, respectively. In other 
words, when using RF, NB, LG, DT, and SVM instead of LightGBM, the Acc@1 metric 
shows a relative performance drop of 4%, 12%, 26%, 41%, and 5%, respectively. Note 
that, during the above classifier comparison, we employ grid search to fine-tune the hyper-
parameters for each classifier like (Koyuncu et al. 2019). The best hyper-parameter con-
figuration for LightGBM is as follows: (1) learning_rate: 0.03; (2) feature_fraction: 0.7; (3) 
num_leaves: 104; (4) max_depth: 10; (5) min_child_weight: 0.001; (6) min_child_samples: 
21; (7) reg_lambda: 0.001. 

Using LightGBM as the classifier for KBL yields the best localization performance,
when compared to other five typical classifiers, including RF, NB, LG, DT, and SVM.
In subsequent experiments, LightGBM is used as the default classifier for KBL .

Project F1 score Precision Recall
AspectJ 0.45 0.31 0.71
Birt 0.42 0.38 0.47
Eclipse_Platform_UI 0.43 0.34 0.58
JDT 0.45 0.34 0.65
SWT 0.46 0.35 0.67
Tomcat 0.42 0.35 0.53

Table 10 The Classification Per-
formance of Keywords Classifier 
across Six Projects
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Fig. 4 The impact of 61 features on keyword classifiers in terms of F1-score difference between keyword 
classifiers with and without each feature in turn
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Feature Importance Analysis To determine the optimal feature combination for KBL, we 
first conduct a feature importance analysis experiment to identify whether any of the 61 fea-
tures negatively impact KBL’s classification performance. Our feature importance analysis 
experiment involves constructing new classifiers by iteratively removing individual features 
to assess their impact on classification performance. Specifically, we compare the F1 score 
of the new classifier (with one feature removed) to that of the classifier trained with all 
features (as shown in Table 10, the detail confusion matrices are presented in the Appendix 
A.1). The difference in F1 scores (i.e., F1all − F1new) serves as the importance score for 
the removed feature. A positive score indicates that classification performance decreased 
after removing the feature, suggesting that the removed feature positively contributes to the 
performance of the classifier. Conversely, a negative score suggests that the feature does not 
contribute positively to the performance of the classifier.

Figure 4 presents the final importance scores of the 61 proposed features, evaluated across 
six projects (the F1 score difference in the figure is the average difference across six proj-
ects). As shown, five features (namely Term Feedback ClassName Max Similarity, Similar 
BR Term DF Statistic, Term Phrase ClassName Max Similarity, Term Code Max Similarity, 
and BR Term Mean Co-occurrence) have negative importance scores, indicating that they 

Table 11 The Bug Localization Performance of KBL after Removing Certain Features that Negatively Im-
pact the Keyword Classification Performance
Deleted Feature Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BR Term Mean Co-occurrence 22.05% 44.42% 53.50% 62.35% 26.45% 0.31
Term Code Max Similarity 21.69% 44.04% 52.09% 61.32% 25.79% 0.31
Term Phrase ClassName Max Similarity 22.19% 44.55% 53.75% 63.44% 26.05% 0.31
Similar BR Term DF Statistic 21.98% 44.09% 53.05% 62.75% 26.27% 0.31
Term Feedback ClassName Max Similarity 22.23% 43.93% 53.99% 62.48% 26.24% 0.31
All Five Features 21.20% 43.01% 52.02% 62.10% 25.81% 0.31
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Table 12 Bug Localization Performance of KBL with Keyword Classifier Built on Different Feature 
Categories
Variant Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
without bug features 20.33% 41.94% 52.34% 62.48% 25.47% 0.31
without code features 19.38% 40.18% 50.31% 60.92% 24.40% 0.30
without bug&code features 20.56% 42.48% 52.78% 62.28% 25.63% 0.31
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Project # Non-Keywords # Keywords
AspectJ 55,531 11,805
Birt 217,747 53,262
Eclipse_Platform_UI 357,851 91,548
JDT 455,163 120,364
SWT 263,422 55,193
Tomcat 44,674 11,034

Table 13 The Number of 
Keywords and Non-Keywords 
for Each Project in the Original 
Training Set

 

1 3

  135  Page 34 of 61



Empirical Software Engineering          (2025) 30:135 

negatively impact the performance of the classifier. To further verify the impact of these 
five features on KBL’s bug localization performance, we remove these features individually 
and collectively to observe any changes in localization performance. Table 11 compares 
KBL’s localization performance with all 61 features against its performance after removing 
specific features. From the table, we observe that KBL achieves the best bug localization 
performance when all 61 features are retained. Removing any of these five features, or all 
of them together, leads to a decline in the localization performance of KBL. For instance, 
when we individually remove the features BR Term Mean Co-occurrence, Term Code Max 
Similarity, Term Phrase ClassName Max Similarity, Similar BR Term DF Statistic, and 
Term Feedback ClassName Max Similarity, the resulting models show relative declines 
of 3%, 5%, 1%, 2%, and 3%, respectively, in the Acc@20 metric compared to KBL using 
all 61 features. When we remove all five features together, the model also show a relative 
decline of 3% in Acc@20 metric compared to KBL with all 61 features.

Additionally, we further examined the influence of three feature categories (i.e., bug 
features, code features, bug&code features) on KBL through ablation experiments. Our 
ablation experiments perform by removing one category of features at a time to build the 
keyword classifier. Table 12 shows the localization performance of KBL with keyword 
classifiers built on different feature categories. We can observe that the performance of all 
three KBL variants is inferior to the KBL using all features. Specifically, compared to vari-
ant without bug features, KBL relatively improves by 10%, 6%, and 6% in acc@1, MAP, 
and MRR, respectively. In comparison to the variant without code features, KBL relatively 
improves by 15%, 11%, and 10% in these three metrics, respectively. Compared to variant 
without bug&code features, KBL improves by 8%, 5%, and 6% in these three metrics. We 
can observe that the removal of code features has a greater impact of KBL compared to the 
other two variants, while the contribution of bug features and bug&code features to KBL 
are relatively close. 

KBL achieves the best localization performance when using all 61 features, with the
code features category contributing more to the localization performance than the other
two feature categories.

Table 14 Performance Comparison of KBL with Different Data Balancing Techniques
Balancing Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
RUS 22.30% 44.02% 54.10% 64.33% 27.03% 0.33
NCR 19.06% 41.05% 50.75% 60.32% 24.69% 0.30
Tomek Links 16.30% 36.41% 45.98% 55.90% 21.64% 0.26
ROS 17.48% 38.67% 48.81% 58.11% 22.96% 0.28

Table 15 Performance Comparison of KBL when RUS with Different Sampling ratios
Ratio Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
1:1 22.30% 44.02% 54.10% 64.33% 27.03% 0.33
2:1 20.85% 41.07% 51.00% 59.00% 24.06% 0.29
3:1 15.20% 34.99% 45.00% 52.00% 20.74% 0.25
4:1 13.02% 30.03% 41.00% 48.02% 19.32% 0.22
No Balancing 13.00% 30.01% 41.99% 48.03% 19.62% 0.22
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Data Balancing Using Various Balancing Techniques and Sampling Ratios Balancing the 
training data is an essential step in the classifier training phase to ensure fair and effective 
learning. Table 13 shows the distribution of tokens labeled as key and non-key in the training 
sets of six projects, revealing a noticeable imbalance in the number of tokens between the 
two categories. This imbalance would introduce biases in the classifier, affecting its ability 
to learn effectively from the training data and ultimately impacting KBL’s performance in 
the bug localization task. To mitigate this issue and improve the localization performance 
of KBL, we first explore the impact of various data balancing techniques on the localization 
effectiveness of KBL. We experiment with four commonly used data balancing techniques, 
namely Random Under Sampling (RUS), Tomek Links (Tomek 1976), Neighborhood 
Cleaning Rule (NCR) (Laurikkala 2001), and Random Over Sampling (ROS), to balance 
our original training data. RUS involves randomly reducing the number of instances in the 
majority class to balance the dataset. Tomek Links (Tomek 1976) is a method that removes 
overlapping instances between classes, refining the dataset by reducing the presence of 
noisy data in the majority class. NCR (Laurikkala 2001) cleans the dataset by evaluating 
the neighborhood of each instance to identify and remove noisy instances from the majority 

Table 16 Performance of KBL in Bug Localization
Project Queries Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ Title 11.20% 21.55% 31.89% 38.79% 14.04% 0.17

Description 12.93% 24.14% 29.31% 37.06% 15.81% 0.19
Title + Description 18.10% 30.17% 38.79% 50.00% 21.44% 0.26
KBL 25.86% 37.06% 49.13% 56.89% 27.04% 0.32

Birt Title 8.61% 19.92% 27.55% 36.77% 11.21% 0.15
Description 5.16% 10.94% 14.14% 19.06% 6.27% 0.08
Title + Description 10.33% 21.52% 29.39% 39.36% 12.70% 0.17
KBL 12.30% 25.58% 33.70% 42.92% 14.66% 0.19

Platform.UI Title 17.25% 39.73% 49.64% 58.31% 23.50% 0.28
Description 10.38% 24.12% 29.97% 37.78% 14.29% 0.17
Title + Description 19.12% 40.74% 49.57% 60.18% 24.55% 0.29
KBL 20.92% 42.85% 53.00% 62.99% 26.56% 0.32

JDT Title 20.93% 46.27% 58.05% 70.40% 27.42% 0.33
Description 12.99% 28.62% 35.20% 40.89% 16.84% 0.20
Title + Description 23.57% 48.83% 59.58% 69.60% 29.20% 0.35
KBL 25.66% 52.12% 63.03% 73.45% 31.21% 0.38

SWT Title 17.63% 37.83% 47.93% 61.67% 24.16% 0.28
Description 12.16% 26.64% 33.81% 42.33% 16.48% 0.19
Title + Description 22.62% 43.18% 54.25% 66.05% 28.35% 0.33
KBL 24.69% 48.41% 59.24% 71.16% 30.09% 0.36

Tomcat Title 26.82% 52.19% 64.39% 76.09% 33.75% 0.39
Description 11.70% 25.36% 28.78% 32.68% 15.22% 0.17
Title + Description 27.80% 57.07% 68.29% 77.07% 35.73% 0.41
KBL 38.53% 61.46% 69.75% 79.02% 41.34% 0.48

All Title 17.06% 37.71% 47.88% 58.69% 22.71% 0.27
Description 10.61% 23.50% 29.19% 35.83% 14.03% 0.17
Title + Description 19.78% 40.43% 50.13% 60.61% 24.82% 0.30
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33
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class. ROS involves randomly duplicating examples from the minority class to balance the 
dataset. Table 14 presents a comparative analysis of these techniques.

As seen in the table, RUS consistently yields better results than the other balancing meth-
ods in all evaluation metrics. For example, using RUS relatively improves the localization 
performance in the Acc@1 metric by 17% and 36% compared to NCR and Tomek Links, 
respectively, and by 27% compared to ROS. These findings highlight RUS’s superior ability 
to migate the effects of imbalance and contribute better localization performance. Based on 
these results, we choose RUS as the data balancing method for KBL to enhance the perfor-
mance in the bug localization task.
In addition to examining the impact of different data balancing techniques on the localiza-
tion performance of KBL, we further explore how varying the sampling ratio in RUS affects 
the performance of KBL. As shown in Table 13, the ratio of non-keywords to keywords in 

Project Query Pair Improved Worsened Preserved
AspectJ KBL vs. Title 60.34% 24.14% 15.52%

KBL vs. 
Description

63.79% 18.97% 17.24%

KBL vs. Title + 
Description

47.41% 25.86% 26.72%

Birt KBL vs. Title 56.46% 19.31% 24.23%
KBL vs. 
Description

82.16% 11.81% 6.03%

KBL vs. Title + 
Description

53.14% 20.17% 26.69%

Platform.
UI

KBL vs. Title 45.04% 29.82% 25.14%

KBL vs. 
Description

70.73% 16.08% 13.19%

KBL vs. Title + 
Description

42.00% 22.79% 35.21%

JDT KBL vs. Title 41.30% 26.62% 32.08%
KBL vs. 
Description

69.04% 15.48% 15.48%

KBL vs. Title + 
Description

36.89% 23.66% 39.45%

SWT KBL vs. Title 50.85% 21.90% 27.25%
KBL vs. 
Description

71.17% 13.50% 15.33%

KBL vs. Title + 
Description

41.48% 22.26% 36.25%

Tomcat KBL vs. Title 45.37% 14.63% 40.00%
KBL vs. 
Description

75.61% 11.71% 12.68%

KBL vs. Title + 
Description

40.00% 16.10% 43.90%

All KBL vs. Title 49.89% 22.74% 27.37%
KBL vs. 
Description

72.08% 14.59% 13.33%

KBL vs. Title + 
Description

43.49% 21.81% 34.70%

Table 17 Query Improvement by 
KBL over Typical Strategies
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the six projects is less than 5. Therefore, we evaluate four sampling ratios, that is 4:1, 3:1, 
2:1, and 1:1. Here N:1 indicates that the number of tokens labeled as non-key is N times the 
number of tokens labeled as key after sampling. Table 15 shows the performance of KBL 
when using RUS with different ratios. For comparison, the performance without balancing 
the original data is also provided. Note that, the 4:1 ratio only applies to AspectJ, Birt, and 
SWT, as only these projects present a > 4 ratio of the non-keywords and keywords before 
applying RUS. As shown in the table, KBL achieves the best performance with an RUS 
sampling ratio of 1:1, with all results being statistically significant at a p-value of 0.05. We 
also observe that as the sampling ratio increases, the performance of KBL tends to decline. 
For example, compared to using sampling ratios of 2:1, 3:1, 4:1, or no balancing, using the 
1:1 sampling ratio improves KBL’s localization performance in the Acc@1 metric by 7%, 
47%, 71%, and 72%, respectively. This indicates that the bias introduced by the disparity 
between non-keywords and keywords becomes more pronounced as the difference grows, 
negatively affecting KBL’s performance. 

KBL achieves better performance with RUS data balancing compared to the other
three balancing techniques. When the number of non-keywords is balanced to match the
number of keywords in training (with a 1:1 ratio), KBL outperforms all other sampling
ratios.

5.3 RQ3 How does KBL Perform Compared to Traditional And Advanced 
Reformulation Approaches in Bug Localization?

5.3.1 RQ3.1 Does KBL Outperform the Typical Reformulation Strategies?

It is common for existing studies to directly use the title, the description, or both as the 
content proxy of a whole bug report to do bug localization. As a reformulation technique 
that mainly retrieves localization-hinting keywords from the textual content of the title and 
description, it is essential for us to check whether KBL could outperform these typical 
reformulation strategies. For each bug report, we retrieve its title and description items and 
then feed the title, the description, and both items to the Lucene search engine to retrieve 
buggy code files from the codebase separately. Then, we compare the retrieved results of 
these three typical strategies and that of KBL regarding Accuracy@K, MAP, and MRR 
respectively.

Table 16 shows the comparison results. From the table, we can observe that our reformu-
lated queries are more effective than the typical queries (i.e., only using the title, the descrip-
tion, and both). In the six projects, KBL outperforms the Title, the Description, and the Title 
+ Description. For example, for AspectJ, the buggy files of 25.86% bugs are returned as 
the top-1, while using typical strategies, only 11.20%, 12.93% and 18.10% bugs have their 
relevant files returned as top-1, respectively. Moreover, KBL achieves bug localization in 
64.33% of the entire dataset consisting of 4,484 bug reports, with a mean average precision 
of 27.03% and a mean reciprocal rank of 0.33. These values are 6%, 9%, and 10% higher, 
respectively, than the performance of the Title + Description strategy.

For each project, we delve deeper into KBL’s performance relative to the strategies in 
terms of the ranks of the first truly buggy code files of all bug reports. We compare our 
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method with three strategies— Title, Description and Title + Description. If the rank of the 
first truly buggy file returned by KBL is higher than that of the typical strategy, we label it 
query improvement; conversely, if the rank is lower, we call it query worsening; otherwise, 
if their ranks are the same, we say it query preserving. The improvement, worsening, and 
preserving ratios for six projects are presented in Table 17. It can be observed that, com-
pared to the Description strategy, there is an improvement in over 70% of queries in four 
projects. Across all six projects, there is an improvement in the effectiveness of over 60% 
queries, and the average proportion of queries showing improvement across all six projects 
reaches 72%. Compared with the Title strategy, we can see that, the proportion of the query 
improvements exceeds 50% in three projects, and the query improvement surpasses 40% 
in all six project systems. Moreover, in four projects, the improvement ratio surpasses the 
worsening ratios by a factor of more than two, and the average improvement ratio across all 
six systems is more than twice the worsening ratio. Although the improvement ratio in our 
method compared to the Title + Description strategy is not as high as that compared to the 
Title strategy and Description strategy, there is still one project with an improvement ratio 

Table 18 Comparison with Query Reformulation-Based Bug Localization Techniques
Project Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ TextRank 10.34% 27.58% 35.34% 49.13% 16.68% 0.19

BLIZZARD 24.13% 43.96% 51.72% 56.89% 28.18% 0.33
KBL 25.86% 37.06% 49.13% 56.89% 27.04% 0.32

Birt TextRank 8.11% 19.31% 26.07% 34.56% 10.57% 0.14
BLIZZARD 6.76% 15.86% 19.68% 26.07% 9.00% 0.11
KBL 12.30% 25.58% 33.70% 42.92% 14.66% 0.19

Platform.UI TextRank 13.73% 33.17% 43.09% 52.92% 19.66% 0.24
BLIZZARD 10.30% 19.67% 24.98% 29.97% 12.67% 0.15
KBL 20.92% 42.85% 53.00% 62.99% 26.56% 0.32

JDT TextRank 17.96% 41.94% 52.28% 62.30% 23.87% 0.29
BLIZZARD 14.59% 31.99% 40.49% 48.27% 18.35% 0.23
KBL 25.66% 52.12% 63.03% 73.45% 31.21% 0.38

SWT TextRank 17.51% 37.10% 49.02% 61.92% 23.68% 0.28
BLIZZARD 21.41% 47.68% 58.39% 72.50% 29.11% 0.34
KBL 24.69% 48.41% 59.24% 71.16% 30.09% 0.36

Tomcat TextRank 29.26% 55.12% 67.31% 76.58% 35.34% 0.41
BLIZZARD 36.58% 65.36% 74.14% 82.43% 42.14% 0.49
KBL 38.53% 61.46% 69.75% 79.02% 41.34% 0.48

All TextRank 15.20% 34.67% 44.55% 54.83% 20.56% 0.25
BLIZZARD 14.45% 30.26% 37.39% 45.24% 18.35% 0.22
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Table 19 Basic Statistics on the Number of Terms for KBL Queries (Q: quartile)
Project Min Length Max Length Q1 Q2 Q3 Average Length
AspectJ 1 112 9 25 44 30
Birt 2 222 6 10 23 20
Platform_UI 2 412 9 16 32 38
JDT 2 384 10 20 36.5 38
SWT 1 222 7 17 32 25
Tomcat 2 122 5 8 16 15

1 3

Page 39 of 61   135 



Empirical Software Engineering          (2025) 30:135 

exceeding 50%, four projects with improvement ratios exceeding 40%, and all six projects 
with improvement ratios exceeding 35%. The improvements validates that our KBL is very 
effective compared to typical reformulation strategies.

KBL achieved much better performance than typical query reformulation strategies
in terms of Accuracy@K, MAP, MRR, and effectiveness scores, with relative improve-
ments of 3%-110% on Acc@1, 9%-93% on MAP, 10%-94% on MRR, and improving
the effectiveness of 43% to 72% queries across six projects.

5.3.2 RQ3.2 Does KBL Perform Better Than The State-of-the-Art Reformulation 
Approaches?

To further validate the effectiveness of KBL, we compare KBL with two strong query 
reformulation techniques targeting feature/concept/bug location. We first compare with 
TextRank, a text-ranking algorithm that not only serves as a standalone query reformula-
tion technique, but also acts as a crucial component in many other query reformulation 
frameworks (Rahman and Roy 2017; Kim and Lee 2019a; Rahman and Roy 2018b). It is 
a graph-based ranking model and it scores candidate keywords using word co-occurrences 
determined by a sliding window. After we obtain the content of the title and description of 
each bug report, we build a graph where a vertice is a term, an edge between two vertices 
is added if two terms co-occur within a sliding window (we set window size=2, a recom-
mended value by Mihalcea and Tarau 2004). Once the text graph is constructed, we apply 
TextRank to estimate the importance of each term, and select the top 10 (according to pre-
vious practices (Rahman and Roy 2017; Kim and Lee 2019b)) terms as the search terms.

Besides TextRank, we also use BLIZZARD, which is a state-of-the-art query reformu-
lation-based bug localization approach (with the replication package available) (Rahman 
and Roy 2018b), to evaluate the usability of our work. BLIZZARD considers the quality 
of bug reports by categorizing them into three types based on the content they contain 
and applying different reformulation strategies to them so as to enhance bug localization 

Table 20 The Bug Localization Performance of KBL and TextRank when Both Select Top-10 Terms for 
Each Query
Project Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ TextRank 10.34% 27.58% 35.34% 49.13% 16.68% 0.19

KBL10 15.51% 28.44% 37.06% 45.68% 17.79% 0.22
Birt TextRank 8.11% 19.31% 26.07% 34.56% 10.57% 0.14

KBL10 8.73% 19.55% 27.67% 37.39% 11.24% 0.15
Platform.UI TextRank 13.73% 33.17% 43.09% 52.92% 19.66% 0.24

KBL10 16.39% 33.09% 43.09% 53.47% 21.02% 0.25
JDT TextRank 17.96% 41.94% 52.28% 62.30% 23.87% 0.29

KBL10 18.12% 39.29% 49.31% 58.78% 22.67% 0.28
SWT TextRank 17.51% 37.10% 49.02% 61.92% 23.68% 0.28

KBL10 18.00% 43.06% 52.06% 62.04% 26.35% 0.31
Tomcat TextRank 29.26% 55.12% 67.31% 76.58% 35.34% 0.41

KBL10 32.19% 57.56% 66.82% 74.63% 36.89% 0.43
All TextRank 15.20% 34.67% 44.55% 54.83% 20.56% 0.25

KBL10 16.48% 35.14% 44.60% 54.46% 21.32% 0.26
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performance. While newer techniques have emerged since BLIZZARD’s introduction in 
2018, most (e.g., Kim et al. 2021, Chaparro et al. 2019) tend to focus on specific enhance-
ments rather than presenting fundamentally novel breakthroughs like BLIZZARD. Conse-
quently, BLIZZARD remains representative among query reformulation techniques and is 
frequently used as a baseline in evaluating new IRBL methods (Shao and Yu 2023; Li et al. 
2021), underscoring its continued relevance in the field.

Table 18 shows the comparative results of our method with TextRank and BLIZZARD. In 
the table, we can find that TextRank performed less effectively than BLIZZARD on AspectJ, 
SWT, and Tomcat, but better in the remaining three projects. By checking the overall perfor-
mance (i.e., putting bug reports of six projects together as a dataset) shown in the last row 
of Table 18, TextRank is found to achieve better performance than BLIZZARD. Further, 
we can find that KBL performs better than TextRank in all six projects. KBL provides rela-
tively 47% higher Acc@1, 27% higher Acc@5, 21% higher Acc@10, 17% higher Acc@20, 
31% higher MAP and 32% higher MRR than TextRank for all six projects. As for BLIZ-
ZARD, we can see that KBL greatly outperforms BLIZZARD in four out of six projects 
except for AspectJ and Tomcat regarding all performance metrics. For instance, compared 
to Birt, KBL shows relative improvements of 82%, 61%, 71%, and 65% in Acc@1, Acc@5, 
Acc@10, and Acc@20 metrics, respectively. Additionally, KBL achieves a 63% relative 
improvement in MAP and a 73% relative improvement in MRR. For AspectJ and Tomcat, 
KBL and BLIZZARD have similar performance in MAP and MRR. KBL only outperforms 
BLIZZARD relatively by 7% and 5% in Acc@1. In Acc@5,10,15 and 20, BLIZZARD is 
much better than KBL. In other words, our keywords-based reformulation approach is able 
to obtain better localization performance than the state-of-the-art reformulation strategies.

Table 19 further presents the statistics on the length of reformulated queries generated 
by KBL across different projects. As shown, the median length (i.e., the Q2 column) across 
the six projects is 25, 10, 16, 20, 17, and 8, respectively, while the average query length is 
30, 20, 38, 38, 25, and 15. These results indicate that KBL dynamically adjusts the length 
of the reformulated queries based on the specific characteristics of each bug report. Simi-
larly, BLIZZARD reformulates queries based on the type of bug report, resulting in variable 

Table 21 The Bug Localization Performance of KBL and TextRank when Aligning the Term Count of Tex-
tRank with KBL for Each Query
Project Technique Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ T extRankalign 15.51% 28.44% 38.79% 50.00% 20.70% 0.23

KBL 25.86% 37.06% 49.13% 56.89% 27.04% 0.32
Birt T extRankalign 8.85% 18.94% 26.44% 34.93% 11.08% 0.15

KBL 12.30% 25.58% 33.70% 42.92% 14.66% 0.19
Platform.UI T extRankalign 18.03% 37.47% 49.33% 59.17% 23.40% 0.28

KBL 20.92% 42.85% 53.00% 62.99% 26.56% 0.32
JDT T extRankalign 22.05% 47.63% 57.65% 68.32% 27.64% 0.34

KBL 25.66% 52.12% 63.03% 73.45% 31.21% 0.38
SWT T extRankalign 18.73% 38.32% 50.60% 62.16% 24.84% 0.29

KBL 24.69% 48.41% 59.24% 71.16% 30.09% 0.36
Tomcat T extRankalign 26.82% 55.12% 67.80% 74.63% 33.88% 0.40

KBL 38.53% 61.46% 69.75% 79.02% 41.34% 0.48
All T extRankalign 17.95% 37.73% 48.28% 58.34% 23.01% 0.30

KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

1 3

Page 41 of 61   135 



Empirical Software Engineering          (2025) 30:135 

query lengths rather than a fixed length for all bug reports. In contrast, as a default set-
ting, TextRank consistently selects the top-10 highest-scoring terms for each reformulation, 
resulting in a fixed query length each time.

Given the differences in query length between KBL and TextRank, we conduct addi-
tional experiments to provide a fair comparison with TextRank. Specifically, we limit KBL 
to the top-10 terms by probability score for query reformulation (denoted as KBL10) and 
compare it with TextRank. Additionally, we adjust TextRank to output the same number of 
terms as KBL for each query, referred to as TextRankalign. For example, if KBL outputs 
N terms for a bug report, TextRank is adjusted to output its top-N terms for the same bug 
report. Tables 20 and 21 present the comparison results between TextRank and KBL10, and 
between TextRankalign and KBL, respectively.

As shown in Table 20, KBL10 outperforms TextRank across most evaluation metrics 
in five out of six projects, with the exception of the JDT project, where TextRank achieves 
better results. This suggests KBL10 generally provides more effective query for bug local-
ization compared to TextRank in the majority of cases. For example, in the SWT project, 
KBL10 achieves relative improvements over TextRank of 3%, 16%, and 6% in Acc@1, 
Acc@5, and Acc@10, respectively. KBL10 also shows relative improvements of 11% and 
10% in MAP and MRR. Combining the results across all six projects, we observe that 
KBL10 outperforms TextRank in all metrics except for Acc@20, indicating that KBL10 is 
still slightly superior to TextRank overall.

As seen in Table 21, KBL consistently outperforms TextRankalign across all evalua-
tion metrics, showing a substantial performance advantage. Specifically, across all six proj-
ects, KBL shows notable relative improvements over TextRankalign, with increases of 
24%, 16%, 12%, 10%, 17%, and 10% in the Acc@1, Acc@5, Acc@10, Acc@20, MAP, and 
MRR, respectively. These improvements highlight KBL’s stronger capability to capture and 
utilize key information of bug reports, resulting in more accurate localization outcomes.

KBL is found to exhibit relatively, 47% higher MAP and 50% higher MRR than
BLIZZARD, 32% higher MAP and 32% MRR than TextRank in six projects; KBL
outperforms TextRank in all six projects and performs better than BLIZZARD in most
cases at different accuracy@K. When the query length of KBL is limited to 10 terms
like default TextRank, its performance slightly surpasses that of TextRank. However,
when the query length of TextRank is adjusted to match that of KBL, the performance
of KBL significantly exceeds that of TextRank.

5.4 RQ4. Could Queries Generated by KBL Further Enhance the Localization 
Performance of Representative IRBL Techniques?

To thoroughly assess the effectiveness of our KBL, we further combine KBL into seven 
advanced IRBL techniques, including BugLocator (Zhou et al. 2012), BRTracer (Wong 
et al. 2014), Locus (Wen et al. 2016), BLIA (Youm et al. 2015), BLUiR (Saha et al. 2013), 
Amalgam (Wang and Lo 2014), and D&C (Koyuncu et al. 2019). BugLocator (Zhou et al. 
2012) utilizes a revised Vector Space Model (rVSM) and leverages information from his-
torically similar bug reports to do bug localization. BRTracer (Wong et al. 2014) extends 
BugLocator by incorporating stack trace from bug reports and source file segmentation to 
improve the retrieval of buggy code files. Locus (Wen et al. 2016) uses textual and supple-
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mentary information from historical code changes to identify buggy code files in response 
to the given bug report. BLIA (Youm et al. 2015) integrates various types of information, 
such as stack traces, method names, similarity between bug reports and method names, and 
comments from bug reports, to enhance bug localization performance. BLUiR (Saha et al. 
2013) divides bug reports into summary and description, and extracts structured information 
like class names, variable names, and comments from source code files to improve match-
ing accuracy. Amalgam (Wang and Lo 2014) integrates BugLocator and BLUiR, along with 
version history analysis, to improve bug localization. Proposed by Koyuncu et al. (2019), 
D&C employs a gradient boosting supervised learning approach for bug localization, focus-
ing on feature types that perform well across specific bug report collections. They train 
multiple classifiers based on the strengths of various localization tools, assigning optimal 
weights to similarity measurements between bug reports and source code files.

In this study, BugLocator, BRTracer, Locus, BLIA, BLUiR, and Amalgam are imple-
mented by directly using the replication packages provided by Bench4BL (Lee et al. 2018), 
while D&C is implemented using the open-source code9 provided by its authors. We com-
bine KBL with the seven IRBL techniques by replacing the original bug report text used as 
input in these IRBL techniques with the query reformulated by KBL. The specific integra-
tion methods for each IRBL technique are described in detail as follows.

BugLocatorKBL To integrate BugLocator with KBL, we replace the original bug report text 
with the keywords generated by KBL, using this reformulated text as input for BugLoca-
tor. For previously fixed bug reports, we replace their text with the golden keywords we 
constructed.

9 https://github.com/TruX-DTF/d-and-c

Table 22 Performance Comparison of BugLocator and BugLocatorKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BugLocator 20.11% 40.09% 50.04% 59.34% 24.13% 0.29
BugLocatorKBL 23.21% 46.11% 55.19% 65.56% 28.51% 0.34

Table 23 Performance Comparison of BRTracer and BRTracerKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BRTracer 23.19% 45.33% 54.90% 65.41% 28.67% 0.34
BRTracerKBL 25.91% 48.66% 57.87% 69.13% 32.49% 0.38

Table 24 Performance Comparison of Locus and LocusKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
Locus 24.50% 46.03% 56.08% 66.36% 30.35% 0.35
LocusKBL 26.36% 48.97% 58.47% 69.24% 33.33% 0.39

Table 25 Performance Comparison of BLIA and BLIAKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BLIA 21.63% 42.12% 51.13% 60.95% 26.01% 0.30
BLIAKBL 24.75% 48.84% 56.91% 67.17% 30.51% 0.36
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BRTracerKBL Similar to the approach for integrating BugLocator with KBL, when combin-
ing BRTracer with KBL, we replace the bug report text used in BRTracer with the keywords 
generated by KBL. Specifically, we use these keywords in place of the original bug report 
text for calculating rVSMseg and SimiScore. Likewise, in line with the approach used in 
BugLocatorKBL, we replace historical bug report texts with golden keywords.

LocusKBL In Locus, bug reports are primarily used to construct natural language (NL) que-
ries and code entity (CE) queries. When integrating KBL with Locus, we replace the origi-
nal bug report text with the keywords output by KBL, using them as the NL query for the 
bug report.

BLIAKBL In BLIA, the bug report text is divided into two parts, the summary and the descrip-
tion, both used to calculate StructVsmScore. When integrating KBL with BLIA, we first 
determine whether the keywords identified by KBL originate from the summary or the 
description. We then replace the original summary with the keywords found in the sum-
mary, and replace the original description with the keywords found in the description. If no 
keywords appear in either the summary or the description, we retain the original text for that 
part of the bug report to ensure completeness. Additionally, for calculating the SimiBug-
Score, we also replace the text of historical bug reports with golden keywords, as done in 
BugLocatorKBL.

BLUiRKBL To integrate BLUiR with KBL, we replace the summary and the description of 
the bug report separately with keywords output by KBL, following the approach used in 
BLIAKBL.

AmalgamKBL We primarily integrate KBL into the Similar Report Component and Struc-
ture Component of Amalgam. Specifically, in the Similar Report Component, we replace 
the text of the new bug report with keywords output by KBL, and substitute historical bug 
report texts with golden keywords. In the Structure Component, similar to the BLIAKBL, we 
replace the keywords separately in the bug report’s summary and description.

Table 26 Performance Comparison of BLUiR and BLUiRKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
BLUiR 15.90% 30.99% 41.61% 52.02% 19.15% 0.24
BLUiRKBL 21.61% 40.99% 51.24% 62.77% 25.40% 0.30

Table 27 Performance Comparison of Amalgam and AmalgamKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
Amalgam 15.96% 31.53% 42.79% 53.23% 19.48% 0.24
AmalgamKBL 21.21% 41.07% 50.82% 61.77% 25.66% 0.30

Table 28 Performance Comparison of D&C and D&CKBL
Model Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
D&C 26.31% 49.57% 57.87% 68.42% 32.05% 0.38
D&CKBL 29.17% 52.38% 61.30% 71.72% 35.54% 0.41
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D&CKBL When integrating D&C with KBL, we apply KBL-generated keywords for three 
feature extraction, keywords from the summary are used for the summary feature, keywords 
from the description are used for the description feature, and all keywords are used for 
the rawBugReport feature. Additionally, we replace the original six IR techniques, namely 
BugLocator, BRTracer, Locus, BLIA, BLUiR, and Amalgam, with their KBL-integrated 
versions, that is BugLocatorKBL, BRTracerKBL, LocusKBL, BLIAKBL, BLUiRKBL, and 
AmalgamKBL.

Tables 22, 23, 24, 25, 26, 27, and 28 show the comparison results between the original seven 
IRBL techniques and their KBL-integrated variants. As shown in Table 22, BugLocator 
combined with KBL demonstrates notable performance improvements across all metrics 
compared to the original BugLocator. Specifically, in the Acc@1, Acc@5, Acc@10, and 
Acc@20 metrics, BugLocatorKBL achieves relative improvements of 15%, 15%, 10%, and 
10%, respectively. Furthermore, BugLocatorKBL also shows notable gains in ranking-based 
metrics, with relative improvements of 18% in MAP and 17% in MRR over the original 
BugLocator. These results indicate that the integration of KBL enhances BugLocator’s 
effectiveness in accurately localizing buggy code files.

Table 23 presents the performance comparison between BRTracer and BRTracerKBL in 
the bug localization task. It can be observed that BRTracer, when combined with KBL, 
achieves relative improvements of 12%, 7%, 5%, 6%, 13%, and 12% over the original 
BRTracer in the Acc@1, Acc@5, Acc@10, Acc@20, MAP and MRR metrics, respectively. 
These improvements suggest that the integration of KBL helps BRTracer perform better in 
identifying and locating buggy code, resulting in a more effective bug localization process.

Table 24 presents a comparison of the bug localization performance between Locus and 
LocusKBL. The results indicate that LocusKBL outperforms the original Locus in all evalu-
ation metrics. Specifically, LocusKBL demonstrates relative improvements of 8%, 6%, 4%, 
4%, 10%, and 11% in the Acc@1, Acc@5, Acc@10, Acc@20, MAP, and MRR metrics, 
respectivel. These improvements reflect the positive impact of integrating KBL on Locus’s 
effectiveness in bug localization.

In Table 25, we present the bug localization performance comparison between BLIA and 
BLIAKBL. It is evident that integrating KBL enhances the overall performance of BLIA. 
Specifically, BLIAKBL demonstrates relative improvements of 14%, 16%, 11%, 10%, 16%, 
and 20% in the Acc@1, Acc@5, Acc@10, Acc@20, MAP, and MRR metrics, respectively, 
compared to the original BLIA. These improvements indicate that KBL contributes to more 
effective bug localization, making BLIA better equipped to accurately identify relevant 
buggy code files.

Table 26 presents a comparison of the localization performance between BLUiRKBL and 
BLUiR, showing that BLUiRKBL significantly enhances bug localization effectiveness. The 
integration of KBL allows BLUiR to more accurately identify buggy code files related to 
bug reports. Notably, BLUiRKBL achieves relative improvements of 36%, 32%, 24%, 21%, 
33%, and 25% in Acc@1, Acc@5, Acc@10, Acc@20, MAP, and MRR, respectively, com-
pared to BLUiR.

Table 27 illustrates the localization performance between Amalgam and AmalgamKBL, 
demonstrating that AmalgamKBL consistently outperforms the original Amalgam across all 
evaluation metrics. This highlights the positive impact of integrating KBL into Amalgam, sig-
nificantly enhancing its bug localization effectiveness. In particular, AmalgamKBL achieves 
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relative improvements of 25%, 30%, 19%, and 16% for the Acc@1, Acc@5, Acc@10, and 
Acc@20 metrics, respectively. Moreover, AmalgamKBL shows relative improvements of 
32% and 25% in the MAP and MRR metrics compared to Amalgam, further confirming the 
benefits of incorporating KBL for more accurate localization of buggy code files.

The above experimental results indicate that KBL enhances the performance of six 
widely-used IRBL techniques to varying degrees. To further explore whether KBL can 
similarly benefit the more advanced IRBL technique (i.e., D&C, an ensemble approach of 
six IRBL techniques), we compare the bug localization performance of D&C and D&CKBL. 
The comparison results are presented in Table 28. The results show that D&C combined 
with KBL consistently outperforms D&C alone, confirming that KBL can also effectively 
improve the performance of D&C. Specifically, D&CKBL achieves relative improvements of 
11%, 6%, 6%, and 5% in Acc@1, Acc@5, Acc@10, and Acc@20, respectively, compared 
to D&C. Additionally, D&CKBL shows relative improvements of 11% in MAP and 8% in 
MRR, further emphasizing the positive impact of integrating KBL for more accurate bug 
localization.

Overall, these findings demonstrate that the proposed KBL effectively enhances existing 
IRBL techniques, resulting in recognizable improvements in the bug localization task. This 
further highlights the potential of KBL as a valuable reformulation strategy for broader 
applications in bug localization, showcasing its capacity to contribute to performance gains 
across various IRBL techniques.

Using the reformulated queries generated by KBL, the performance of seven rep-
resentative IRBL techniques shows recognizable improvements, including relative
increases of 8%-36% in Acc@1, 6%-32% in Acc@5, 4%-24% in Acc@10, 4%-21%
in Acc@20, 10%-33% in MAP, and 8%-25% in MRR. These results further confirm
the effectiveness of KBL and highlight its considerable potential for improving bug
localization.

5.5 Statistical Significance Tests Over Observed Performance Differences

In the above four RQs, we observed different kinds of performance differences between 
certain two approaches. This section mainly aims to do statistical significance tests to check 
whether these observed differences have statistical significance or not. With such tests, the 
effectiveness and potential of our KBL in bug localization could be better understood. Spe-
cifically, Wilcoxon Rank Sum test (Mann and Whitney 1947) and Cliff’s Delta effectsize 
(Macbeth et al. 2011) are used to perform this task. Wilcoxon Rank Sum test is a nonpara-
metric statistical test commonly used to compare two groups of non-parametric interval 
or not normally distributed data. It can tell us whether statistical significance exists or not. 
With the help of Cliff’s delta effect size, we can measure how large the difference might be 
quantitatively.

For those experiments involving comparing KBL (or its components) with baselines in 
the above four RQs (i.e., Sections 5.1 to 5.4), we perform corresponding statistical tests 
using the Wilcoxon Rank Sum test and Cliff’s Delta effect size. Due to the relatively large 
number of such need-to-be-conducted tests, which take up considerable space, we choose 
to place the testing results on GitHub10 instead of including them in the main text. The 

10 https://github.com/Caiby0927/KBL
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obtained testing results are all or, in most cases, have statistical significance at the p-value 
of 0.05, with different degrees of effect sizes. This means, the major conclusions arrived in 
Sections 5.1 to 5.4 still holds based on our testing results.

6 Discussion

The experimental results in Section 5 have validated the effectiveness of our KBL in bug 
localization tasks. In this section, we mainly discuss some potential design improvements 
of our KBL, the practical considerations in real-world adoption of KBL, and the potential 
threats to our study.

6.1 Potential Design Improvements of KBL

Addressing Potential Local Optima in Keyword Selection In our study, we utilized a genetic 
algorithm (GA) for keyword selection. Despite the constructed keyword benchmark having 
proved to be rather effective in locating bugs (in RQ1), they may still not be the best bench-
mark but the suboptimal one, as theoretically speaking, the GA may yield results that are 
local optima rather than global optima. It would be valuable to explore possible strategies 
that help GA to generate global optimal results as much as possible. For example, future 
research could try to combine GA with other optimization techniques such as simulated 
annealing, to improve its ability to explore the solution space more thoroughly. Or, design 
suitable multiple objective criteria to make GA generate more diverse initial populations 
and explore the use of dynamic mutation rate to maintain and even enhance population 
diversity throughout the GA evolution process.

Improving Noisy Terms Identification In our current approach, we utilize heuristic rules 
to filter out noisy terms by comparing the retrieval performance of two consecutive sub-
sentences. While this method effectively identifies terms likely to be noise based on perfor-
mance discrepancies, it is possible that some retained keywords may still be noisy. Towards 
this, future research could try to incorporate other useful measures like leveraging clustering 
algorithms to group similar terms and use them to help identify outliers that could be flagged 
as noise. Or, integrating suitable machine learning models that require minimal labeled data 
to help predict the likelihood of noise for each term based on learned patterns. Or, not rely-
ing solely on the performance discrepancies, but comprehensively taking several metrics 
like contextual semantic alignment within bug reports or the domain specificity of a term in 
the field of bug localization.

Enhancing Keyword Classification Performance Keyword classifier is a key component of 
our KBL. The reformulation process is based on the keywords predicted by the keyword 
classifier. According to the performance table of our keyword classifier, we can see that 
the current performance is still quite modest, far from satisfactory. Despite we have made 
various attempts to improve classification accuracy, including testing different sampling 
methods, training the classifier with the fine-tuned large language model, integrating fea-
tures extracted from the large language model with existing 61 features, performing feature 
importance analysis to remove low-importance features, further refining the golden key-
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words by removing more general terms, and experimenting with more complex neural net-
work models for classification (the results are available in our repository11), the results have 
not yet surpassed the reported performance of KBL in this paper. From another perspective, 
the findings of our RQ3 and RQ4 indicated that, even based on the not-so-satisfactory key-
word classification performance, our KBL still outperformed strong query reformulation 
baselines and enhanced typical IRBL techniques based on our reformulated queries. We 
believe that it is quite rewardable for more researchers to join us to address the keyword 
prediction problem based on the already-constructed golden keyword benchmark by us.

6.2 Practical Considerations in Real-World Adoption of KBL

Adaption to Different Types of Bug Reports and Localization Scenarios Currently, KBL is 
not specifically designed to particular types of bug reports or specific localization scenarios. 
In other words, it serves as a general-purpose reformulation technique for bug reports from 
open-source projects without distinguishing between report types. Theoretically, KBL can 
be easily adapted to specific bug reports in both open-source and closed-source projects, as 
long as the artifacts required—source/bug-fixing code and the textual problem description 
of bug reports—are available in real-world software projects.

However, we acknowledge that the features we designed for KBL’s keyword classifier 
may not be optimal for all types of bug reports. For example, security bug reports may con-
tain unique characteristics, such as vulnerability patterns, which could be highly effective 
in identifying keywords for bug localization. In such cases, adapting the keyword classifi-
cation model to incorporate specialized features tailored to specific bug report types could 
potentially enhance its performance. Additionally, several strategies could also be referred 
to, to enhance KBL’s ability to process diverse bug reports without requiring specialized 
adaptations to different contexts. One is to leverage feature learning through machine learn-
ing or deep learning models, allowing the keywords classification component of KBL to 
automatically learn patterns from bug reports across various domains. Another one is to 
replace the keywords classification component with pre-trained large language models and 
introduce domain-specific fine-tuning for adaptation.

Data Availability and Time Cost of GA One potential challenge for real-world implementa-
tion of KBL, particularly in industry settings, is the requirement of a well-linked historical 
bug report dataset with corresponding buggy code. This is crucial because KBL relies on 
linked historical bug reports (knowing the buggy code files associated with each bug report) 
to generate the golden keywords and to further train the keyword classifier. For projects 
without their own or sufficient historical bug report data, a feasible solution is to train KBL 
using bug reports from other projects, such as open-source datasets, and then apply it to 
classify keywords in the current bug reports. While this cross-project application is a practi-
cal strategy, its effectiveness remains to be further verified, as the transferability of keyword 
classification across different projects may vary.

Another aspect that needs to be noticed is that the process of obtaining these golden 
keywords involves the use of a genetic algorithm, which does have some computational 
cost. However, since keyword extraction using GA needs only to be done once for a project 

11 https://github.com/Caiby0927/KBL
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and could be conducted offline (i.e., the construction of the golden keyword benchmark can 
be done in advance during idle periods), we think the time costly problem would not be so 
significant in practical adoption of KBL. Once the keywords are constructed, KBL operates 
efficiently in real-time (as shown by Fig. 5 in Appendix A.2 Section).

6.3 Threats to Validity

Internal Validity There are mainly three threats to the internal validity of our study. One is 
that, we directly use a dataset shared by Ye et al. (2014) to construct our golden keywords 
benchmark. This dataset provides a number of bug reports and their associated buggy code 
files, and has been commonly used in existing IRBL studies (Lam et al. 2017; Shao and Yu 
2023; Xiao et al. 2023, 2017). Still, we have to admit that any potential bias in linking bug 
reports with their buggy code may negatively affect our study.

One more threat arises from the fact that some bug reports in the dataset may actually 
be feature requests or other non-bug issues (Kochhar et al. 2014). In this study, we did not 
apply a filtering process to identify and exclude these reports, aside from eliminating bug 
reports that only involved code file additions for closing them (actually, the lack of ground 
truth of the shared datasets also makes it challenging for us to construct a pure dataset that 
contains only true positive bug reports). We acknowledge that this remains a potential limi-
tation and should be considered when interpreting our findings.

Another threat lies in the comparison with the reformulation techniques, as we failed 
to find a replication package of the TextRank, we re-implement this technique based on its 
description with recommended settings and parameters (Mihalcea and Tarau 2004), any 
mistakes in implementation would threaten our arrived conclusions. To avoid this, we con-
duct several rounds of code reviews to make sure our re-implementations are correct.

External Validity The threats to external validity mainly lie in generalizing our findings to a 
broader range of software projects and specific types of bug reports. As with most empiri-
cal studies, our experiments were conducted on a limited number of datasets. Although we 
selected six widely studied open-source projects of different domains, scales, and complexi-
ties, these may not fully capture the diversity of real-world software systems, particularly in 
commercial or large-scale environments. Extending future evaluations to more diverse and 
representative projects remains a valuable effort to further strengthen the generalization of 
our KBL in real-world scenarios.

Besides, the features designed for KBL’s keyword classifier may not generalize effec-
tively to different types of bug reports. For instance,security bug reports may exhibit unique 
characteristics, like vulnerability patterns or exploit scenarios, that may not be fully cap-
tured by a generalized feature set. It is appreciated that future research explores adapting 
the keyword classification model with specialized features tailored to the target type of bug 
reports.
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Labels Key Non-Key
Key 109,087 35,539
Non-Key 13,715 18,013

Table 31 Confusion Matrix for 
the Eclipse_Platform_UI Project
 

Labels Key Non-Key
Key 36,141 9,083
Non-Key 6,322 5,393

Table 30 Confusion Matrix for 
the Birt Project
 

Labels Key Non-Key
Key 6,604 3,615
Non-Key 848 1,731

Table 29 Confusion Matrix for 
the AspectJ Project
 

7 Conclusion

To mitigate the weakness of existing reformulation strategies, we propose to develop KBL, a 
golden keywords-guided query reformulation technique for bug localization. First, we com-
bine genetic algorithms and summarize keywords refinement rules to construct a benchmark 
that contains keywords which perform quite well in locating bugs. Then, we use this bench-
mark to build a keywords classifier to identify keyword candidates from a bug report that 
may be good hints for bug localization. These candidates would go through noise removal 
and shared keywords expansion, the output of which would work as the final query used to 
retrieve buggy code for the bug report. The experimental results demonstrate that our con-
structed keywords benchmark is of high quality. The KBL is found to outperform existing 
reformulation strategies with substantial improvements and could advance representative 
IRBL techniques with noticeable enhancements to their performance. In the future, we plan 
to explore additional bug-related semantic features to enhance both the classification perfor-
mance of the keywords classifier and the retrieval effectiveness of the reformulated queries. 
Furthermore, we also plan to apply our technique to more complex scenarios, such as bug 
auto-repair, to explore its applicability in broader contexts.

A   Appendix

A.1   Confusion Matrices of Keywords Classifier Over Six Projects

Tables 29, 30, 31, 32, 33, and 34, present the detailed confusion matrices of keywords clas-
sifier for the six experimental projects.

Labels Key Non-Key
Key 71,993 26,892
Non-Key 7,631 13,759

Table 32 Confusion Matrix for 
the JDT Project
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A.2   Time Cost of Extracting Features for Bug Reports

To better understand the practical use of our KBL, we also investigate the time required to 
extract term features from bug reports (required by keywords classifier). The experiment 
is conducted on a Windows-based machine equipped with an Intel i5-12600KF CPU and 
64GB of RAM. Following the sampling strategy in Krejcie (1970), which ensures repre-
sentativeness and reliability with a 95% confidence level and a 5% margin of error, we ran-
domly sampled 384 bug reports from six projects (with an average length of 124.3 terms). 
We record the total feature extraction time for each report as well as the number of terms 
in each report. Our results show that the average time per term is approximately 0.4964 
seconds. For a bug report containing around 100 terms, feature extraction would thus take 
roughly 49.64 seconds. In our experimental setup, the 61 features are calculated sequen-
tially for each report, with each feature computation starting only after the previous one 
is completed. However, using distributed or parallel computing could significantly reduce 
the time cost, greatly enhancing the practical usability of our KBL. To better illustrate time 
distribution, we’ve included box plots depicting the time cost for these 384 bug reports in 
Fig. 5.

Labels Key Non-Key
Key 8,665 2,650
Non-Key 1,240 1,349

Table 34 Confusion Matrix for 
the Tomcat Project
 

Labels Key Non-Key
Key 33,211 13,582
Non-Key 3,650 7,245

Table 33 Confusion Matrix for 
the SWT Project
 

Fig. 5 The time cost distribution of feature extraction for sampled 384 bug reports
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A.3   Performance Comparison Between Doing RUS Ten Times and Once

During keyword classifier building, we set a fixed sampling seed of 1,391 for RUS and 
applied RUS only once. To mitigate any potential biases introduced by RUS, we also repeat 
the RUS process 10 times without setting a sampling seed and average the experimental 
results. Table 35 shows their performance differences in terms of F1 score of keywords clas-
sifier and the final obtained Acc@K, MAP and MRR bug locating performance. From the 
table, we only find a slight performance difference. This indicates that the findings of our 
study are not significantly impacted by whether RUS is performed once or multiple times.

A.4   Query Reformulation With or Without Keyword Expansion or Low-Quality Term 
Removal

The query reformulation module of KBL default applies keyword expansion and low-qual-
ity term removal to an initial query output by the keywords classifier. To understand the 
impact of these two reformulation strategies, we built two variants of the query reformula-
tion module. They are as follows: (1) without expansion: in this variant, shared keywords 
are not used for expanding and augmenting a query. (2) without noise removal: in this vari-
ant, the low-quality term is not removed, and only performs the shared keywords expansion. 
After we obtain the corresponding queries for the above reformulation variants, we use them 
to retrieve buggy code files and do further results comparison. Table 36 shows the results. 
It reveals that the model KBL with both steps (i.e., applying shared keywords expansion 
and noise removal) demonstrates superior performance in bug localization compared to the 
two variants (i.e., without expansion, and without noise removal). We can observe that the 
performance of both variants decreases to some extent compared to KBL. Among them, the 
without expansion variant experiences a smaller decrease compared to KBL, with a rela-
tive decrease of 1% in acc@1 metric. On the other hand, the without noise removal variant 
shows a relatively larger decrease, with a 6% relative decrease in acc@1 metric.

Table 35 The Keyword Classification Performance and Bug Localization Performance after Applying RUS 
Ten times (TenTimesAverage) or Once (KBL)
Project Technique F1 Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
AspectJ TenTimesAverage 0.44 24.48% 37.40% 47.41% 57.24% 27.30% 0.32

KBL 0.45 25.86% 37.06% 49.19% 56.89% 27.04% 0.32
Birt TenTimesAverage 0.42 11.79% 24.54% 33.11% 42.51% 14.31% 0.19

KBL 0.42 12.30% 25.58% 33.70% 42.92% 14.66% 0.19
Platform.UI TenTimesAverage 0.42 20.53% 42.05% 52.56% 62.53% 26.16% 0.31

KBL 0.43 20.92% 42.85% 53.00% 62.99% 26.56% 0.32
JDT TenTimesAverage 0.45 25.01% 52.04% 62.74% 73.20% 31.03% 0.38

KBL 0.45 25.66% 52.12% 63.03% 73.45% 31.21% 0.38
SWT TenTimesAverage 0.45 24.29% 47.38% 59.01% 70.84% 29.76% 0.35

KBL 0.46 24.69% 48.41% 59.24% 71.16% 30.09% 0.36
Tomcat TenTimesAverage 0.41 36.10% 61.03% 71.12% 79.66% 40.45% 0.47

KBL 0.42 38.53% 61.46% 60.75% 79.02% 41.34% 0.48
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A.5   The Settings of Similarity Threshold and Repetition Time

Similarity threshold is a key parameter used to filter similar historical bug reports for con-
structing shared keywords. We test four candidate values for the parameter similarity thresh-
old: (0.6, 0.7, 0.8, 0.9). Repetition time is another key parameter used to limit the maximum 
number of occurrences of the same term in a query (belonging to the noise removal part). 
We test five value settings, i.e., (1, 2, 3, 4, 5) for this parameter. To better understand the 
individual impact of each parameter on localization performance, we assess how perfor-
mance changes when adjusting each parameter independently. Specifically, when testing 
Similarity threshold, we vary its value from 0.6 to 0.9 in increments of 0.1, while keeping 
repetition time fixed at 4 (the optimal value in determined in our analysis). Similarly, when 
testing repetition time, we vary its value from 1 to 5 in increments of 1, with the Similar-
ity threshold fixed at 0.6 (also identified as the optimal value). Table 37 and 38 present the 
localization performance of KBL under different settings for similarity threshold and repeti-
tion time, respectively.

From Table 37, we see that when the similarity threshold parameter increases from 0.6 
to 0.9, the acc@1, acc@5, acc@10 and acc@20 metrics of the queries show a generally 
decreasing trend. For example, as the similarity threshold value increases from 0.6 to 0.9, 
the accuracy@10 metric for KBL decreases from 54.10% to 53.67%, and the number of 
successfully localized bugs decreases from 2426 to 2407. Meanwhile, we can also observe 
that the performance decrease is quite small when the similarity threshold is increased. This 
means KBL demonstrates a certain level of robustness to variations in the similarity thresh-
old parameter (when set >=0.6).

From Table 38, we can observe that as the repetition time increases, the query perfor-
mance initially improves and then declines. When the repetition time reaches 4, the query 
performance is optimal, while it is worst when the repetition time is 1. Compared to the opti-
mal repetition time, queries with a repetition time of 1 experience a relatively 7% decrease 
in the acc@1 metric. This indicates that the query performance is sensitive to the repeti-
tion time of keywords, which however is not taken into consideration by TextRank and 
BLIZZARD.

Table 36 Bug Localization Performance of KBL with/without Keyword Expansion or Noise Removal
Model Varaint Acc@1 Acc@5 Acc@10 Acc@20 MAP MRR
without expansion 22.03% 43.53% 53.56% 64.07% 26.85% 0.32
without noise removal 21.05% 43.19% 53.18% 63.40% 26.40% 0.32
KBL 22.30% 44.02% 54.10% 64.33% 27.03% 0.33

Table 37 Bug Localization Performance of KBL with Different Similarity Threshold
Similarity Threshold Acc@1 Acc@5 Acc@10 Acc@20
0.6 (1000)22.30% (1974)44.02% (2426)54.10% (2885)64.33%
0.7 (990)22.07% (1961)43.73% (2420)53.96% (2879)64.20%
0.8 (990)22.07% (1959)43.68% (2411)53.76% (2878)64.18%
0.9 (993)22.14% (1957)43.64% (2407)53.67% (2875)64.11%
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A.6   The Performance of Applying Golden Keywords Beyond Bug Localization Tasks

In this study, with the aim of providing good localization guidance for bug localization 
tasks, we constructed a golden keywords dataset based on historical bug-locating data and 
used it to build a keyword classifier to retrieve bug-revealing keywords. The experimental 
results have demonstrated the effectiveness of our extracted keywords in facilitating bug 
localization performance. To understand whether the benefits of golden keywords extend 
beyond bug localization, we extended our evaluation to another four bug report manage-
ment tasks, including bug severity prediction, bug priority prediction, bug reopen predic-
tion, and bug field reassignment prediction. The four tasks are generally resolved as a clas-
sification problem that mainly involves the content analysis of bug reports.

We followed the strategy of Chen et al. (2024) to label each bug report. Then, we ran-
domly selected 80% of the bug reports as the training dataset, while the remaining 20% 
were reserved as the test dataset. Table 39 shows the number of instances belonging to dif-
ferent classes in the four tasks. From the table, we could observe a notable class imbalance 
problem across the training datasets (i.e., some classes have many more instances than oth-
ers). Such imbalance may make the built model biased towards the majority classes during 
prediction. Toward this, we designed a data augmentation strategy centered on synonym 
replacement to fix the class imbalance problem, which proved to help achieve better clas-
sification performance than purely using traditional balancing strategies, e.g., random under 
or over-sampling, in our preliminary experiments.

Specifically, we generated additional instances by randomly selecting existing instances 
from the minority class and replacing 50% of their tokens with synonyms. This synonym 
replacement was facilitated using the BERT model fine-tuned on the original bug reports, 
with stopwords and standard keywords excluded from the replacement process. The aug-
mentation process continues until the number of minority class instances triples its original 
size. If the expanded minority class still has fewer instances than the majority class, random 

Table 38 Bug Localization Performance of KBL with Different Repetition Time
Repetition Time Acc@1 Acc@5 Acc@10 Acc@20
1 (934)20.82% (1888)42.10% (2358)52.58% (2808)62.62%
2 (985)21.96% (1958)43.66% (2409)53.72% (2891)64.47%
3 (994)22.16% (1966)43.84% (2434)54.28% (2893)64.51%
4 (1000)22.30% (1974)44.02% (2426)54.10% (2885)64.38%
5 (994)22.16% (1966)43.84% (2427)54.12% (2879)64.20%

Table 39 Instance Counts per Class in the Four Bug Report Management Tasks
Dataset Bug Severity Bug Priority Bug Reopen Bug Field 

Reassignment
Severe Non- Severe High Medium Low Reopen Non- Re-

open
Reas-
sign

Non- 
Reas-
sign

Training 3,029 2,289 2,283 15,638 226 1,473 16,681 6,180 11,968
Test 758 572 571 3,910 57 367 4,171 1,545 2,992
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undersampling (RUS) is applied to the majority class to achieve balance. Conversely, if the 
minority class surpasses the majority class in size after augmentation, additional instances 
for the majority class instances will be generated through synonym replacements until both 
classes are equal in size. Table 40 shows the instance distribution after balancing. Note that 
we only performed class balancing on the training dataset while keeping the testing dataset 
imbalanced to mimic real-world scenarios.

After the class labeling and balancing process, we applied the vector space model with 
tf-idf term weighting to represent the original content of bug reports and their corresponding 
golden keywords. Then, we trained random forest models based on the constructed datasets 
to perform predictions separately. Table 41 shows the classification performance for four 
studied tasks related to using the original bug reports and golden keywords. From the table, 
we can find that, when compared to models trained on the original contents of bug reports, 
using golden keywords did not lead to better classification performance but a slight per-
formance decline across the four studied tasks beyond bug localization. This also provides 
some support for our claim that providing supervised locating guidance is necessary for 
facilitating bug localization; our construction and further leveraging of golden keywords is 
such an attempt in this direction.

Table 40 Instance Counts per Class in the Four Bug Report Management Tasks after Performing Class Bal-
ancing based on the Data Augmentation Strategy
Dataset Bug Severity Bug Priority Bug Reopen Bug Field 

Reassignment
Severe Non- Severe High Medium Low Reopen Non- Re-

open
Reas-
sign

Non- 
Reas-
sign

Training 6,867 6,867 678 678 678 4,419 4,419 18,540 18,540
Test 758 572 571 3,910 57 367 4,171 1,545 2,992

Task Item F1 
score

Precision Re-
call

Bug Severity 
Prediction

Original Content 0.67 0.74 0.62

Golden Keywords 0.65 0.71 0.60
Bug Priority 
Prediction

Original Content 0.56 0.56 0.56

Golden Keywords 0.53 0.53 0.53
Bug Reopen 
Prediction

Original Content 0.74 0.79 0.70

Golden Keywords 0.71 0.76 0.67
Bug Field 
Reassignment 
Prediction

Original Content 0.65 0.78 0.56

Golden Keywords 0.62 0.72 0.55

Table 41 The Classification Per-
formance Comparison Between 
Using Original Contents of Bug 
Reports and Their Corresponding 
Golden Keywords
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A.7   Replacing Word2Vec with BERT During Keyword Classifier Building

In the keyword-classifier building step, we have several instance features involving seman-
tic similarity calculation based on semantic vectors generated by the typical Word2Vec 
that was trained on bug reports. To explore whether the use of more advanced embedding 
techniques would lead to better keyword classification performance, we tried to replace 
Word2Vec with BERT during instance feature extraction. Like Word2Vec, we also fine-
tuned BERT with bug reports (using its built-in masked language modeling task). Table 42 
presents the corresponding keyword classification performance for using Word2Vec and 
BERT, respectively. From the table, we can find that the F1 scores are almost the same. In 
other words, replacing Word2Vec with BERT does not lead to a substantial improvement 
in the classification performance of our keyword classifier. This may be because the num-
ber of features computed using the word embedding technique during feature extraction is 
relatively small; these features themselves did not play a dominant role in keyword clas-
sification (which could also, to some extent, be revealed by our feature importance analysis 
in Section 5.2).
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Project Method F1 score Precision Recall
AspectJ Word2Vec 0.45 0.31 0.71

BERT 0.45 0.46 0.45
Birt Word2Vec 0.42 0.38 0.47

BERT 0.43 0.41 0.45
Eclipse.Platform.UI Word2Vec 0.43 0.34 0.58

BERT 0.42 0.32 0.62
JDT Word2Vec 0.45 0.34 0.65

BERT 0.45 0.38 0.56
SWT Word2Vec 0.46 0.35 0.67

BERT 0.45 0.37 0.58
Tomcat Word2Vec 0.42 0.35 0.53

BERT 0.43 0.38 0.5

Table 42 The Classification 
Performance of Keyword Clas-
sifiers When Using Word2Vec 
and BERT to Calculate Relevant 
Instance Features
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