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Abstract Context Representing the textual semantics of bug reports is a
key component of bug report management (BRM) techniques. Existing studies
mainly use classical information retrieval-based (IR-based) approaches, such
as the vector space model (VSM) to do semantic extraction. Little attention
is paid to exploring whether word embedding (WE) models from the natural
language process could help BRM tasks.

Objective To have a general view of the potential of word embedding models
in representing the semantics of bug reports and attempt to provide some
actionable guidelines in using semantic retrieval models for BRM tasks.

Method We studied the efficacy of five widely recognized WE models for six
BRM tasks on 20 widely-used products from the Eclipse and Mozilla founda-
tions. Specifically, we first explored the suitable machine learning techniques
under the use of WE models and the suitable WE model for BRM tasks. Then
we studied whether WE models performed better than classical VSM. Last,
we investigated whether WE models fine-tuned with bug reports outperformed
general pre-trained WE models.

Key Results The Random Forest (RF) classifier outperformed other typical
classifiers under the use of different WE models in semantic extraction. We
rarely observed statistically significant performance differences among five WE
models in five BRM classification tasks, but we found that small-dimensional
WE models performed better than larger ones in the duplicate bug report de-
tection task. Among three BRM tasks (i.e., bug severity prediction, reopened
bug prediction, and duplicate bug report detection) that showed statistically
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significant performance differences, VSM outperformed the studied WE mod-
els. We did not find performance improvement after we fine-tuned general
pre-trained BERT with bug report data.

Conclusion Performance improvements of using pre-trained WE models were
not observed in studied BRM tasks. The combination of RF and traditional
VSM was found to achieve the best performance in various BRM tasks.

Keywords Bug report · Word embedding · Pre-trained models · Vector
space model

1 Introduction

Bug reports are an important kind of software artifact. They generally provide
information about the behavior of software and bug-occurring environments
(Bettenburg et al., 2008). With bug reports, software practitioners could better
understand and fix a bug and identify potential software-quality improvement
directions (Bertram et al., 2010). Currently, many software projects use a
bug tracking system such as Bugzilla1 or Jira2 to collect and track their bug
reports, where any end users are free to submit a bug report to describe what
problems they are facing (Anvik, 2006). The openness of receiving bug reports
and the increasing software scale make software practitioners have to handle a
large number of bug reports (Zou et al., 2018). How to effectively and efficiently
manage as many bug reports as possible under limited resources is increasingly
becoming a big challenge for modern software projects.

To help address the problem mentioned above, researchers have been devel-
oping various kinds of bug report management (BRM) techniques, such as bug
localization (Kim et al., 2013; Ye et al., 2015), duplicate bug detection (Wang
et al., 2008; Sun et al., 2011), bug priority prediction (Tian et al., 2013, 2015),
bug fixing time prediction (Weiss et al., 2007; Choetkiertikul et al., 2017), etc.
A key step of BRM techniques is to correctly retrieve the semantics of bug
reports as much as possible since it is the basis for further prediction. A bug
report’s two most important items are the brief one-line summary of a bug and
the detailed problem description that provides important information such as
reproduction steps and observed/expected behavior (Lamkanfi et al., 2010).
These two items are generally written in plain text and are widely considered
in existing BRM research. To a large extent, the semantic retrieval of a bug re-
port is taken as the semantic retrieval of textual bug summary and description
items.

Currently, existing BRM studies mainly use some information retrieval
models to represent the semantics of bug reports, where the vector space model
(VSM) is mainly used. These models, like VSM, generally take bug reports as
a bag of words, considering little about the contextual semantics of words,

1 https://www.bugzilla.org/
2 https://www.atlassian.com/software/jira
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which may negatively affect the BRM performance. With the fast develop-
ment of NLP techniques, more advanced semantic retrieval approaches from
the NLP area have appeared. Among them, word embedding models, such
as Word2Vec (Mikolov et al., 2013a) and BERT (Devlin et al., 2018), attract
much attention from both the academic and industrial community (Yang et al.,
2016; Xiao et al., 2019). Word embedding models represent the semantics of
a word with an N-dimensional numeric vector, with each element capturing a
specific semantic aspect of the word in the world. They are expected to cap-
ture the contextual semantics of words better and have been proven effective
in many NLP downstream tasks (such as text classification and question an-
swering) relying on textual semantic retrieval. Inspired by the applications of
WE models in the NLP area, some researchers also try to integrate WE models
such as Word2Vec and GloVe into BRM techniques (Van Nguyen et al., 2017;
Deshmukh et al., 2017; Jia et al., 2021).

While word embedding has become more prevalent in NLP, its adoption
in BRM tasks remains relatively limited. Most existing studies have focused
on earlier WE models like Word2Vec, even though the NLP community has
since introduced a range of more advanced models, such as BERT. The suc-
cess of WE in NLP tasks encourages us to study the potential of WE in BRM
tasks systematically. Our exploration in this study is motivated by two key
observations. On one hand, bug reports can be taken as general text in the
same form as NLP tasks. It provides the basis for applying WE models to bug
reports. On the other hand, unlike general text, bug reports are software arti-
facts that have domain-specific knowledge. How well WE models can capture
the semantics of bug reports is still a question mark.

We attempt to answer four research questions to understand the value of
WE in BRM tasks. Five widely recognizedWEmodels are thoroughly tested on
six typical BRM tasks using a dataset of 20 products from different domains to
get as general conclusions as possible. Word2Vec, GloVe, FastText, ELMo, and
BERT are the five WE models. Six BRM tasks include duplicate bug report
detection, bug severity prediction, bug priority prediction, bug fixing time
prediction, reopened bug prediction, and bug field reassignment prediction.
The concrete RQs, as well as their corresponding key findings, are as follows.

RQ1. Which machine learning approach performs best for BRM
tasks on the whole?This research question is about finding the most suit-
able machine learning (ML) algorithm for BRM tasks under the constraint of
applying WE models to retrieve the semantics of bug reports. Four classical
machine learning algorithms are compared in the study, namely Naive Bayes,
Random Forest, Logistic Regression, and Support Vector Machine.

Findings: The Random Forest classifier always outperformed other ma-
chine learning algorithms based on retrieved semantic features of five pre-
trained WE models. Naive Bayes performed worst among all classifiers.

RQ2. Is there a word embedding model that generally outper-
forms others for BRM tasks?This research question is to study whether
there is a dominant WE model that outperforms other WE models in various
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BRM tasks. This RQ could show some insights into selecting the WE model
in performing BRM tasks.

Findings: We rarely observed statistically significant performance differ-
ences among five WE models in five BRM classification tasks (i.e., bug severity
prediction, bug priority prediction, bug fixing time prediction, reopened bug
prediction, and bug field reassignment prediction); we only detected a sta-
tistically significant performance difference between smaller-dimensional WE
models and relatively larger ones for the duplicate bug report detection task
(a recommendation task).

RQ3. Do word embedding models outperform the most used
VSM model for BRM tasks?This RQ could help us understand whether
WE models are preferred to be applied in domain-specific BRM tasks rather
than general NLP tasks. This gives practitioners better guidance in adopting
traditional VSM or WE models in their BRM tasks.

Findings: Among three BRM tasks, i.e., bug severity prediction, reopened
bug prediction, and duplicate bug report detection, that showed statistically
significant performance differences, VSM outperformed studied WE models;
the performance differences are found to be negligible to small on the bug
severity prediction and reopened bug prediction tasks, but are large on the
duplicate bug report detection task, according to Cliff’s delta effect sizes.

RQ4. How will the performance change if word embedding mod-
els are fine-tuned with bug data?This RQ investigates the performance of
fine-tuned BERT with bug reports compared to the generic pre-trained BERT
model. Answering this RQ could help us understand the value of domain-
specific corpus for pre-trained WE models in semantic extraction.

Findings:We did not observe performance improvements of the fine-tuned
BERT over the generic pre-trained one. Their performance differences that
show statistical significance are all negligible according to Cliff’s delta effect
sizes on experimental products.

The main contributions of our work are as follows:

– We conduct a systematic study to explore the potential of word embed-
ding models on bug report management tasks by evaluating five typical
embedding techniques across six representative downstream BRM tasks.

– We attempt to investigate the most suitable machine learning algorithm
for applying WE models, the best-performance WE model in BRM tasks,
the advantage of WE over the most used VSM model, and the value of the
model fine-tuned with bug report corpus.

– We obtain a list of actionable findings that could guide developers or re-
searchers in adopting suitable semantic retrieval models while performing
BRM tasks.

Paper Organization The remaining parts are structured as follows: we
present the background of WE and BRM in Section 2 and describe our exper-
imental design in Section 3. Section 4 presents our experimental results and
answers to research questions. Section 5 lists the implications and the threats
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to the validity of our experiment. After surveying the related work in Section
6, we conclude our work in Section 7.

2 Background

In this section, we discuss the background related to this study. We first in-
troduce word embedding(WE), including five typical word embedding models
and pre-trained models. Then, we talk about bug report management(BRM).

2.1 Word Embedding

Text representation is an important work in the field of natural language pro-
cessing (NLP). Effectively converting text data into a meaningful representa-
tion that computers can recognize is a very important step in the NLP area.
The word embedding technique is such a popular and effective method for pre-
senting the semantics of text contents. This technique maps a single word to a
δ-dimensional vector space (Hinton et al., 1986). It aims to capture the latent
semantics of words by using neural network-based word embedding vectors
that are dense, distributed, and with a fixed length. Textual content within
bug reports can also be transformed by word embedding technology into nu-
meric embedding vectors. In this section, we describe the existing popular and
representative embedding techniques evaluated in this work, i.e., Word2Vec,
GloVe, FastText, ELMo, and BERT.

2.1.1 Five Typical Word Embedding Models

Word2Vec is a language model published in 2013 (Mikolov et al., 2013a).
It takes a large text corpus as input and generates a vector space, typically
of several hundred dimensions, with each unique word in the corpus being
assigned a corresponding vector in the space. Word2Vec has two model ar-
chitectures: continuous bag-of-words (CBOW) and continuous skip-gram. In
the CBOW architecture, the model predicts the masked word by a given win-
dow of its surrounding context words, and the order of context words does
not influence the prediction results (due to the bag-of-words assumption). In
the continuous skip-gram architecture, the model uses a given word to predict
the context words surrounding the word. Unlike CBOW, the skip-gram archi-
tecture weighs nearby context words more heavily than more distant context
words (Mikolov et al., 2013b). Regardless of CBOW or skip-gram, Word2Vec
would assign a unique numeric vector to a word, limiting it in handling the
polysemy problem.

GloVe (Global Vectors for Word Representation) is proposed by Penning-
ton et al. (Pennington et al., 2014) in 2014. It is a global log-bilinear re-
gression model for unsupervised learning of word representations. Compared
to Word2Vec, GloVe aims to use a global word-word co-occurrence matrix
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to learn word representation, which is expected to better represent a word’s
meaning. It is reported to outperform other models on word analogy, word
similarity, and named entity recognition tasks.

FastText is proposed by Bojanowski et al. (Bojanowski et al., 2017) in
2017. Unlike models like Word2Vec or GloVe which treat a word as an atom
during model training, FastText treats a word as a set of n-gram units. Based
on these n-gram sets, a skip-gram model is built, and an embedding vector
for each n-gram is obtained. The vectors of n-gram sets of a word are then
integrated to obtain the final embedding vector for the word. In this way,
FastText can capture the semantics of short/rarely appeared words and those
pre/suffixes.

ELMo (Embeddings from Language Models) is proposed by Peters et
al.(Peters et al., 2018) in 2018. The ELMo embedding vectors are derived
from a bi-directional LSTM trained with a coupled language model on a large
text corpus3. In ELMo, character-level tokens are taken as the input to a bi-
directional LSTM that would then produce word-level embeddings. It is a new
type of deep contextualized word representation that models both (1) com-
plex characteristics of word use (e.g., syntax and semantics), and (2) how these
uses vary across linguistic contexts. Unlike “Bag of Words” approaches such
as Word2Vec, ELMo is context-sensitive and could generate different repre-
sentations for words with the same spelling but different meanings.

BERT (Bidirectional Encoder Representations from Transformers) is pro-
posed by Devlin et al. (Devlin et al., 2018) in 2018. BERT is based on the
transformer architecture and is pre-trained on a large corpus of unlabelled text,
including the entire Wikipedia (with 2,500 million words) and Book Corpus
(with 800 million words). BERT is a deeply bidirectional model. Bidirectional
means that BERT learns information from both the left and the right side of a
token’s context during training. The word embedding representation obtained
through BERT incorporates more grammatical, lexical, and semantic informa-
tion. With BERT, words would have different word embedding representations
in different contexts.

2.1.2 Pre-trained Word Embedding Models

As mentioned above, in the NLP area, word embedding is generally an n-
dimensional numeric vector that captures the semantics of a word, with sim-
ilar words that are closer in the vector space being expected to have similar
meanings. Generally speaking, one can obtain the word embedding for a word
with two approaches. One approach is to train a word embedding model (e.g.,
Word2Vec) on their dataset from scratch to obtain the word embeddings, while
the other way is to obtain the word embeddings from an existing word embed-
ding model trained on other large datasets, i.e., a pre-trained word embedding
model.

3 For example, the 1 billion word benchmark: https://www.statmt.org/lm-benchmark/
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Due to the sparsity of training data and a large number of trainable pa-
rameters, it becomes a challenging problem for users to learn their own embed-
dings from scratch, especially when they have limited small-scale datasets. In
this case, pre-trained models would be a preferred choice for them due to the
following advantages: 1) Pre-training on large-scale unlabeled data can learn
more general language representation and apply it to downstream tasks; 2)
Pre-training provides better initialization parameters, which helps to improve
the generalization performance of the model and accelerate the convergence
of the model; 3) Pre-training can be regarded as an effective regularization
method to avoid over-fitting on small data sets. Currently, there is a list of
pre-trained WE models kindly shared by the academics and industry, includ-
ing the five typical word embedding models we compared in the study, such as
the pre-trained BERT through training BERT on a large amount of Wikipedia
content. Sometimes, practitioners would use domain-specific data to fine-tune
the pre-trained models to understand their tasks better. The advantages of
pre-trained models have made them find numerous important applications in
the real world (Yang et al., 2019; Zhou et al., 2020).

2.2 Bug Report Management

In this part, we will first briefly introduce typical bug reports collected by bug
tracking systems of Eclipse and Mozilla. Then we introduce six typical bug
report management techniques we focused on in this paper.

2.2.1 Bug Report

Bug reports are an important information carrier for software practitioners to
find/fix bugs and ensure software quality. Figure 1 shows a typical bug report
collected by bug tracking systems. As shown in the figure, a bug report gen-
erally has information items like BugID, Status, Product, Component, Impor-
tance, Reported, Summary, Description, Comment, etc. BugID (e.g., 550200
in the figure) is a number that uniquely identifies a bug of a project. Sum-
mary is generally one sentence briefly summarizing a bug. The Description
item provides details about the bug, where the details generally include steps
to reproduce the bug, the expected behavior or observed behavior, etc. Sta-
tus describes the current state of a bug report. During the lifecycle of a bug
report, its status could be from Unconfirmed to Closed/Resolved as shown in
Figure 2, each closed bug report would have a corresponding resolution such
as FIXED, DUPLICATE, etc. Detailed introduction to the status and resolu-
tions can be found in the website 4. The Reported field includes the reporting
time of a bug and the person who reports it. The Importance field has two
parts, namely priority (e.g., “P3” in the figure) and severity (e.g., “normal”
in the figure). The modifications towards a bug report, such as status changes

4 https://wiki.documentfoundation.org/QA/Bugzilla/Fields/Status/RESOLVED
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would all be recorded in the “History” item, and the Modified item memos the
last modification time.

Fig. 1: A Bug report example with ID=550200 in Eclipse

2.2.2 Six BRM Techniques

To help resolve as many bug reports as possible with limited resources, re-
searchers proposed a list of techniques to manage these bug reports, namely
bug report management techniques (Zou et al., 2018), including bug localiza-
tion, bug severity/priority prediction, bug fixing time prediction, etc.

This section mainly introduces six bug report management techniques stud-
ied in our work, also considered important by software practitioners(Huo et al.,
2014; Zou et al., 2018). They are duplicate bug report detection, bug severity
prediction, bug priority prediction, bug fixing time prediction, bug field reas-
signment prediction, and re-opened bug prediction. These techniques can help
us more purely understand the usefulness of WE models in representing bug
report semantics. This is because they mainly rely on the analysis of textual
summary and description of a bug report. In other words, we can avoid the
situation that our findings get biased by the potential interactions between
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Fig. 2: The life-cycle of a bug report

bug reports and other software artifacts, as well as imprecise processing steps
such as bug-code linking in other BRM techniques.

Duplicate Bug Report Detection aims to identify whether or not a
newly reported bug is duplicated with existing bugs in the bug tracking system.
With duplicate bug detection, users could avoid reporting the same problems,
while developers could save time in handling more bug reports without wasting
time doing redundant work. In a bug tracking system, a bug report with
a “DUPLICATE” resolution represents that the bug is duplicated with an
existing bug(s). Existing studies mainly take duplicate bug report detection
as a recommendation task (Runeson et al., 2007; Wang et al., 2008; Sun et al.,
2011; Zhang et al., 2023). The process is to use typical VSM to represent the
semantics of the summary and description items first, then rank bug reports
based on the cosine similarity of VSM vectors where a word is mainly weighted
by TF-IDF (Sun et al., 2010), BM25F (Sun et al., 2011), etc. Some studies
attempt to take this task as a classification one by applying machine learning
algorithms like SVM, LSTM, and CNN to predict whether a bug report is
duplicated with another one or not (Sun et al., 2010; Budhiraja et al., 2018a;
Rodrigues et al., 2020).

Bug Severity Prediction aims to predict the severity of a bug report.
The severity of a bug report reveals how severe the bug is in the software.
Some bugs are particularly critical such as data corruption and need to be
fixed immediately; while some may be minor problems and can be delayed un-
til resources are available. Thus, bug severity prediction can help stakeholders
better arrange resources in fixing bugs and ensure that software works properly
as much as possible. Existing research usually regards bug severity prediction
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as a classification problem. Among those studies, the summary and description
items are mostly used, items like stack trace, components, priorities, product,
and code change history are sometimes used to improve prediction perfor-
mance(Menzies and Marcus, 2008; Yang et al., 2014; Roy and Rossi, 2014;
Sahin and Tosun, 2019; Ramay et al., 2019; Arokiam and Bradbury, 2020;
Kim and Yang, 2022). The VSM with TF/TF-IDF weighting is commonly
adopted to represent the textual semantics of bug reports; other models like
LDA or Word2Vec are also used in a few studies. Regarding the selection of
ML models, most studies tend to use traditional classification algorithms like
SVM, NB, and RF; few studies use deep learning methods such as MLP and
LSTM to make severity predictions.

Bug Priority Prediction aims to predict the priority of a bug report,
which could save practitioners from the time-consuming and error-prone man-
ual priority assignment activity. Bug reports with high priority, such as those
impacting a large number of consumers should be fixed first. With automated
priority prediction, software maintainers could have a better mind about col-
lected bug reports before manually diving into the bugs and make a better
resource allocation in resolving them to avoid letting high-priority bugs go
without notice among large amounts of bugs. For bug priority prediction,
mainstream research also regards it as a classification task. Besides the sum-
mary and description features, other features like historical similar bug reports,
reporter information, and the component/product a bug report belonged to,
would also be integrated to facilitate prediction performance(Kanwal and Maq-
bool, 2012; Tian et al., 2013, 2015; Umer et al., 2019; Zhang and Challis, 2020).
The VSM is mostly used in the semantic retrieval of textual content; the LDA
and word embedding models are also used in some cases. As for the adoption
of ML methods, it shows a route from using traditional ML models like SVM,
NB, and KNN to (deep) neural networks like CNN.

Bug Fixing Time Prediction aims to predict how long a bug report
would be fixed. For a large and evolving software system, a project team may
receive many bug reports over a long period. It would be very valuable to
achieve a quantitative understanding of bug-fixing time for those bugs, in that
not only users could know possible feedback or status of their reported bugs
but also project maintainers could make a better resource schedule for fixing
bugs. Towards the bug-fixing time prediction task, some researchers choose to
estimate the total time required to fix a bug(Panjer, 2007; Weiss et al., 2007;
Hewett and Kijsanayothin, 2009; Vieira et al., 2022) while some researchers
try to predict whether it would be a slow or fast fix(Giger et al., 2010; Marks
et al., 2011; Zhang et al., 2013; Habayeb et al., 2017; Yuan et al., 2021). The
items used in existing studies mainly include the summary and description,
bug severity/priority, reporter popularity, open bugs, developer activities, field
updates, etc. Prediction models also mainly focus on traditional ML methods
such as Logistic Regression, Random Forest, and Hidden Markov Model, with
some recent work also applying neural networks such as MLP(Yuan et al.,
2021; Vieira et al., 2022).
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Re-opened Bug Prediction Re-opened bugs are bugs closed by develop-
ers but re-opened later (i.e., status being “Reopen” in the lifecycle of a bug in
Fig. 2). Bugs can be re-opened for a variety of reasons such as partial fixing.
The existence of re-opened bugs makes developers generally have to take a
longer time to resolve them and hence further increase the maintenance costs
of a project. Thus, a series of studies have emerged to automatically predict
whether a bug report would be re-opened during its lifecycle(Shihab et al.,
2010; Zimmermann et al., 2012; Shihab et al., 2013; Xia et al., 2013, 2015b;
Mi et al., 2018; Tagra et al., 2022). These studies generally take re-opened
bug prediction as a classification task, by applying traditional supervised ma-
chine learning models like NB, DT, LR, and Bagging towards bug instances
represented by a set of features such as textual bug description, reporter/fixer
reputation, work habit, etc.

Bug Report Field Reassignment Prediction A bug report contains
many fields, such as product, component, severity, priority, and so on. Those
important information items can help developers a lot in bug fixer assignments
and bug fixing. However, as reported by (Xia et al., 2014), reporters often
provide wrong values for bug report fields, which prevents developers from
effectively fixing bugs. Bug report field reassignment prediction aims to predict
which fields would have their values reassigned so that developers or reporters
could better cope with their bug reports, e.g., by trying to correct them timely.
Bug report field reassignment is also generally taken as a classification task. In
this field, ML algorithms like NB, KNN, and HMM are generally tested; the
textual summary and description items are commonly used to build prediction
models, function call sequences from stack traces and some categorical features
like operating systems are also considered in specific studies (Lamkanfi and
Demeyer, 2013; Xia et al., 2015a; Islam et al., 2021).

3 Experiment Setup

In this section, we will first briefly present the overall workflow of our exper-
iments. Then we introduce the datasets we use to conduct our experiments.
After that, we describe how we use WE models to retrieve bug report seman-
tics and build prediction/recommendation models to perform BRM tasks. Last
we present the four research questions whose answers may help us understand
the potential of WE models in BRM tasks.

3.1 Overflow

Figure 3 shows the whole experiment process of our study. First of all, we
separately crawled all bug reports from the bug tracking systems (BTS) of
Eclipse and Mozilla by the time we conducted our study. For each bug report,
we extract the summary and description items from bug reports for experi-
ments. Then, we use pre-trained word embedding models to extract semantics
from the textual content of summary and description items.
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Fig. 3: Overall framework of our study

After applying WE models, each word of a bug report would be represented
as a numeric vector with N dimensions (e.g., general pre-trained Word2Vec
would generate a 300-dimensional numeric vector for a word), and a final
N -dimensional vector would be generated for a bug report after operations
such as max/average-pooling. The final N -dimensional vector represents the
semantic features of a bug report.

Based on these embedding vectors, six models for six downstream BRM
tasks are built. These models are then tested on the new bug data. The predic-
tion results are further analyzed to answer four research questions that explore
the most suitable ML for WE models, the best WE models, the comparison
between WE models and the VSM model, and the value of fine-tuning general
pre-trained WE models for BRM tasks.

As shown in the figure, when we build corresponding BRM models, we only
consider textual semantic features of summary and description items without
leveraging other helpful factors such as developer experience. We adopt this
strategy mainly because: 1) The two textual items are most important for a
bug report and play a major role in existing BRM techniques; 2) The goal
of our study is to understand the potential of WE in representing bug report
semantics for various BRM tasks not to propose most-advanced BRM tech-
niques; 3) Considering other factors may introduce confounding factors that
prevent us from obtaining unbiased conclusions related to the value of using
WE in BRM tasks; 4) Since we use performance difference to answer our re-
search questions, the possibly even-not-so-high performance values would not
harm our analysis.
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3.2 Data Collection

We conduct our experiments on data from two famous open-source founda-
tions, Eclipse and Mozilla. For each foundation, we first crawl all bug reports
from its bug tracking system (BTS). The BTS supports several bug data for-
mats, including XML, CSV, JSON, etc. In this study, we downloaded the
corresponding XML files of those bug reports. Each XML file represents a
whole bug report, and a tag can identify each information item of the bug
report. For example, the tags indicated the one-line summary and description
items are “short desc” and “long desc” for Eclipse and Mozilla. We also use
these tags to retrieve the needed information items.

After obtaining all bug reports for each foundation, we select the top 10
products with the largest number of bug reports. The selected 20 products are
popular among developers and users. Some are often used in existing stud-
ies(Lamkanfi et al., 2010; Nguyen et al., 2012; Tian et al., 2013; Zhang et al.,
2016). They come from different domains and are of different sizes, which to
some extent guarantee the generalizability of our findings in practice. We would
first retrieve each product’s bug reports and prepare corresponding datasets
for different BRM tasks. Specifically, we would filter out not-yet-closed bug re-
ports for bug severity/priority/reassignment prediction tasks since we can not
determine their final status or resolutions. For the bug fixing time prediction
task, we only consider the bug reports whose resolution is “fixed”. As for the
reopened bug prediction task, besides closed ones, bug reports whose status
is “reopened” are also included during experiments. Table 1 shows the basic
statistics of our experimental products.

After obtaining the text of the one-line summary and description items
for each bug report, we take the extracted content as plain text and follow a
common flow to preprocess it. That is, we first tokenize the text into words. At
the same time, special symbols, digits, and single characters are also removed.
We further split camel case words into individual words (e.g., windowWidth
→ window + width), with original camel case words being also kept. After
that, we convert each word to its lowercase and then use Porter Stemmer to do
stemming by transferring individual words into their root forms (e.g., reported
→ report). At last, we use the NLTK stop-word list5 to remove stopwords
(such as “the”, “and”, and “a”) that frequently appeared in a corpus and
generally contribute little to one’s understanding of text content. Like most
BRM studies (Roy and Rossi, 2014; Xia et al., 2015b,a), we did not further
handle the hyperlinks and stack traces after applying the above preprocessing
steps towards them.

3.3 Semantic Extraction

We mainly use five typical pre-trained word embedding models (i.e., Word2Vec,
FastText, GloVe, ELMo, and BERT) to extract the textual semantics of bug

5 https://www.nltk.org/search.html?q=stopwords
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Table 1: Basic Statistics of Our Experimental Products

Project Product BRs Closed BRs Fixed BRs Duplicate Pairs Domain Time Period

Eclipse

CDT 22,209 17,352 12,367 3,396 C/C++ Integrated Development Environment

Oct
2001
-

Jan
2022

Community 24,597 24,416 18,738 1,858 Community Service
Equinox 14,490 14,046 8,039 2,355 Service Delivery/Management Architecture
JDT 62,927 57,894 28,466 23,810 Java Development Tools
Mylyn 8,864 7,929 5,223 1,956 User Interface
Orion 10,470 10,310 7,136 625 Web IDE
Papyrus 12,742 9,990 8,472 543 Modeling Framework
PDE 17,518 16,848 9,722 3,466 Plug-in Development Environment
Platform 121,939 114,782 53,527 12,945 Software Development Infrastructure
z Archived 85,072 77,258 51,803 24,768 Bug Archive

Mozilla

Core 465,252 404,058 206,914 14,222 Web Content Handling Utilities

Apr
1998
-

Feb
2022

DevTools 38,387 30,802 17,053 9,512 Web Developer Tools
Firefox 196,618 178,129 39,978 17,617 Web Browser
Firefox for Android Graveyard 39,151 39,146 15,499 13,080 Mobile Browser
Firefox OS Graveyard 70,532 70,532 29,617 16,281 Operating System
MailNews Core 34,090 29,909 10,904 21,457 MailNews Infrastructure
SeaMonkey 96,208 92,844 21,168 215,171 Internet Suite
Testing 34,484 30,654 18,858 8,861 Testing Tools/Frameworks
Thunderbird 60,535 52,517 12,091 59,377 Email Client
Toolkit 55,540 47,527 21,397 34,880 Programming Interfaces

reports. For each word, a WE model would generate a N -dimensional numeric
vector for it. For a bug report of a list of words, we take each dimension’s
average value from vectors for all words it contains (i.e., average pooling) and
generate a final N -dimensional vector. This final vector is taken as the seman-
tic representation of the bug. We directly use the shared five pre-trained WE
models from their official websites6.

All WEmodels except Word2Vec (N=300) provide several vector-dimension
options. For example, users can download pre-trained GloVe models that gen-
erate 50/100/200/300-dimensional vectors for words. The dimensional options
of BERT and ELMo are 768/1024 and 1024/2048/4096 respectively. FastText
provides a 300-dimensional model but also provides a tool to transform it to a
customized size. Based on our preliminary exploration, we find three options
of FastText, i.e., 100, 200, and 300, are mostly used in previous studies. As we
have no idea in advance whether the dimension size would affect the findings
or not, we decide to test all those options.

Furthermore, considering that larger feature numbers generally require a
much larger dataset to well approximate their weights during model building,
for BERT and ELMo, we only test the smallest pre-trained model, i.e., 768 for
BERT and 1024 for ELMo. Based on our investigation, larger BERT/ELMo
pre-trained models are not so commonly used in existing software engineer-
ing studies. Finally, the dimensions we use for numeric vectors generated by
BERT, ELMo, FastText, Word2Vec, and GloVe are 768, 1024, 100/200/300,
300, 50/100/200/300 respectively.

Meanwhile, since one of our goals is to compare the performance of WE
models to mostly used VSM in existing BRM studies, we also use the VSM
model to represent the semantics of bug reports. VSM (Vector Space Model)
is a typical information retrieval model for text. It treats a bug report as a
bag of words and generates a bug vector. The vector size is the number of

6 https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://huggingface.co/bert-base-uncased
https://allenai.org/allennlp/software/elmo
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unique words in a corpus (all bug reports), with each element corresponding
to a unique word, and the value of an element is the weight of a term in a
document (bug report). Following existing studies (Zhou et al., 2012; Saha
et al., 2013; Ye et al., 2014), we use TF-IDF to measure the term weight.

3.4 Model Building and Evaluation for Six BRM Tasks

3.4.1 Model Building

After obtaining semantic feature vectors of individual bug reports, our next
step is to train models for six BRM tasks, namely duplicate bug report detec-
tion, bug severity prediction, bug priority prediction, bug fixing time predic-
tion, re-opened bug prediction, and bug field reassignment prediction. Follow-
ing the mainstream BRM studies (Jalbert and Weimer, 2008; Lamkanfi et al.,
2010; Giger et al., 2010; Nguyen et al., 2012; Deshmukh et al., 2017), we take
duplicate bug report detection as a recommendation task and the other five
as classification tasks. In other words, duplicate bug report detection aims to
recommend a list of potential duplicate bug reports for a given bug report,
where the recommendation is mainly based on the cosine similarity between
two semantic feature vectors. The remaining five tasks aim to classify a bug
report into pre-defined categories, where a prediction model generally needs to
be built by applying a machine learning (ML) algorithm to a dataset of labeled
bug reports represented in semantic feature vectors. In this study, we test four
typical machine learning algorithms, namely NB (Naive Bayes), SVM (Sup-
port Vector Machine), RF (Random Forest), and LR (Logistic Regression) in
model building. These algorithms are classical machine learning approaches
for classification tasks and are often used in BRM studies (Lamkanfi et al.,
2010; Tian et al., 2013, 2015; Zhang et al., 2016). The combination of different
WE/VSM models and ML algorithms could help us explore the suitable ML
or semantic feature extraction models in the study.

To build or evaluate a model, we need to have a benchmark dataset for the
six BRM tasks. The previous subsection has helped us obtain semantic feature
vectors for individual bug reports, and we need to label each bug report further
to have a ground truth (with both instance features and labels determined)
for model training and prediction. The detailed labeling strategies of six BRM
tasks are as follows.

Duplicate Bug Report Detection. We mainly rely on the resolution
field to find those duplicate bug pairs. Specifically, for a bug report, if it is a
duplicate one with another bug report, the resolution field of this bug report
would be set as “duplicate”, with the corresponding dupId also being attached.
dupId indicates which bug report the current bug report is duplicated with. For
example, for a bug with id 1234, suppose its resolution is “duplicate” and its
dupId is 5678, then we can understand that bug 1234 is a duplicate of bug 5678.
The bug 5678 is also called the master bug report. We can identify whether
two bug reports are duplicates by referring to the “duplicate” resolution and
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dupId. We can find all possible duplicate pairs by collecting all such pairs and
constituting a directed diagram. Those pairs would work as the ground truth
when we evaluate the built duplicate bug detection model.

Bug Severity Prediction. According to the configuration of bug tracking
systems adopted by Eclipse and Mozilla, a bug report generally has a severity
field, whose values are among Blocker, Critical, Major, Minor, Trivial, and
Enhancement; sometimes, Mozilla would also use S1, S2, S3 and S4 to indicate
severity 7. Following (Lamkanfi et al., 2010, 2011; Tian et al., 2015), we classify
bug reports into two categories, i.e., Severe or Non-severe. Bug reports with
severity levels of Blocker, Critical, and Major, or S1/S2 are put into the Severe
category. Bug reports with severity levels of Minor and Trivial, or S4 are
considered Non-severe. Bug reports with the Enhancement level or S3 are
ignored because these reports are requests for new functionalities.

Bug Priority Prediction. Similar to bug severity, a bug report has a
field to indicate its priority. The priority field has 5 levels, namely P1, P2,
P3, P4, and P5, with P1 indicating the highest priority and P5 indicating the
lowest priority. Reports whose priority is “–” are ignored in this task. Following
(Alenezi and Banitaan, 2013; Izadi et al., 2022), we divide these five levels into
three class labels namely High, Medium, and Low. High includes P1 and P2,
Medium includes P3, and Low includes P4 and P5.

Bug Fixing Time Prediction. We take a two-step way to determine the
fixing time label for a bug report with a “fixed” resolution inspired by the study
of (Vieira et al., 2022). First, we calculate the time span from the creation time
of a bug report to the time the bug was fixed. Then we classify all bug reports
into three categories, i.e., < 5 days, 5-10 days, and > 10 days. As claimed in
(Vieira et al., 2022), 5 days roughly represent a week of 5-weekdays and are
considered as a more reasonable or practical time unit than other studies by,
e.g., classifying bug reports into slow-fixing or fast-fixing categories.

Re-opened Bug Prediction. For each resolved bug report, we retrieve
its history item and check its content to find whether there is a record reporting
that the status of a bug report has ever been changed to “reopened”. If there
is, then the re-opened label of the bug report is 1, otherwise 0. The bug reports
whose current status is “reopened” are directly labeled as 1.

Bug Report Field Reassignment Prediction. For each resolved bug
report, we retrieve its history item and check whether the values of certain
items have ever been changed to other values. Following (Xia et al., 2015a),
we mainly check the field reassignment problem of meta-items including sta-
tus, component, product, priority, severity, operating system(OS), and version.
These items are important for bug locating/fixing and tend to have wrong val-
ues submitted by reporters. Note that unlike (Xia et al., 2015a), we ignored the
reassignment to the assignee item (who or which team is responsible for fixing
a bug) as it has little to do with reporters and is most likely to be changed dur-
ing the lifecycle of a bug report. For each considered item, if its value has ever
been modified, as shown in the history item, then the reassignment label is 1,

7 http://wiki.mozilla.org/BMO/UserGuide/BugFieldsbugseverity
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otherwise 0. Notice that for the status item, like (Xia et al., 2015a), we only
consider the case where the status field is changed from resolved, removed,
and reopened values to other values.

During model building for the five classification tasks, our project datasets
present the class imbalance problem to different degrees, i.e., a class may have
many more instances than others. Table 2 shows the instance numbers of each
class for five BRM tasks. Such an imbalanced class problem may bias the
prediction results. For example, the model may always predict an instance as
one of the majority class. To avoid potential threats brought by imbalanced
class data, we adopt the random oversampling strategy to balance the datasets
in our study. Oversampling aims to balance uneven datasets by keeping all
instances in the majority class and repeatedly sampling an instance from the
minority class until the sizes of the two classes are the same. We use functions
provided by Python package imblearn to do oversampling.

After handling the class imbalanced problem, we apply ML algorithms to
the balanced datasets to obtain prediction models for BRM tasks. We use the
functions provided by Python package cuML8 to build those models. cuML
package provides a series of GPU-accelerated machine learning algorithms,
and its APIs mirror Scikit-learn’s9. Only for those models that encountered
the out-of-memory problem on a single NVIDIA GeForce RTX 3090 GPU
(with 30G memory), would we train them with the CPU-based Scikit-learn
ML APIs. All ML algorithms use the default settings provided by cuML or
Scikit-learn. Using default settings improves the replicability of our study and
what is more important, makes our findings more general and hence more
referenable in practice. This is because practitioners could not know in advance
what optimal settings are for their BRM tasks at hand, in which case choosing
a relatively better ML in general cases is very likely to be their first step
in building their models. We adopt stratified ten-fold cross-validation during
model building. That is, for each dataset, we first divide it into ten mutually
exclusive subsets of approximately equal size, with each subset being testing
data and the remaining nine subsets as training data. Both the training and
testing data preserved the percentage of samples for each class. Then, for each
pair of training and testing data (10 pairs in total), we perform the model
training and prediction activities. Last, we take the averaged prediction results
of ten rounds as the final performance of built BRM models. Note that, for
the three quite large products, namely Platform, Core, and Firefox, we do not
use all but the latest 50,000 closed/reopened bug reports for model training,
which we think is sufficient to build a representative classifier but with much
less time for model training. Moreover, we only do oversampling to the original
training data of 9 folds. When we test the model, we use the original 1-fold
testing data, which is still imbalanced. We think this is more reasonable than
using balanced testing data to evaluate built models, as the testing data is
imbalanced in real-world situations.

8 http://docs.rapids.ai/api/cuml/stable/
9 http://scikit-learn.org/stable/
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Table 2: Numbers of bug reports for five BRM classification tasks

Project Product
Fixing Time Priority Reassignment Reopen Severity

0-5 days 5-10 days >10 days High Medium Low No Yes No Yes Severe Non-Severe

Eclipse

CDT 2,519 710 9,138 390 16,900 62 11,162 6,190 16,327 1,103 2,269 848
Community 8,077 1,409 9,252 607 23,588 221 21,030 3,386 22,128 2,303 2,986 423
Equinox 2,756 633 4,650 184 13,785 77 9,849 4,197 13,275 813 1,784 482
JDT 6,230 2,689 19,547 4,234 51,939 1,721 35,754 22,140 51,522 6,654 5,943 4,102
Mylyn 1,747 478 2,998 1,955 5,319 655 4,001 3,928 7,193 748 734 1,060
Orion 2,894 585 3,657 541 9,637 132 7,491 2,819 9,935 413 623 262
Papyrus 2,201 444 5,827 307 9,666 17 7,163 2,827 9,667 379 1,493 360
PDE 3,255 893 5,574 485 16,260 103 12,282 4,566 15,714 1,161 1,984 760
Platform 6,355 2,047 15,654 702 48,553 434 33,548 16,141 46,209 3,791 6,904 2,900
z Archived 3,325 1,615 46,863 10,551 65,997 710 14,978 62,280 71,079 6,453 14,230 2,970

Mozilla

Core 8,464 5,095 14,830 8,648 6,774 17,691 31,871 17,141 45,281 4,718 2,010 7,156
DevTools 1,412 693 14,948 6,588 6,730 3,812 7,878 22,924 29,131 2,007 484 1,053
Firefox 3,038 1,946 15,666 11,474 4,697 4,751 30,508 19,090 47,541 2,458 2,071 2,223
Firefox for Android Graveyard 469 196 14,834 3,741 2,186 2,909 5,509 33,637 37,086 2,065 4,328 507
Firefox OS Graveyard 5,584 2,888 21,145 8,786 1,538 427 55,701 14,831 66,812 3,720 3,733 451
MailNews Core 892 373 9,639 1,668 4,113 196 3,618 26,291 28,015 1,980 8,181 1,906
SeaMonkey 1,257 501 19,410 4,013 15,262 863 9,288 83,556 88,501 4,386 22,300 9,221
Testing 4,801 3,160 10,897 2,581 1,297 10,171 22,376 8,278 28,526 2,391 1,042 927
Thunderbird 3,080 962 8,049 622 199 304 36,140 16,377 51,156 1,531 9,131 3,992
Toolkit 3,408 1,680 16,309 5,510 3,118 3,060 20,811 26,716 45,067 2,834 5,279 3,118

3.4.2 Evaluation Metrics

As mentioned previously, the detection of a duplicate bug report is a recom-
mendation task, which recommends a list of bug reports that may be dupli-
cated with a given bug report. In this study, following (Runeson et al., 2007;
Hindle et al., 2016), we calculate the cosine similarity between two semantic
vectors of two bug reports to get the recommendation list. When evaluating
detection performance, we calculate the Recall-N value for the tested bug re-
ports. Here Recall-N refers to the ratio of duplicate bug reports whose master
reports are within the suggested recommendation lists of N bug reports, over
the total number of duplicate bug reports used in the experiment. In this
study, we use N=20 for the duplicate bug detection task.

Recall-N =
# duplicate bugs correctly detected in top N

total # duplicate bugs
(1)

For the other five classification BRM tasks, by following the practice of
prior BRM studies (Xia et al., 2015b; Zhang et al., 2016; Ardimento and Mele,
2020; Jia et al., 2021), we adopt the widely used Precision, Recall, and F1 score
to measure the performance of our models for BRM tasks. The calculation of
the three metrics is shown in the following formula, where S represents a
predicted class label.

Precision =
# bugs correctly predicted as S

# bugs predicted as S
(2)

Recall =
# bugs correctly predicted as S

# bugs of S
(3)

F1-Score =
2× Precision×Recall

Precision+Recall
(4)
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3.5 Research Questions

We try to answer four research questions (RQs) to understand the potential
of word embedding models in bug report management tasks.

RQ1. Which machine learning approach performs best for BRM
tasks on the whole?

To the best of our knowledge, most existing studies take BRM tasks as
classification tasks, which generally apply typical machine learning (ML) al-
gorithms, such as SVM, NB, and RF, to semantic features obtained by classical
information retrieval models like VSM, LDA, etc. We have no idea whether
the findings on existing studies about suitable ML for BRM tasks still hold
under the situation that we use WE models to retrieve bug report semantics.
Hence, we plan to answer this RQ with the aim of helping developers choose
suitable ML for their BRM tasks. We compare four typical and commonly used
ML methods in this paper, including Naive Bayes, Random Forest, Logistic
Regression, and Support Vector Machine.

RQ2. Is there a word embedding model that generally outper-
forms others for BRM tasks?

Semantic retrieval of bug reports is a fundamental step for BRM tasks. For
the five WE models (i.e., Word2Vec, GloVe, FastText, ELMo, and BERT) we
studied in this paper, we attempt to explore whether there is a dominant WE
model that always tends to outperform other WE models for BRM tasks. The
answer to this RQ could guide developers in choosing the most suitable WE
model for their BRM tasks at hand.

RQ3. Do word embedding models outperform the most used
VSM model for BRM tasks?

Before the applications of WE models for BRM tasks, most studies used
the simple and effective VSM model to retrieve the semantics of bug reports.
Compared to VSM, WE models are relatively complex. The performance of
WE models compared to that of VSM is still a question mark. Answering this
question could help us understand whether it is beneficial to use WE or the
VSM model for various BRM tasks.

RQ4. How will the performance change if word embedding mod-
els are fine-tuned with bug data?

To fully exploit the potential of WE models, it is not uncommon for re-
searchers/practitioners to adapt the general pre-trained WE models to their
tasks, through further training those models with domain-specific data. This
naturally inspires us to explore whether we could obtain better prediction
performance of BRM tasks if we further train the general WE models on bug
data. In this study, we choose to further train BERT whose architecture is
designed to facilitate further training. We use a large dataset of bug reports
to further train the general pre-trained BERT. Then, we compare the per-
formance difference between ML models built on feature vectors obtained by
general pre-trained BERT and fine-tuned BERT, to answer this RQ.
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4 Experiment Results

4.1 RQ1. Which machine learning approach performs best for
BRM tasks on the whole?

Approach. To find the most suitable ML algorithm under the situation of
using WE models to retrieve bug report semantic features, we conducted a
series of experiments. For each BRM classification task (duplicate bug report
detection is excluded as it is mainly considered as a recommendation rather
than a classification problem), we first use five WE models to retrieve the
semantics of bug reports for each product (as described in Section 3.1). Then
we apply four ML approaches, namely LR, SVM, RF, and NB, to the feature
vectors of five WE models separately to obtain prediction models. Last, we use
corresponding testing datasets to evaluate the performance of those prediction
models. In other words, we would have 800 prediction results for each BRM
classification task, i.e., 20 products * 4 ML algorithms * 10 WE models with
different dimension sizes = 800. Similarly, each ML would have 20 * 10 = 200
prediction values for each BRM task.

Since our results do not fulfill the residual normality and sphericity assump-
tions of parametric ANOVA, we followed the guidelines by (Demšar, 2006) to
combine non-parametric Friedman test and Nemenyi post-hoc test to do the
statistical comparison of multiple ML over multiple datasets. Friedman test
can tell us whether or not there are statistically significant differences among
three or more populations. If yes, then the Nemenyi test can be applied to
compare the classifier with each other. The Nemenyi test uses the critical
difference (CD) between average ranks to define significantly different popu-
lations. If the distance between the average ranks of two populations is larger
than the CD value, then the two populations are significantly different. Other-
wise, the experimental data is not sufficient to reach any conclusions related to
the compared approaches. A CD diagram is used to visualize the Nemenyi test
results. Such a diagram provides the rank order of compared approaches, the
significance of observed differences, etc. Both the Friedman test and the Ne-
menyi test can only tell us whether there are statistically significant differences
among compared approaches. We further use Cliff’s delta effect size(Macbeth
et al., 2011) to measure how large the difference might be quantitatively. The
non-parametric Cliff’s delta does not require the data to follow certain distri-
butions like the normal distribution. The effect size of Cliff’s Delta is divided
into four levels:|d| < 0.147 (Negligible, N), 0.147 ≤ |d| < 0.333 (Small, S),0.333
≤ |d| < 0.474 (Medium, M) and |d| ≥ 0.474 (Large, L).

Results. Table 3 and Figure 4 present the results of the Friedman test and
the Nemenyi post-hoc test over the F1-scores of four ML algorithms on five
BRM classification tasks. In this study, we use a p-value of 0.05 as the signifi-
cance level threshold. If the p-value of a statistical test is less than 0.05, then
we conclude that there is a statistically significant difference between/among
compared populations. Related to the CD diagrams, a pair of techniques con-
nected with a bold line indicates that the post-hoc test does not detect a
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Table 3: Friedman tests of ML algorithms on five BRM classification tasks

Task Chi-squared Statistic p-value

Fixing Time 419.82 1.12E-90
Priority 512.47 9.42E-111
Reassignment 482.23 3.37E-104
Reopen 523.98 3.02E-113
Severity 409.59 1.85E-88

Fixing Time: Bug Fixing Time Prediction;
Priority: Bug Priority Prediction;
Reassignment: Report Field Reassignment Prediction;
Reopen: Re-opened Bug Prediction task;
Severity: Bug Severity Prediction task;
*The same rules applied to other tables and figures.

Table 4: The magnitude of statistically significant F1 score differences
between ML algorithms for five BRM classification tasks

Recall-N Model Pairs Cliff’s Delta Difference Magnitude

Fixing Time RF vs SVM 0.2689 small
Fixing Time RF vs Logistic 0.43965 medium
Fixing Time RF vs NB 0.5026 large
Fixing Time SVM vs Logistic 0.21775 small
Fixing Time SVM vs NB 0.2603 small
Fixing Time Logistic vs NB 0.0521 negligible
Priority RF vs SVM 0.90745 large
Priority RF vs Logistic 0.99235 large
Priority RF vs NB 0.9936 large
Priority SVM vs Logistic 0.34255 medium
Priority SVM vs NB 0.6328 large
Priority Logistic vs NB 0.46205 medium
Reassignment RF vs SVM 0.1682 small
Reassignment RF vs Logistic 0.29345 small
Reassignment RF vs NB 0.6159 large
Reassignment SVM vs Logistic 0.1139 negligible
Reassignment SVM vs NB 0.4872 large
Reassignment Logistic vs NB 0.44125 medium
Reopen RF vs SVM 0.90745 large
Reopen RF vs Logistic 0.99235 large
Reopen RF vs NB 0.9936 large
Reopen SVM vs Logistic 0.34255 medium
Reopen SVM vs NB 0.6328 large
Reopen Logistic vs NB 0.46205 medium
Severity RF vs Logistic 0.17565 small
Severity RF vs NB 0.6911 large
Severity SVM vs Logistic 0.25895 small
Severity SVM vs NB 0.7292 large
Severity Logistic vs NB 0.56865 large
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Fig. 4: Comparison of all classifiers against each other with the Nemenyi test.
Groups of classifiers that are not significantly different (p-value>0.05) are con-
nected with the bold line(s).

significant difference in F1 scores between them (e.g., the pair of RF and SVM
in the bug severity prediction task in Figure 4).

From the p-values in Table 3, we can conclude that there indeed exists a
statistically significant difference among the four ML methods for every stud-
ied BRM classification task. Further, from the CD diagram in Figure 4, we can
find that RF achieved the best performance ranks among four ML algorithms
on all five BRM classification tasks. All performance differences between them
are statistically significant except the pair of RF and SVM in the bug sever-
ity prediction task. To understand the magnitude of performance differences
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between these ML approaches, we further calculate their corresponding Cliff’s
delta effect sizes. The results are shown in Table 4. From the table, we can
find that the F1-score difference between RF and SVM ranges from small to
large over four BRM tasks; the performance difference over the bug severity
prediction task is excluded in that it shows no statistical significance in the
CD diagram. The performance differences between RF and LR/NB are also
obvious according to Cliff’s delta effect sizes, with 6 large, 1 medium, and 1
small magnitude levels respectively on five BRM classification tasks. Similarly,
we can conclude that SVM outperforms LR and NB while LR outperforms NB
in five BRM classification tasks.

Finding 1. RF performs best among studied traditional ML algorithms, the
F1-score difference between RF and the other three ML algorithms ranges
from small to large (mostly large) according to Cliff’s delta effect sizes.

4.2 RQ2. Is there a word embedding model that generally
outperforms others for BRM tasks?

Approach. Similar to RQ1, we use the same statistic tests, i.e., Friedman test,
Nemenyi test, and Cliff’s delta effect size, to compare the studied WE models
over 20 products on six studied BRM tasks. In detail, for the five BRM tasks,
we would collect the F1 scores by applying four ML algorithms to feature vec-
tors of bug reports obtained by different WE models. As for the duplicate bug
report detection task, for each duplicate bug report, we would first calculate
the cosine similarities between the WE vectors of this bug report and all its
previous bug reports; then, a rank list is created from those similarity scores,
where bug reports with the largest scores ranked first in the list. Based on the
rank lists of all duplicated bug reports and the ground truth, i.e., duplicate
pairs obtained in Section 3.4.1, we can compute the Recall-N values. We con-
sider five N values in this study, namely 1/5/10/15/20, indicating providing a
rank list of the most similar 1/5/10/15/20 bug reports for a given duplicate
bug report. When we compare the WE models over the duplicate bug report
detection task, we conduct the statistical tests over Recall-1, Recall-5, Re-
call=10, Recall-15, and Recall-20, respectively. For BRM classification tasks,
each WE model would have a population of 80 prediction result samples, i.e.,
4 ML algorithms * 20 products, used to perform statistical tests; while for the
cosine-similarity-based duplicate bug detection task, the number would be 20
(we conduct experiments on 20 products) at each level of Recall-N.
Results. (a) Comparison of FastText/GloVe with different dimen-
sion sizes. As mentioned in Section 3, the official websites provide several
dimension options for some pre-trained WE models. For example, users can use
GloVe-50/100/200/300 to obtain a GloVe embedding vector with 50/100/200/300
elements separately. To understand the possible effects of dimension sizes over
BRM tasks, we compare the prediction performance of using different dimen-
sion sizes for pre-trained FastText (100/200/300) and GloVe (50/100/200/300).
We first check the Friedman test results and find that all p-values are <0.05
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(detailed test results can be found in the Appendix Table 12). Hence, we can
conclude that there indeed exists pre-trained FastText/GloVe with a certain
dimension size that performs differently than others.

By further checking the CD diagrams in Figure 5, 11, 12, 13 (Fig. 11-13
show a similar trend with Fig. 5, we place them in the Appendix section) we
can find that, on five BRM classification tasks, FastText-300 performs best,
with FastText-200 being the second best; the only exception is that we cannot
conclude whether FastText-200 performs better or not than FastText-100 on
the bug fixing time prediction task as the test result is not statistically signif-
icant (connected with a bold line). As for GloVe, we can find that except for
the connected pair of GloVe-100 and GloVe-50 in the bug report reassignment
task (no conclusion can arrive), GloVe models generated larger vectors always
perform better than those with smaller dimension sizes on the five BRM clas-
sification tasks. As for the duplicate bug report detection task, we cannot tell
whether GloVe-300 performs better than Glove-200 or not, but we can tell
that GloVe-300 and GloVe-200 perform better than GloVe-50. The differences
between pairs (GloVe-200, GloVe-100), (GloVe-100, GloVe-50) also have no
statistical significance, indicating no conclusion can be arrived.

Finding 2. On the whole, pre-trained FastText/GloVe with the largest
dimension size perform better than other smaller dimension sizes over six
studied BRM tasks.

Table 5: Friedman tests of five WE models on five BRM classification tasks
and the duplicate BR detection task

Five BRM Classification Tasks Duplicate BR Detection

Task
Chi-squared

Statistic
p-value Recall-N

Chi-squared
Statistic

p-value

Fixing Time 0.44 9.79E-01 Recall-1 71.12 1.31E-14
Priority 18.83 8.45E-04 Recall-5 75.71 1.40E-15
Reassignment 7.85 9.72E-02 Recall-10 76.63 8.96E-16
Reopen 45.73 2.80E-09 Recall-15 76.63 8.96E-16
Severity 17.21 1.75E-03 Recall-20 76.36 1.02E-15

(b) Comparison of five WE Models. Based on the above analysis, we
decided to use GloVe-300 and FastText-300 while comparing the performance
of five WE models, that is, FastText-300, GloVE-300, Word2Vec-300, BERT-
768, ELMo-1024. Similarly, we resort to the Friedman test results in Table 5
and CD diagrams in Figures 6 and 7, to help us compare these models. From
the Friedman test results, we find that nothing can be concluded on the bug
fixing time prediction and bug report field reassignment tasks as the tests are
not statistically significant. For the remaining BRM classification tasks, we can
find that most pairs are connected with bold lines, indicating we cannot deter-
mine whether the connected WEs perform the same. Only a few comparisons
show statistically significant performance differences, such as the ELMo-1024
performs better than FastText-300 on the bug priority prediction task. As
for the duplicate bug report detection task, at different recommendation list
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Fig. 5: Comparison of FastText with different dimension sizes on five BRM
classification tasks with the Nemenyi test. Groups of FastText-N that are not
significantly different (p-value>0.05) are connected with the bold line(s).

sizes, i.e.,1/5/10/15/20, we can find that the group of small WE models that
generate smaller embedding vectors, namely FastText-300, GloVe-300, and
Word2Vec-300 generally perform better than the relatively larger group of WE
models, including BERT-768 and ELMo-1024. But we cannot tell whether one
performs better or not than another one within the small WE group or large
WE group, as the connected bold lines indicate statistically non-significant
differences.
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Fig. 6: Comparison of five WE models against each other on five BRM clas-
sification tasks with the Nemenyi test. Groups of WE models that are not
significantly different (p-value>0.05) are connected with the bold line(s).

Finding 3. In most cases, we did not detect statistically significant per-
formance differences among five WE models in five BRM classification
tasks; on the duplicate bug report detection task, small WE models (Fast-
Text/GloVe/Word2Vec that generate 300-dimensional embedding vectors)
performed better than relatively large WE models (BERT and ELMo that
generate 768 and 1024-dimensional vectors separately).
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Fig. 7: Comparison of five WE models against each other on the duplicate
BR detection task with the Nemenyi test. Groups of WE models that are not
significantly different (p-value>0.05) are connected with the bold line(s).

4.3 RQ3. Do word embedding models outperform the most used
VSM model for BRM tasks?

Approach. To compare the effectiveness between VSM and the word embed-
ding techniques, we build different classification and recommendation models
where VSM and the five WE models are used to extract the semantic features
of bug reports separately for the six BRM tasks on 20 products from Eclipse
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and Mozilla. For the five BRM classification tasks, we chose RF as the clas-
sifier as it performed better than other traditional ML algorithms in RQ1.
The term weighting strategy of VSM we used is the tf-idf. As suggested in
(Demšar, 2006), instead of using the Nemenyi post-hoc test for the case when
all approaches are compared to each other, Bonferroni-Dunn test (Dunn, 1961)
is more powerful than Nemenyi test in the specific case when all approaches
are compared with a control one as it controls the family-wise error in mul-
tiple hypothesis testing. Hence, we use the Bonferroni-Dunn test to compare
all WE models to the controlled model, namely VSM. The test results can be
found in the CD diagrams shown in Figures 8 and 9. In the figures, VSM is the
controlled model. For each subfigure, a bold line is drawn to mark an interval
where all WE models with ranks outside the marked interval are significantly
different from the control VSM at p-value<0.05.
Results. From the results in Figure 8, we can find that for three out of
five BRM classification tasks (i.e., bug fixing time prediction, bug priority
prediction, bug report field reassignment prediction), we cannot arrive at any
conclusion about whether WE models perform better or not than VSM, as
all statistical tests are not statistically significant (the ranks of all WEs are
within the marked interval bold line).

For the bug severity prediction and reopened bug prediction tasks, we
can tell that the small WE models, namely FastText-300, GloVe-300, and
Word2Vec-300 perform worse than the traditional VSM; while we cannot con-
clude whether the relatively large WEmodels, namely Bert-768 and ElMo-1024
perform the same with VSM or not. For the comparisons between VSM and
those small WE models that show statistically significant performance differ-
ences, we further check the magnitude of these differences by Cliff’s delta effect
size. Table 6 shows the results. From the table, we can find that the magnitude
of F1 score differences between VSM and the three small WE models on the
bug severity prediction task are all small, while for the reopened bug predic-
tion task, the difference is negligible according to Cliff’s delta effect sizes. As

Table 6: The magnitude of statistically significant F1 score differences
between small WE Models and VSM for two BRM classification tasks

Task Model Pairs Cliff’s Delta Difference Magnitude

Severity fastText-300 vs VSM -0.185 small
Severity glove-300 vs VSM -0.270 small
Severity word2Vec-300 vs VSM -0.235 small
Reopen fastText-300 vs VSM -0.030 negligible
Reopen glove-300 vs VSM -0.025 negligible
Reopen word2Vec-300 vs VSM -0.020 negligible

for the recommendation task, i.e., duplicate bug report detection, we can find
that at all recommendation levels, namely, 1,5,10,15,20, in most cases except
the three comparisons of VSM and FastText-300 (no statistically significant
RecallN difference is detected), VSM always achieved the best RecallN scores
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Fig. 8: Comparison of five WE models against VSM on five BRM classification
tasks with the Bonferroni-Dunn test. Models with ranks outside the marked
interval line are considered significantly different from the VSM.

than WE models. Similarly, we further check the magnitude of RecallN differ-
ences for those comparisons with statistical significance. The results are shown
in table 7. The table shows that all differences between VSM and other WE
models are large based on Cliff’s delta effect size values.

Finding 4. Most comparisons of WE models over VSM on five BRM classi-
fication tasks do not show statistical significance from the Bonforroni-Dunn
tests; for the duplicate bug report detection task, VSM is found to outper-
form WE models, with a large RecallN difference according to the Cliff’s
delta effect size.
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Fig. 9: Comparison of five WE models against VSM on the duplicate BR
detection task with the Bonferroni-Dunn test. Models with ranks outside the
marked interval line are considered significantly different from the VSM.

4.4 RQ4. How will the performance change if word embedding
models are fine-tuned with bug data?

Approach. This RQ aims to investigate how the performance of WE models
would change when they are fine-tuned on a domain-specific corpus. To this
end, we first constructed a bug dataset of more than 3 million bug reports
crawled from the Eclipse, Mozilla, and Apache foundations. We extract the
summary and description from each bug report and then feed them sentence
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Table 7: The magnitude of statistically significant Recall-N differences
between WE models and VSM for the duplicate BR detection task

Recall-N Model Pairs Cliff’s Delta Difference Magnitude

Recall-1 Bert vs VSM -0.620 large
Recall-1 ElMo vs VSM -0.740 large
Recall-1 fastText-300 vs VSM -0.675 large
Recall-1 glove-300 vs VSM -0.545 large
Recall-1 word2vec-300 vs VSM -0.500 large
Recall-5 Bert vs VSM -0.765 large
Recall-5 ElMo vs VSM -0.850 large
Recall-5 glove-300 vs VSM -0.720 large
Recall-5 word2vec-300 vs VSM -0.690 large
Recall-10 Bert vs VSM -0.815 large
Recall-10 ElMo vs VSM -0.875 large
Recall-10 glove-300 vs VSM -0.770 large
Recall-10 word2vec-300 vs VSM -0.705 large
Recall-15 Bert vs VSM -0.840 large
Recall-15 ElMo vs VSM -0.890 large
Recall-15 glove-300 vs VSM -0.815 large
Recall-15 word2vec-300 vs VSM -0.755 large
Recall-20 Bert vs VSM -0.855 large
Recall-20 ElMo vs VSM -0.890 large
Recall-20 glove-300 vs VSM -0.820 large
Recall-20 word2vec-300 vs VSM -0.795 large

by sentence to the general pre-trained BERT, i.e., the bert-base-uncased model
downloaded from HuggingFace 10. We chose BERT’s built-in Masked Language
Model (MLM) task during the further training to let the general pre-trained
BERT capture the deeper contextual semantics of bug data. With MLM, the
model is trained to fill in the missing tokens in a text where certain tokens
are masked or replaced with a special token, typically “[MASK]”. After we
obtained the fine-tuned BERT (named ftBERT), we use ftBERT to extract
the semantics of bug reports and then perform the six BRM tasks. We also
collect the F1 scores of five BRM tasks and RecallN of the duplicate bug
report detection task after adopting ftBERT for semantic extraction. Then,
we compare the performance of using ftBERT with that of general pre-trained
BERT. As the comparison only involves two models, we use the Wilcoxon
signed ranks test to determine whether the F1 score or RecallN difference
is statistically significant. The Wilcoxon singed-ranks test is non-parametric.
It assumes commensurability of differences but only qualitatively, does not
assume normal distributions of samples, and is less affected by outliers than
the alternative paired t-test (Demšar, 2006). After conducting the Wilcoxon
test, we use the Cliff’s delta effect size to identify the magnitude of such a
difference.

Results. Table 8 shows the test results and the associated effect sizes over five
BRM classification tasks. The table shows that the Wilcoxon signed-ranks test

10 http://huggingface.co/bert-base-uncased
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Table 8: Wilcoxon signed ranks tests and the magnitude of F1 score
differences between general pre-trained BERT and fine-tuned BERT over five

BRM classification tasks

Task P-value Cliff’s Delta Difference Magnitude

Fixing Time 2.3334E-05 0.0463 negligible
Priority 0.2124 -0.0072 negligible
Reassignment 0.0037 -0.0278 negligible
Reopen 0.0041 0.0669 negligible
Severity 0.2517 0.0106 negligible

Table 9: Wilcoxon signed ranks tests and the magnitude of Recall-N
differences between general pre-trained BERT and fine-tuned BERT on the

duplicate BR detection task

Recall-N P-value Cliff’s Delta Difference Magnitude

Recall-1 0.0172 0.0650 negligible
Recall-5 0.3144 0.0375 negligible
Recall-10 0.7841 -0.0050 negligible
Recall-15 0.5958 0.0000 negligible
Recall-20 0.2772 -0.0025 negligible

detects a statistically significant F1 score difference between the general pre-
trained Bert and the fine-tuned BERT (i.e., ftBERT) on three out of five BRM
classification tasks. They are fixing time prediction, reopened bug prediction,
and bug report field reassignment prediction tasks. By further referring to
Cliff’s delta effect sizes, we can say that the pre-trained BERT performs better
than the ftBERT, but the difference is negligible.

As for the duplicate bug report detection task shown in Table 9, except
the Recall 1, all comparisons do not show statistically significant differences.
In other words, we cannot conclude whether the fine-tuned BERT is better
than the general pre-trained BERT based on our experimental results.

Finding 5. We only detect a negligible performance difference between
fined-tuned BERT and the general pre-trained BERT on three out of six
BRM tasks. Other comparisons do not show statistical significance from the
Wilcoxon signed-ranks tests.

5 Discussion

In this section, we first discuss the potential effect of hyperparameter tuning
of RF on arrived conclusions. Then we introduce the implications of our work.
Last, we present the threats to the validity of our study.



An Empirical Study on the Potential of WE Techniques in BRM Tasks 33

5.1 Hyper Parameter Tuning

Motivation. Among the six BRM tasks, five of them are classification tasks,
which involve applying a specific ML algorithm to WE-based or VSM-based
semantic representations of bug reports. Given that an ML algorithm generally
has some hyperparameters whose values could also be set by users, and it is not
uncommon for practitioners to tune these hyperparameters to obtain optimal
hyperparameter settings for their adopted ML models, we also checked whether
the hyperparameter tuning would affect our arrived conclusions in this study.
This could help us understand whether hyperparameter optimization plays a
role in our arrived sort of counterintuitive results, i.e., with default parameter
settings, we did neither find the advantage of using WE over VSM in studied
BRM tasks nor the performance improvement of fine-tuning the general pre-
trained BERT with bug data.

Approach. Specifically, for five BRM classification tasks11, we decided
to perform hyperparameter tuning on the RF classifier after we obtained the
semantic representations of bug reports through the WE or VSM models. RF
is an ensemble method that constructs multiple decision trees at training time
and leverages their power to make predictions. Its hyperparameters include the
number of samples or features used to train a meta tree, the number of meta
trees to be constructed, the maximum depth of a tree, the minimum number
of samples required to split an internal node, etc. Each hyperparameter is
associated with a value range, e.g., for the number of samples used to construct
a tree, its value range is (0.0,1.0] (e.g., 0.1 means 10 percent of all samples are
used to build a meta tree).

Given the constraints of combinatorial explosion and computational re-
source limitations, it is generally impractical to test all possible hyperparam-
eter settings when tuning the RF. Hence, we adhere to the common practice
that using a well-chosen subset of the hyperparameter space to find the opti-
mal settings for each dataset. Detailedly, inspired by the findings of RF tuning
studies that are widely recognized by the research community (Probst et al.,
2019b,a; Probst and Boulesteix, 2018), we decided to fine-tune two hyperpa-
rameters, namely the number of samples used to build a tree (referred to as
sampleNum), and the number of features used to construct a tree (referred
to as featureNum), in that they are found to be most important and tunable
(may have a significant effect on results). For other less important and rela-
tively untunable hyperparameters (like the number of trees to be constructed
(Probst et al., 2019a)), since the settings of sampleNum and featureNum ac-
tually have inexplicitly placed constraints on their value options (e.g., affect
the depth of a tree (Probst et al., 2019b)), we think it is acceptable to focus
on tuning the two hyperparameters.

During hyperparameter tuning, we choose five values for the sampleNum
hyperparameter: 0.2*N, 0.4*N, 0.6*N, 0.8*N, and 1.0*N, where N is the num-

11 Duplicate bug report detection is a recommendation task that does not involve applying
ML algorithms, hence not considered here.



34 Bingting Chen et al.

Table 10: The magnitude of statistically significant F1 score differences be-
tween WEModels and VSM for BRM classification tasks after hyperparameter
tuning.

Task Model Pairs Cliff’s Delta Difference Magnitude

Fixing Time word2vec-300 vs VSM 0.09 negligible
Reassignment elmo-1024 vs VSM -0.035 negligible
Reopen glove-300 vs VSM -0.020 negligible
Reopen fastText-300 vs VSM -0.025 negligible
Severity word2Vec-300 vs VSM -0.130 negligible
Severity glove-300 vs VSM -0.185 small
Severity elmo-1024 vs VSM -0.125 negligible

ber of training instances. By default, RF constructs each meta tree using all
N training instances. For the featureNum hyperparameter, we choose seven
values, namely sqrt(M), log2(M), 0.1*M, 0.2*M, 0.3*M, 0.4*M, 0.5*M, where
M is the number of instance features (e.g., M would be 300 for 300-dimensional
Word2Vec model, and M would be the number of all unique words in the VSM
model). sqrt(M) and log2(M) are two recommended value options by the cuML
and scikit-learn libraries. In both cuML and scikit-learn, the default value is
sqrt(M). Given that it is generally best practice to use only a limited number
of features to construct each tree so that RF can ensure its diversity of meta
trees (such diversity could help RF improve its predictive performance, reduce
overfitting, and effectively handle complex datasets with many features), we
decide not to consider larger featureNum (i.e., >0.5*N and <=1.0*N). Hence,
we would have 35 combinations (5*7=35) of sampleNum and featureNum. For
each BRM classification task, we rerun our experiments with each parameter
combination on every dataset whose bug reports are represented by five pre-
trained WE, the VSM, and the fine-tuned WE (ftBERT), with parameters
besides sampleNum and featureNum still using their default settings. In total,
we would repeat our whole experiments with RF 245,000 times (35 parameter
combinations * 5 BRM tasks * 20 projects * 7 semantic representations * 10
stratified cross-validation).

Results. After we performed hyperparameter tuning, we retrieved the best
F1 scores from 35 parameter combinations for each dataset of five BRM tasks.
Then, we compared the performance of BRM techniques using WE models
and that of using VSM. Similarly, we also checked the performance between
BRM techniques using general pre-trained WE and the fine tuned WE with
bug data. Details are as follows.

(a) WE vs. VSM after hyperparameter tunning. We used the same
statistical method as RQ3 to explore whether WE models show advantages
over VSM in five BRM classification tasks after hyperparameter tuning over
RF. Fig. 10 shows the results. From the figure, we can find that most compar-
isons between WE and VSM are still not statistically significant after hyper-
parameter tuning (their ranks are within the marked interval bold line), just
like that by using default hyperparameter settings in Fig. 8.
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Fig. 10: Comparison of five WEmodels against VSM on five BRM classification
tasks with the Bonferroni-Dunn test after hyperparameter tuning. Models with
ranks outside the marked interval line are considered significantly different
from the VSM.

Only few performance comparisons between WE models and the VSM
show statistical significance, which means we can tell which one is better from
the statistical perspective. Specifically, for the bug-fixing time prediction task,
Word2Vec outperformed the VSM. For the bug priority prediction task, all
comparisons are not statistically significant. For the bug field reassignment
prediction task, ELMo performed worse than the VSM. For the reopened bug
prediction task, GloVe and FastText performed worse than the VSM. For the
bug severity prediction task, three WE models including Word2Vec, GloVe,
and ELMo, performed worse than the VSM. To understand how large these
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performance differences are, we further computed their Cliff’s delta effect size
as shown in Table 10. From the table, we can see that only the magnitude of
F1 score differences between VSM and GloVe on the bug severity prediction
task is small, with all others being negligible according to Cliff’s delta effect
sizes. In other words, whether we performed hyperparameter tuning or not,
we did not find the advantages of using WE models over the VSM model on
the five BRM classification tasks.

(b) General pre-trained BERT vs. ftBERT after hyperparame-
ter tuning. After we obtained the embedding vectors of general pre-trained
BERT and the fine-tuned BERT, we also tuned RF with different combina-
tions of sampleNum and featureNum to these instance feature vectors to build
prediction models with different performances. Then, the models with the best
prediction performance are selected to compare the general pre-trained BERT
and ftBERT in the five BRM classification tasks. Like in RQ4, we use the
Wilcoxon signed ranks test to determine whether the F1 score difference be-
tween general pret-trained BERT and the ftBERT is statistically significant
or not, and use Cliff’s delta effect size to identify the difference magnitude.
Table 11 shows the corresponding test results. From the table results with
hyperparameter tuning, we can find that all F1 score differences between the
general pre-trained BERT and the ftBERT are negligible according to Cliff’s
delta effect size; this is similar to that of using default hyperparameter set-
tings. But we cannot tell whether these negligible differences are a fact or just
caused by accident, as the p-values of their Wilcoxon signed ranks tests are
all larger than 0.05 (which means no statistical significance was detected).

Table 11: Wilcoxon signed ranks tests and the magnitude of F1 score
differences between general pre-trained BERT and fine-tuned BERT over five

BRM classification tasks after hyperparameter tuning.

Task P-value Cliff’s Delta Difference Magnitude

Fixing Time 0.8408 0.01 negligible
Priority 0.1327 -0.01 negligible
Reassignment 0.5958 0.00 negligible
Reopen 0.4524 0.02 negligible
Severity 0.1536 0.06 negligible

5.2 Implication

We would recommend practitioners use RF to build their BRM
classifiers when pre-trained WE models are used to represent the
semantics of bug reports. In RQ1, we find that RF generally outperformed
the other ML classifiers (SVM, NB, and LR) based on various WE-based
semantic feature representations of bug reports. The performance differences
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among them ranged from small to large (mostly large) measured by Cliff’s
delta effect sizes. Such an advantage, to a certain degree, may be due to the
fact that RF is an ensemble method based on a list of meta-decision trees,
which can combine the advantages of different meta-classifiers for learning
specific semantic aspects of bug reports. Moreover, during our experiments,
we found that as an ensemble approach, the training process of RF is actually
not slower than, e.g., the second-best SVM. Hence, RF would be a good choice
for practitioners to build BRM models based on WE feature vectors of bug
reports. Further, if practitioners choose RF as their BRM classifier, it would
be suitable for them to use the default parameter settings when they need to
further decide which pre-trained WE to use, as the conclusion would not make
much difference based on our hyperparameter tuning results in Sect. 5.1.

Practitioners have a relatively high degree of freedom when choos-
ing which WE model to use in their BRM tasks as none of them
is dominant, but larger FastText/GloVe is more recommended than
their smaller versions once FastText/GloVe is their option. The statis-
tical test results in RQ2 indicate that we cannot conclude whether a dominant
WE model exists for five BRM classification tasks. This means practitioners
are more free to choose WE models that they can consider more about their
concrete task constraints, such as computing power, storage space, or room
for future fine-tuning. Further, if practitioners decide to use FastText/GloVe
for semantic retrieval in their BRM tasks, we recommend they use the largest
ones, i.e., FastText-300/GloVe-300, as they are found to generally perform
better than their smaller versions such as FastText-100/GloVe-50. This is also
consistent with the statement that for a general pre-trained WE model, the
larger dimension generally means the more information it can capture. The
FastText-300/GloVe-300 (actually also includes the Word2Vec-300) also per-
form better than other large-WE models (BERT-768/ELMo-1024) for the du-
plicate bug report detection task based on our experimental results.

The traditional VSM is still a good option of semantic representa-
tion for BRM tasks. From the results of RQ3, regardless of whether they
show statistically significant differences or not, we find that the traditional
VSM generally gets better performance than WE models when combined with
traditional ML methods. We think the reason may lie in the not important or
noisy terms. For the VSM model, the tf-idf value may do reveal the importance
of a term in a bug report. While in the use of WE models, the importance of
key terms is weakened. That is, in general settings of using WE models for
bug report semantic extraction, each term is represented as an N-dimensional
numeric vector first, and then an average pooling strategy is applied to these
vectors to get a final N-dimensional vector for a bug report. As the number
of important terms is generally much smaller than that of insignificant terms,
averaging them would flatten the importance of key terms but relatively in-
crease the influence of less important terms. Whatever the reason, at least
from the performance perspective, the traditional VSM is still a good choice
for practitioners to use in their BRM tasks, especially in the duplicate bug re-
port task. Further, it should be noted that, for five BRM classification tasks,
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we find that the performance difference between the VSM and five WE models
is quite small. Hence, if practitioners focus more on other aspects than per-
formance such as the computation cost, we think it would be a good choice to
use pre-trained WE models (in our experiments, the sparse, high-dimensional
semantic vector of the VSM costs much more training time than the smaller
N-dimensional vectors of WE models (N ranged from 50 to 1024)).
Further efforts are required to help WE models better learn the se-
mantics of bugs. In RQ4, we find that using the fine-tuned BERT with bug
data to represent the semantics of bug reports did not achieve better BRM per-
formance than the general pre-trained BERT. This may lie in the knowledge
gap between general website contents and domain-specific bug data, which is
still not learned well by using the built-in objective task to further train the
general pre-trained BERT. Or it may be the quality of the textual content of
bug reports is not high and the embedded noisy information adversely affects
the fine-tuning process. In the future, one valuable attempt would be to test
or develop new objective tasks to fine-tune general pre-trained WE models
to better capture the domain knowledge of bug reports. Meanwhile, we think
it would be interesting and valuable to combine key term identification tech-
niques (which help reduce noisy bug information) with WE models to perform
semantic retrieval of bug reports.

5.3 Threats to Validity

Internal Validity The experimental design method used in the empirical
study does have an impact on the results. In our work, we try our best to
follow the literature of previous experiments for each step in the experiment. In
order to make the experimental results more reliable, researchers may repeat
the whole process many times, such as Bennin et al. (Bennin et al., 2019),
Giger et al.(Giger et al., 2010) (they repeated 10 times). In our experiment,
we do not repeat each BRM task on the same open-source software multiple
times. Nevertheless, we use the following strategies for experiments instead: 1)
the top 10 products in each open source project are selected for experiments,
which is equivalent to conducting 10 repeated experiments on that project; 2)
four machine learning classification methods are used for each WE technique,
which equals to conducting 4 repeated experiments for that WE technique; 3)
last, we perform 10-fold cross-validation during model building for each BRM
classification task. The above-repeated experiments to some extent ensure the
reliability of our observations in the study.

External Validity Our experiments are conducted on all open-source
projects from Eclipse and Mozilla with varied scale sizes. We cannot guaran-
tee that our arrived conclusions could be applicable to other OSS projects,
non-open-source projects, or commercial projects. However, considering that
all selected experimental projects are typical software products with active
developments among developers and are popular among users, this makes us
believe that our findings still shed some light on the adoption of word embed-
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ding techniques in BRM tasks. We encourage future research to replicate our
studies in bug reports from other projects to further improve the generaliz-
ability of our findings. Another threat is that we only use the oversampling
strategy to solve the data imbalance problem. Whether the conclusions could
hold for other imbalanced-data-handling strategies such as SMOTE is still
unknown. Further consideration arises from our methodology in constructing
experimental datasets, we perform average pooling to word embedding vectors
to obtain the final instance features. Actually, besides the commonly-used av-
erage pooling (Deshmukh et al., 2017; Messaoud et al., 2022), there also exist
other pooling strategies such as max pooling. We cannot guarantee that our
conclusions still hold when tested with other pooling strategies. We encourage
researchers to replicate our studies to further improve the generalizability of
our work in the future.

6 Related Work

Among various kinds of bug report management technologies, a common pro-
cess is to extract the textual semantics of bug reports. The extracted semantics
would be used as an important source of features that are fed into e.g., a clas-
sification model or recommendation model, to help build models to finish a
series of BRM tasks. Hence, it is full of important to explore semantic ex-
traction approaches for bug reports. Our study is also a study that focuses
on investigating the potential of word embedding models in semantic feature
extraction of bug reports. Based on the way in semantic extraction, we divide
existing studies into two parts. One is to introduce existing BRM studies that
use traditional information-based approaches to represent the semantics of bug
reports, such as VSM, LDA, etc. The other one is to introduce BRM studies
that try to adopt word embedding techniques to extract the semantics of bug
reports. They are as follows.

IR-Based Semantic Extraction To the best of our knowledge, a ma-
jority of bug report management tasks generally use traditional IR-based ap-
proaches to represent the textual semantics of bug reports, including VSM,
Latent Dirichlet Allocation (LDA), and Latent Semantic Indexing (LSI), etc.
VSM uses a numeric vector to represent a bug report. The length of the vector
is the number of unique words in a corpus. Each element the vector repre-
sents a unique word and its numeric value represents the weight (e.g., term
frequency) of the word in the bug report. As a classic information retrieval
method, VSM is used in many BRM tasks and those tasks often use the term
frequency-inverse document frequency (TF-IDF) to weigh the terms of bug re-
ports, those tasks include bug localization (Wang et al., 2014; Tantithamtha-
vorn et al., 2018; Liu et al., 2019), duplicate bug detection (Runeson et al.,
2007; Jalbert and Weimer, 2008; Wang et al., 2008; Tian et al., 2012), bug
priority prediction (Tian et al., 2013; Alenezi and Banitaan, 2013; Tian et al.,
2015; Izadi et al., 2022), and other tasks (Giger et al., 2010; Xia et al., 2015b,a;
Zhang et al., 2022). LSI is an indexing and retrieval method that can identify
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the relationship between the terms and concepts contained in an unstructured
collection of text by using mathematical techniques such as Singular Value De-
composition (SVD). It is used in earlier, for example, bug localization studies
(Poshyvanyk et al., 2006, 2007) or as a baseline or complementary part to later
studies (Lukins et al., 2008; Chawla and Singh, 2014). LDA is a topic model
that represents a document with a distribution of topics. Its representation
is a normalized vector in the topic space by converting a bag-of-words docu-
ment from a word space into a topic space. It is usually applied in duplicate
bug detection task (Nguyen et al., 2012; Han et al., 2012; Hindle et al., 2016;
Aggarwal et al., 2017).

WE-Based Semantic Extraction With the development of word em-
bedding technologies in the NLP area, more and more researchers also adopt
WE techniques to do semantic extraction in their BRM tasks at hand. Existing
BRM studies mainly use Word2Vec, GloVe, FastText, etc (Budhiraja et al.,
2018a; Jia et al., 2021; Ciborowska and Damevski, 2022). For Word2Vec (sup-
porting skip-gram and CBOW), since existing studies of Word2Vec(Mikolov
et al., 2013a,b) showed that the skip-gram model was better than the CBOW,
researchers mostly used the skip-gram model for experiments (at the time it
was mostly called skip-gram rather than Word2Vec). Yang et al. (Yang et al.,
2016) propose an approach that computes and combines two similarity scores
based on word embedding vectors by using the skip-gram model and TF-IDF
vectors to recommend similar bug reports. Budhiraja et al. also use the skip-
gram model to extract semantics for duplicate bug detection task (Budhiraja
et al., 2018a,b). With the development of other word embedding techniques
besides Word2Vec, some researchers also try to use more word embedding tech-
nologies and compare them with traditional technology in their BRM tasks.
Cheng et al. (Cheng et al., 2020) applied Wor2Vec to bug localization task
and compared it with TF-IDF. Ciborowska el al. (Ciborowska and Damevski,
2022) compare BERT and VSM in bug localization task. Ardimento et al.
(Ardimento and Mele, 2020; Ardimento, 2022) used fine-tuned BERT to pre-
dict bug fixing time and conducted a comparative experiment between BERT
and DistilBERT. Kumar et al. (Kumar et al., 2021) applied CBOW, skip-
gram, GloVe, Word2Vec, FastText, BERT and GPT to predict bug severity
and also compared it with TF-IDF. Jia et al.(Jia et al., 2021) use FastText to
get embedding vectors for the bug report severity prediction task.

To better mine the advantages of word embedding models and neural net-
works, some researchers propose to combine them to perform their BRM tasks
(Sepahvand et al., 2020; Izadi et al., 2022). Xiao et al. (Xiao et al., 2017) and
Guo et al. (Guo et al., 2020) use Word2Vec to extract the semantic informa-
tion of a bug report and then feed the semantic vector to Convolutional Neural
Networks (CNN) for bug report management downstream tasks. Deshmukh et
al. (Deshmukh et al., 2017) propose a retrieval and classification model using
Siamese CNN and Long Short Term Memory (LSTM) for accurate detection
and retrieval of duplicate and similar bugs. They mainly use Word2Vec and
GloVe to extract semantics from bug reports.
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7 Conclusion

In this paper, we conduct an empirical study to explore the potential of pre-
trained word embedding models in six BRM tasks. Our whole work aims to
answer four research questions, related to the best-performance machine learn-
ing algorithm under various word embedding models, the best-performance
word embedding model under various machine learning algorithms, the per-
formance difference between word embedding models and the vector space
model in semantic extraction, and the value of fine-tuning general pre-trained
WE models with bug data. Based on experiments over a set of OSS products,
we obtain a list of actionable findings that developers could refer to in choos-
ing suitable techniques for building relevant bug report management models.
Our study also indicates that it would be rewarding for researchers to conduct
more cross-domain research in BRM tasks and even other software engineering
tasks involving textual semantic extraction.
Data availability. The datasets and code scripts for replication are available
in the BRMWEStudy repository12.
Conflict of Interest. The authors declared that they have no conflict of
interest.
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Appendix

The Friedman test results and three CD graphs mentioned in the results part of Section 4:
RQ2-(a) are as follows:

Table 12: Friedman tests of FastText and GloVe with different dimension
sizes on five BRM classification tasks and the duplicate BR detection task

Five BRM Classification Tasks

FastText GloVe

Task Chi-squared Statistic p-value Chi-squared Statistic p-value

Fixing Time 73.67 1.00E-16 133.99 7.44E-29
Priority 93.32 5.42E-21 138.31 8.72E-30
Reassignment 91.2 1.57E-20 155.54 1.67E-33
Reopen 63.7 1.47E-14 121.91 2.97E-26
Severity 82.42 1.26E-18 141.61 1.69E-30

Duplicate BR Detection

FastText GloVe

Recall-N Chi-squared Statistic p-value Chi-squared Statistic p-value

Recall-1 40 2.06E-09 60 5.87E-13
Recall-5 40 2.06E-09 60 5.87E-13
Recall-10 40 2.06E-09 60 5.87E-13
Recall-15 40 2.06E-09 60 5.87E-13
Recall-20 40 2.06E-09 60 5.87E-13
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Fig. 11: Comparison of FastText with different dimension sizes on the duplicate
BR detection task with the Nemenyi test. Groups of FastText-N that are not
significantly different (p-value>0.05) are connected with the bold line(s)
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Fig. 12: Comparison of GloVe with different dimension sizes on five BRM
classification tasks with the Nemenyi test. Groups of GloVe-N that are not
significantly different (p-value>0.05) are connected with the bold line(s)
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Fig. 13: Comparison of GloVe with different dimension sizes on the duplicate
BR detection task with the Nemenyi test. Groups of GloVe-N that are not
significantly different (p-value>0.05) are connected with the bold line(s)
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