
Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09720-x

How does code style inconsistency affect pull request
integration? An exploratory study on 117 GitHub
projects

Weiqin Zou1 · Jifeng Xuan2 ·Xiaoyuan Xie2 ·Zhenyu Chen1 ·Baowen Xu1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
GitHub is a popular code platform that provides infrastructures to facilitate collaborative
development. A Pull Request (PR) is one of the key ideas to support collaboration. Develop-
ers are encouraged to submit PRs to ask for the integration of their contributions. In practice,
not all submitted PRs can be integrated into the codebase by project maintainers. Existing
studies have investigated factors affecting PR integration. Nevertheless, the code style of
PRs, which is largely considered by project maintainers, has not been deeply studied yet.
In this paper, we performed an exploratory analysis on the effect of code style on PR inte-
gration in GitHub. We modeled the code style via the inconsistency between a submitted
PR and the existing code in its target codebase. Such modeling makes our study not limited
by a specific definition of code style. We conducted our experiments on 50,092 closed PRs
in 117 Java projects. Our findings show that: (1) There indeed exists code style inconsis-
tency between PRs and the codebase. (2) Several code style criteria on how to use spaces
or indents, make comments, and write code lines with a suitable length, tend to show more
inconsistency among PRs. (3) A PR that is consistent with the current code style tends to
be merged into the codebase more easily. (4) A PR that violates the current code style is
likely to take more time to get closed. Our study shows evidence to developers about how
to deliver better contributions to facilitate efficient collaboration.

Keywords Pull request · Code style inconsistency · Exploratory study

Communicated by: Ahmed E. Hassan

� Zhenyu Chen
zychen@nju.edu.cn

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09720-x&domain=pdf
http://orcid.org/0000-0003-0739-0008
mailto: zychen@nju.edu.cn

Empirical Software Engineering

1 Introduction

GitHub1 is a widely-used platform for collaborative software development upon the Git ver-
sion control system (Kalliamvakou et al. 2014). According to the official website2, GitHub
holds more than 52 million repositories up to October 31st, 20173. Besides the majority
of open source organizations, commercial companies, such as Microsoft and VMware, are
putting their projects into GitHub to attract talented developers (Kalliamvakou et al. 2015).

As a social development platform, GitHub fully supports collaboration via managing
Pull Requests (PRs). A PR consists of one or more commits submitted by the contrib-
utor, which are requested to be integrated into the repository. A popular repository may
receive a great amount of PRs and the project maintainers need to perform careful code
reviews to decide which PRs can be merged into the codebase. For example, up to October
31st, 2017, the repository “rails/rails”4 has closed 19,459 PRs, including 13,128 explicitly
marked as merged ones. As a consequence, for the open source community, it is important
to understand what makes PRs be accepted or rejected.

The code style of PRs relates to the determination of their integration. (Gousios et al.
2015) conducted a qualitative survey with experienced project owners on the challenges
of integrating PRs in GitHub. Their survey found that the code style greatly affected the
acceptance of PRs. (Rigby and Storey 2011) and (Bacchelli and Bird 2013) also found that
code reviewers, in other platforms rather than GitHub, cared about the code style of patches
during the patch reviewing process. In addition, we observed that many projects in GitHub
explicitly required their developers to keep the code style consistent with the existing code.
For example, in the project “AndlyticsProject/andlytics”,5 contributors were asked to keep
their code consistent with the around code: “Try to be consistent with the code around you.
As a general rule: 1) use tabs not spaces; and 2) aim for a maximum line length of 100,
unless it looks better being on a single line”6.

How does Code Style Inconsistency affect Pull Request Integration? Though code
style is emphasized during collaboration in the pull-based platform, there exists no
prior deep study on the correlation between code style inconsistency and the integration
of PRs.

In this paper, we conducted an exploratory study on the integration of PRs from 117
projects in GitHub. This study investigated the effect of code style on PR integration based
on 50,092 collected PRs since 2011. We quantitatively identified the code style based on
37 pre-defined criteria for each PR. Our model of the code style focused on the code style
inconsistency between each submitted PR and the existing code in its codebase. For the sake
of simple calculation, the term “existing code in the codebase” denotes the original source
code files that would be updated by the submitted PR. Hence, our study is not limited by a
specific definition of code style. We tried to show the effect of code style inconsistency on
PR integration via answering the following four Research Questions (RQs).

1http://github.com
2http://github.com/features
3In GitHub, a “repository” denotes a project in general. In this paper, we use “repository” and “project”
interchangeably.
4http://github.com/rails/rails
5https://github.com/AndlyticsProject/andlytics
6http://github.com/AndlyticsProject/andlytics#contributing

http://github.com
http://github.com/features
http://github.com/rails/rails
https://github.com/AndlyticsProject/andlytics
http://github.com/AndlyticsProject/andlytics#contributing

Empirical Software Engineering

RQ1. Is there any difference between the code style of submitted PRs and that of the
existing source code? All experimental projects had a certain number of PRs that showed
inconsistency in code style. PRs in all projects showed inconsistency in at most 8 to 28
code style criteria; 50% PRs on all projects showed inconsistency in no more than 3 cri-
teria. Besides, the policy of a project on code style and the experience of PR authors
to some extent would affect the ratio of PRs with no inconsistency in code style in the
project.

RQ2. Which code style criteria tend to show much inconsistency among PRs? Several
code style criteria on how to use spaces or indents, make comments, and write code lines of
suitable length, tended to show more inconsistency among PRs. Besides, there also existed
several criteria (such as writing import and package statements in one line) that rarely
showed inconsistency in most projects.

RQ3. How does code style affect the merging of PRs? The code style inconsistency had a
small negative effect on the merging of PRs. Besides, two code style criteria on using tabs
and writing code lines of suitable length had a relatively larger effect on the merging of PRs,
compared to the other criteria.

RQ4. How does code style affect the closing time of PRs? The code style inconsistency
had a small positive effect on the time cost of closing PRs. We further found that two code
style criteria on writing suitable-length code lines and providing Javadoc for a public class
and non-private members had a relatively larger effect on the closing time of PRs than the
other criteria.

Our major contributions are listed as follows:

1. We conduct an exploratory study on the code style inconsistency of 50,092 PRs from
117 GitHub projects. We propose to measure the code style inconsistency between a PR
and the existing code in the codebase instead of directly modeling the code style. This
avoids the limitation by a specific definition of the code style.

2. We empirically identify some code style criteria, which reveal most difference between
submitted PRs and the existing code in the codebase.

3. We analyze the effect of the code style on integrating PRs, including the decision of
merging new PRs and the time cost of closing PRs.

The rest of this paper is structured as follows. We discuss the background and motivation
in Section 2. Then we introduce our experimental methodologies in Section 3. Experimental
results are presented in Section 4. Section 5 discusses the implications of our findings and
the threats to the validity of our work. We list the related work and conclude our work in
Sections 6 and 7, respectively.

2 Background andMotivation

In this section, we first briefly introduce GitHub, mainly focusing on pull-based develop-
ment and the mechanism of PRs; then we present the motivation of our study.

Empirical Software Engineering

2.1 Background

GitHub is a mainstream development platform, which provides code hosting and collabo-
ration (Kalliamvakou et al. 2014). This platform is built based on a version control system
Git.

Pull-based development Pull-based development provides a platform for developers to
submit their code changes via pull requests. In GitHub, developers generally cannot directly
submit their commits into a target project that is initialized by other developers. Instead, a
developer usually needs to fork (i.e., clone) the project into their own account as a copy;
then he/she makes code changes to the forked project. A PR is submitted if he/she expects
to merge code changes into the target project. Then the project maintainer will review the
PR and decide whether to merge it into the codebase.

Pull Request (PR) PRs are the key of collaborating with each other in GitHub (Gousios
et al. 2016). If a developer wants to merge his/her own contributions into the target project,
he/she could submit a PR to the queue of PRs of the target project. A PR consists of one
or more commits, each of which contains code changes to the codebase at a time. Once a
PR is submitted, the target project will timely present the detailed difference, i.e., deleting
or adding source code. In GitHub, a modified line in diffs is always presented as a deleted
line plus an added line. A maintainer of the target project then conducts code review on the
submitted PR. The PR will be merged into the project if its commits are accepted by the
maintainer; otherwise, the maintainer will close the PR or ask the submitter to modify for
next-round code review.

2.2 Motivation

It has always been emphasized by many Open Source Software (OSS) communities that
following the current code style is important. For example, the GNU community requires
all contributions to follow the GNU Coding Standards7, which contains various standards,
including the code style. These standards aims to build clean and consistent systems during
collaborative development. Similarly, all contributors participating in Google projects are
asked to obey the Google Style Guides8.

As a popular coding platform for distributed development, GitHub encourages repository
maintainers to explicitly and clearly describe their coding style in the readme or contri-
bution documents9. Meanwhile, contributors are reminded to comply with the code styles
requested by their target repositories: “Contribute in the style of the project to the best of
your abilities. This may mean using indents, semi colons or comments differently than you
would in your own repository, but makes it easier for the maintainer to merge, others to
understand and maintain in the future”10.

7http://www.gnu.org/prep/standards toc.html
8http://github.com/google/styleguide
9It is common for a project to have a readme file or a contribution file. The readme file broadly describes the
project; while the contribution file mainly introduces the tips to contribute to this project.
10http://guides.github.com/activities/contributing-to-open-source/#contributing

http://www.gnu.org/prep/standards_toc.html
http://github.com/google/styleguide
http://guides.github.com/activities/contributing-to-open-source/#contributing

Empirical Software Engineering

In fact, there do exist many projects following this practice. For example, the project
“mongodb/mongo”11 requests “all commits to the MongoDB repository must follow the
kernel development rules”. Gousios et al. (2015) have conducted a survey with GitHub
repository maintainers on the problem of merging contributions. They found that the code
style was greatly concerned by maintainers when deciding whether to accept a contribution
or not.

Unfortunately, due to the openness of GitHub repositories, there always exist contributors
who do not follow the requested code styles. Project maintainers have to expendmore efforts
to communicate with contributors to cope with the issues of the code style. For example, a
PR with ID 3512 in “rubinius/rubinius” was asked not to use single-letter variable names by
the reviewer12: “One general request in advance: please don’t use single letter variables.
Looking at code I have no clue what n means”.

For another example, in project “querydsl/querydsl”13, from the commit logs, we found
that many commits aimed at fixing code style problems: “Remove some extra whitespace;
Normalize tabs to spaces; Code style: remove final in local variables”.

Motivated by the above evidence 14, we are interested to know how prevalent these code
style problems are, and how these problems affect the PR processing. Thus we decided to
conduct a deep study on the effect of the code style on PR integration.

3 Methodologies

Our experimental process included four parts. First, we crawled relevant projects from
GitHub as our experimental subjects. Secondly, we defined 37 code style criteria based on
literature to characterize the code style of PRs. Thirdly, we calculated the code style incon-
sistency based on the above criteria. Last, we explored the effect of code style on integrating
PRs via answering four Research Questions (RQs) as in Section 4.

3.1 Target Projects

Java is one of top active languages in GitHub15. Thus, we chose non-forked Java projects
(i.e., these projects were not copies of other projects) as our experimental subjects. In our
work, we investigated the effect of code style inconsistency on PR integration via controlling
confounding factors (such as the commit size and the number of forked projects) that may
also affect the PR integration. To exactly measure confounding factors, it was essential to
completely record historical events, such as events of adding members and forking projects.
Considering GitHub only preserves the latest three months of records for some historical
events (e.g., adding members to a repository), we decided to use another data source of
GitHub historical events, namely GitHub Archive16.

11http://github.com/mongodb/mongo
12http://github.com/rubinius/rubinius/pull/3512
13http://github.com/querydsl/querydsl
14In this study, some motivation examples (i.e., GNU, Goolge, and GitHub) mainly came frommanual search
of code style related documentation in well-known open source communities or company originated open
source projects; while other examples (i.e., mongodb/mongo, rubinius/rubinius, and querydsl/querydsl) were
collected by manually checking the documents and commit logs of some randomly selected popular projects
on GitHub.
15http://githut.info
16https://www.githubarchive.org/

http://github.com/mongodb/mongo
http://github.com/rubinius/rubinius/pull/3512
http://github.com/querydsl/querydsl
http://githut.info
https://www.githubarchive.org/

Empirical Software Engineering

Table 1 Summary of attributes on 117 GitHub java projects

Attribute Min Median Max Mean St. Dev.

size (MB) 2.99 41.89 1926.74 137.71 296.75

forks 19 325 4338 616.4 842.76

total PRs 207 417 4,670 687.6 826.93

closed PRs 203 394 4,631 667.6 810.99

total issues 240 988 7,228 1,451.1 1,328.60

closed issues 235 912 6,677 1,334.3 1,216.38

developers 10 63 639 81.48 75.46

GitHub Archive provides more than 20 event types, which makes it possible for us
to compute confounding factors. Since GitHub Archive only stores historical events that
appeared after Feb. 2011, we only considered projects created after Feb. 2011 in the exper-
iments. This guaranteed that we would have complete historical events for each project.
There were 1,846,386 non-forked Java projects created after Feb. 2011 at the moment (i.e.,
Jan. 2016) of data crawling.

Following the work by Vasilescu et al. (2015), among 1,846,386 projects, we only chose
projects with over 200 closed PRs. This made us focus on projects which truly used the PR
mechanism to perform collaborative development. Meanwhile, since we took the number
of issues reported by a developer as a proxy of his/her activity (the developers’ activity may
affect the integration of their submitted PRs), we also filtered out projects that had less than
20 closed issues in GitHub. Besides, in GitHub, developers are divided into insiders and
outsiders: an insider is a developer who can directly commit to a target project while an
outsider is a developer who cannot. In this study, we chose projects that were developed by a
collaborative team of both insiders and outsiders. Specifically, we required that each project
contained more than 10 developers and the number of outsiders was not smaller than that of
insiders. This helped us avoid projects that were mainly built by a small team of insiders.

For data collection, we implemented a web crawler to retrieve the statistics of projects
and directly compared them with the above thresholds. In details, the numbers of closed
PRs, issues, contributors (i.e., developers) were listed in the site of each project in GitHub;
the number of insiders could be retrieved by counting the assignee list of issues17.

After filtering, 118 projects were left. For those projects, we manually checked
their readme documents, so as to ensure that each project was a typical software
development project. During checking process, we found that one project, i.e., “fil-
ipg/amu automata 2011”18, was created for a programming course in a university. Thus, we
removed it from our data set. Finally, we got 117 projects to conduct experiments. Table 1
presents more details about those projects.

3.2 Code Style Criteria

To conduct an exploratory analysis, we characterized the code style of PRs with 37 code
style criteria (in Table 2) that involved almost every aspect of a code style. These criteria

17https://help.github.com/articles/filtering-issues-and-pull-requests-by-assignees/
18http://github.com/filipg/amu automata 2011

https://help.github.com/articles/filtering-issues-and-pull-requests-by-assignees/
http://github.com/filipg/amu_automata_2011

Empirical Software Engineering

Table 2 The 37 criteria for characterizing the code style

criteria Description

Structure noLineWrap Never break import and package lines.
noStarImport No .* imports.
oneTopClass Put a top class in its own file.
emptyLineSep Use a blank line after header, package, import lines, class, methods,

fields, static, and instance initializers.

Formatting whitespaceAround Use a space between a reserved word and its follow-up bracket,
e.g., if (.

genericWhitespace Use a space before the definition of generic type, e.g., List <.
opWrap Break after ‘=’ but before other binary operators.
sepWrap Break after ‘,’ but before ‘.’.
maxLineLen 100 characters in maximum.
leftCurly Put ‘{’ on the same line of code.
rightCurly Put ‘}’ on its own line.
emptyBlock No empty block for control statements.
needBraces Use ‘{}’ for single control statements.
noTab No ‘\t’ in source code.
indentation Set a basic offset as four spaces.
noMultiVar Put a variable declaration on its own line.
oneStmtPerLine Each line holds one statement.
annotationLoc Put each annotation one line before a class or a method.
upperEll Use ‘L’ for Long integer literals.
modifierOrder Follow the order: public, protected, private, abstract, static,

final, transient, volatile, synchronized, native, strictfp.
fallThrough Put a fall-through comment in a switch If a ‘case’ has no break,

return, throw, or continue.
needDefault Use “default” in switch.

Naming typeName Be in UpperCamelCase, e.g., BinarySearchTree.
packageName Be in all lowercase, with consecutive words concatenated together

by ‘.’, e.g., com.edu.nameusage.
methodName Be in lowerCamelCase, e.g., getName.
memberName Be in lowerCamelCase, e.g., localAddress.
parameterName Be in lowerCamelCase, e.g., customerId.
catchParaName Be in lowerCamelCase or in one-character lowercase,

e.g., divideZeroException or e.
localVarName Be in lowerCamelCase, e.g., clientAccount.

Comments noEmptyAtDes Use a description after @ tag.
javadocMethod Javadoc is mandatory for a public class and

its non-private members.
javadocParagraph In Javadoc, each blank line is leaded with *. Each paragraph

except the first one, needs a <p> before its first word.
tagIndent In Javadoc, use four spaces for new indentation level in @ clauses.
summaryDoc No phrases like “This method returns” in Javadoc summary.
cmtIndent Comments indent at the same level with surrounding code.
singleLineJavadoc A Javadoc can be placed in a single line when it can fit in a line

and contains no tag @.
atOrder Follow the order: @author, @version, @param, @return, @throws,

@exception, @see, @since, @serial, @serialField, @serialData, and
@deprecated.

Empirical Software Engineering

were extracted via manually checking widely-used code style rules for the Java language.
For Java projects, there mainly exist two broadly-accepted documents of code styles, i.e., the
Java code styles by Google (2013) and by Oracle (Sun Inc.) (Oracle 1999). In this paper, we
focused on code style criteria which were mentioned in both two documents. The obtained
37 criteria were also basically the metrics that Checkstyle19 (a very popular Java code style
checking tool) reported.

Note that we did not conduct the study based on a specific code style. Instead, we defined
a list of code style criteria and measured the source code against them. In other words, we
compared a PR and its corresponding existing code in the codebase against a code style
criterion. If they both violated (or neither violated) a code style criterion, then we considered
they kept consistent under the criterion. This setting avoided the bias by different choices of
code style. Section 3.3 describes how to define the code style inconsistency in details.

Code style criteria could not be directly converted into numeric measurements (Google
2013). A submitted PR indicated a potential change of source code. In our work, we aimed
to explore the relationship between the code style of a PR and its integration to the code-
base. That is, we measured the code style of a PR by weighting the inconsistency before
submitting the PR and after the potential merging of the PR.

Specifically, for each PR, we first extracted the files that were modified by the PR. For
each file, we maintained two code versions, i.e., the original version (denoted as original)
and the modified version (denoted as modified) before and after merging the PR to the
codebase. Then we measured the code styles of the original and the modified files against
on the criteria in Table 2, respectively. Then, we computed the inconsistency between their
code styles (see Section 3.3). Notice that we only compared modified files with their cor-
responding original files within PRs rather than with the files of the whole codebase. We
made this choice mainly because the codebase is always much larger and may contain var-
ious code styles, which makes our calculation complex and more importantly may involve
other factors that affect our analysis.

Given one file, for both the original version and themodified version, we represented its
code style with a 37-dimension Boolean vector; each dimension denoted whether the code
within the file violated one corresponding criterion in Table 2. In other words, we used the
violation results of 37 code style criteria as the code style. Then the code style of original
andmodified version for one file could be defined as follows:

soriginal =< o1, o2, ..., o37 > and smodif ied =< m1, m2, ...,m37 >

where oi ∈ {1, 0} and mi ∈ {1, 0} denote whether the ith criterion is violated and 1 ≤ i ≤
37. For instance, o1 = 1 means the first criterion is violated in soriginal .

Note that in our definition of the code style, we only distinguished whether a code style
criterion was violated or not. It was possible to further characterize how much a code style
criterion was violated. As further distinguishing different scenarios of violation would lead
to high complexity, we instead chose to use the Boolean values (violating a code style
criterion or not) to make our idea clear in this study.

19http://checkstyle.sourceforge.net/

http://checkstyle.sourceforge.net/

Empirical Software Engineering

3.3 Code Style Inconsistency in PRs

We adopted a two-step approach to calculate the code style inconsistency for each PR. First,
we calculated the inconsistency of code styles between each pair of the original version and
the modified version of one file. The inconsistency for each pair is defined as follows:

each inconsistency(soriginal, smodif ied) = soriginal XOR smodif ied

where XOR denotes the exclusive or value between two Boolean vectors.
each inconsistency is a 37-dimension vector and its each element ei ∈ {1, 0}.

Then, for a PR that changed a set F of files, the code style inconsistency for a PR is
defined as follows:

spr =< p1, p2, ..., p37 >

where

pi =
{
0

∑
f ile∈F ei = 0

1 otherwise

Here, pi = 1 means at least one file that is changed by the PR is inconsistent with the ith
criterion; while pi = 0 means all files within the PR keep consistent with the ith criterion.

After we got the inconsistency over the 37 code style criteria, we defined the total
inconsistency of a PR as follows:

total inconsistency =
∑

1≤i≤37

spr [i]

where total inconsistency ∈ {0, 1, ..., 37}. A high value indicates that the code style
between the PR and the existing code is highly inconsistent.

Notice that when we calculated the code style inconsistency for a PR, we only considered
the files that were modified by the PR. Newly added files that did not have corresponding
original files were ignored during calculation.

4 Experimental Results

In this section, we first describe our experiment setup, including data preparation, RQ
designs, and confounding factors in Section 4.1; then we present detailed analysis via
answering four Research Questions (RQs) in Sections 4.2-4.5.

4.1 Experiment Setup

4.1.1 Data Preparation

We conducted experiments on 117 projects mentioned in Section 3.1. Since we cannot deter-
mine the final status of open PRs, we only chose PRs that were closed before Jan. 2016 (i.e.,
the timestamp we crawled data) to perform our experiments. In total, there were 78,112
closed PRs for 117 projects. Then, we removed PRs which mainly targeted modifying non-
Java files. To be specific, a PR was removed if the ratio of modified lines of Java code
over all modified lines in a PR was less than 0.5. Then 51,939 PRs were remained. Some
PRs (799 PRs) had only deleted code for which we had no corresponding added code to
calculate the code style inconsistency for them, thus we removed them from our data set.

Empirical Software Engineering

Meanwhile, we also removed a small number of PRs (805 PRs) that only added code files
since our study only considered the inconsistency of code style between new changes and
the original files. These 805 PRs that only added files did not rely on original files. Thus we
removed these 805 PRs. Then 50,335 PRs were remained.

During data crawling, we found that there were very few (243) PRs whose modified
files were incomplete or unavailable. Thus, they were also filtered out from the dataset.
Finally, we got 50,092 PRs. Table 3 shows the basic summary of our experimental data. Our
following experiments are conducted based on all these 50,092 PRs.

4.1.2 Design of RQs

We explored the effect of code style inconsistency on the integration of PRs via the fol-
lowing four RQs. Such exploration revealed nine findings about the code style and PR
integration.

RQ1. Is there any difference between the code style of submitted PRs and that of the
existing source code?

RQ2. Which code style criteria tend to showmuch inconsistency among PRs?

RQ3. How does code style affect the merging of PRs?

RQ4. How does code style affect the closing time of PRs?
In RQ1, we gave a general statistics on the code style inconsistency between submitted

PRs and existing code. In RQ2, we further analyzed the code style criteria and answered
which criteria contributed most to the above inconsistency. In the follow-up RQ3 and RQ4,
we leveraged regression models to measure the effect of code style inconsistency on PR
integration, including the decision of merging PRs and the time cost of closing PRs.

In GitHub, PRs and projects are hierarchically structured: the level of PRs are viewed
as the micro level and the level of projects are the macro level. Considering our data con-
tained a hierarchical structure, we chose to use mixed-effects models for our experiments in
RQ3 and RQ4. Mixed-effects models could provide accurate estimates of relations between
individual-level explanatory variables and a response variable with considering group struc-
ture within data (Cohen et al. 2013). Using mixed-effects models could avoid the potential
problem of overestimating the significance of individual regression coefficients that gen-
erally happens when applying linear or logistic regression models to hierarchical datasets
(Cohen et al. 2013).

We built two types of mixed-effects models during our experiments, i.e., a linear mixed-
effects model (LMM) and a generalized linear mixed-effects model (GLMM). LMM applies

Table 3 Statistical summary of experimental data after data preparation

Level Attribute Min Median Max Mean St. Dev.

Project closed PRs 67 251 3,793 428.1 529.26

merged PRs 35 214 3,419 351.2 453.95

PR closed time (day) 0.00001 0.65 1,144.93 8.41 34.97

ratio of Java code 0.50 1.00 1.00 0.96 0.10

modified lines of code 1 81 349,967 1,593 9,161.72

Empirical Software Engineering

to continuous response variables while GLMM is an extension of linear mixed-effects mod-
els that allows non-normal response variables (e.g., binary variables). Thus we accordingly
built GLMMs for the merging of PRs (a binary response variable), and LMMs for the time
cost of closing PRs (a numeric response variable). A mixed-effects model is a statistical
model containing both fixed effects and random effects. The fixed effects estimate the pop-
ulation level coefficients which are constant across the population, while the random effects
account for individual differences in response to an effect (Cohen et al. 2013). Correspond-
ingly, to build a mixed-effects model, we need to specify fixed factors (with fixed effects)
and random factors (with random effects).

Considering different projects may respond differently to the integration of PRs (e.g.,
some projects may be more conservative in merging PRs or tend to take a longer time to
close PRs), to capture such a project-level variability in the response variable, we introduced
project ID (from 1 to 117 for 117 projects) as a random factor when building mixed-effects
models. Setting project ID as a random factor allowed the intercept to vary by projects
rather than to be fixed for all projects. Code style inconsistency and 8 confounding factors
(in Section 4.1.3) were taken as fixed factors.

Two widely used summary statistics, i.e., a marginal R2 (R2
m) and a conditional R2 (R2

c)
(Nakagawa and Schielzeth 2013; Johnson 2014) are used to quantify the goodness-of-fit
of a mixed-effects model (including LMM and GLMM). R2

m describes the proportion of
variance explained by the fixed factors alone while R2

c describes the proportion of variance
explained by the fixed and random factors together (more technical details of calculating
R2

m and R2
c for both LMM and GLMM models can be found in Nakagawa and Schielzeth

2013). During our experiments, we used functions lmer and glmer in R package lme4
(Bates 2010) to build the corresponding models. The R2

m and R2
c were obtained by function

r.squaredGLMM in R package MuMIn (Bartoń 2013).
Based on the results of mixed-effects regression models, we further used Cohen’s f 2 to

gauge the effect of code style inconsistency on PR integration. Cohen’s f 2 is a commonly-
used effect size measure that allows us to evaluate the effect size of one variable within the
context of a regression model (Selya et al. 2012). The calculation of Cohen’s f 2 is defined
as

R2
AB − R2

B

1 − R2
AB

Here R2
B is the variance accounted by variable set B; and R2

AB is the variance accounted by
variable sets B and A together. In this study, B is a set of fixed factors (i.e., eight confounding
factors in Table 4) and the project ID random factor; while A is the code style inconsistency.
BothR2

B andR2
AB refer to marginalR2 of a mixed-effects model. Values 0.02, 0.15, and 0.35

for f 2 are suggested as a minimum value to determine that the effect is small, median,
and large, respectively (Kabacoff 2015).

4.1.3 Confounding Factors

Existing works (Hellendoorn et al. 2015; Gousios et al. 2015; Tsay et al. 2014a) have
revealed that three types of attributes (including the complexity of PRs, the maturity of
projects, and the experience of developers) may affect PR integration. In our work, we used
eight following metrics to represent the above three types of attributes, as the confounding
factors in RQ3 and RQ4. Table 4 shows the summary of these eight confounding factors.

Empirical Software Engineering

Table 4 Summary of 8 confounding factors of 50,092 PRs on 117 projects

Confounding factor Min Median Max Mean St. Dev.

pr chgFileNum 1 4 8408 39.71 190.50

pr avgCmitSize 0.50 47.67 80473 283.55 1221.50

proj fork 0 120 4239 238 296.25

proj age (year) 0.0002 1.86 4.86 1.90 1.09

proj insider 0 0 11 0.52 1.67

proj openPR 0 6 106 12.14 15.64

dev issue 0 2 2677 26.38 97.46

dev mergedPR 0 20 797 69 115.55

pr chgFileNum The total number of modifying files within a PR. In general, one PR that
changed several files for many times are complexity prone.

pr avgCmitSize The average number of changed lines over commits within a PR. This
metric measures the complexity of commits, to some extent. Large commits may hinder the
processing of PRs.

proj fork The number of forks from the project. This metric may indicate the popularity of
a project and the popularity may affect the processing of PRs.

proj age The project age since its creation. An older project may indicate a more mature
project. A mature project may tend to be cautious at merging new PRs and may have a
pre-defined process to review PRs. This may leads to a long time cost of closing PRs.

proj insider The number of insiders within the project before the submitted PR. PRs are
often needed to be reviewed by insiders. If there are many insiders, maybe more PRs will
be handled in a more effective and efficient way.

proj openPR The number of remained open PRs within the project before submitting the
PR. All open PRs need to be handled by the project maintainers. More open PRs may delay
the process of the newly submitted PR.

dev issue The number of issues reported by the developer before he/she submits the PR. A
developer who reported more issues may indicate he/she is more active and concerned about
the project. Maintainers might better respond to the PRs submitted by those developers.

dev mergedPR The number of merged PRs submitted by the developer before he/she sub-
mits the new PR. In general, the more merged PRs a developer has, the more experienced
he/she is. PRs submitted by a more experienced developer might be more easily to be
merged in a quicker way.

Empirical Software Engineering

Fig. 1 General statistics on the
code style inconsistency for all
50,092 PRs of 117 projects. The
first quantile, median, and third
quantile values are 0, 1, and 3,
respectively. The minimum,
mean, and maximum values are
0, 2.12, and 28, respectively

0
5

1
0

1
5

2
0

2
5

�

PRs of all projects

c
o

d
e

 s
ty

le
 i
n

c
o

n
s
is

te
n

c
y

4.2 RQ1. Is there any Difference Between the Code Style of Submitted PRs
and that of the Existing Source Code?

Goal This RQ investigated the general statistics of the code style inconsistency of PRs. We
showed that there indeed existed differences of code style before and after the potential
merging of PRs.

We used all 50,092 closed PRs on 117 projects to conduct our experiments. For each PR,
we retrieved the original and modified files. Then we configured the tool Checkstyle20 to
get the code style of the original and modified files (i.e., the corresponding violations to
37 code criteria mentioned in Section 3.2). After that, we used the method mentioned in
Section 3.3 to calculate the code style inconsistency between the PR and the existing code.
Fig. 1 visualizes the code style inconsistency with a violin plot on all PRs of 117 projects.

As shown in Fig. 1, the minimal value of inconsistency was zero. This meant that, on
the whole, a number of PRs kept a consistent code style with the existing code in the code-
base. For each project, we further checked the minimal, median, and maximum values of
code style inconsistency of all PRs, respectively. Table 5 shows the statistic details. From
the table, we found that the minimum values of all projects were 0.0. This meant that all
projects had some PRs that kept a consistent code style with existing code; 117 projects
kept the median value no more than 3.0. That is, all projects showed that 50% PRs had
inconsistent code style in at most three criteria; The maximum values of inconsistency in
all projects ranged from 8 to 28, with a standard deviation of 4.63. This meant that all PRs
kept consistent with the original code from 9 (= 37 − 28) to 29 (= 37 − 8) code criteria.

Finding 1. The code style inconsistency indeed existed in all projects under evaluation:

All projects had a certain number of PRs that had inconsistent code style with existing

code in the codebase; PRs in all projects showed inconsistency in at most 8 to 28 code

style criteria. Meanwhile, all projects showed that 50% PRs had inconsistent code style

in no more than three code style criteria.

To further understand the code style inconsistency in PRs, we calculated the ratio of PRs,
which had no inconsistency with their existing code in the codebase. We found that the
ratio of PRs with no inconsistency in code style varied in different projects. The least ratio

20Checkstyle is a highly configurable tool of checking code style. The code style by Google and Oracle are
supported by the tool. In our experiment, we configured Checkstyle to check whether a piece of code violates
37 code style criteria.

Empirical Software Engineering

Table 5 Summary of code style inconsistency over 117 projects

Inconsistency Min Median Max Mean St. Dev.

Minimum inconsistency 0 0 0 0 0

Median inconsistency 0 1 3 0.89 0.75

Maximum inconsistency 8 19 28 18.7 4.63

The minimum inconsistency, median inconsistency, and maximum inconsistency represent the minimum,
median, and maximum code style inconsistency for all PRs of a project respectively

was 15.6% for the project “magefree/mage”21 and the largest one was 79.3% in the project
“CUTR-at-USF/OpenTripPlanner-for-Android”22. 50 projects had no more than 40% PRs
that showed no inconsistency; 81 projects had no more than 50% PRs that kept consistent
code style with existing code.

Finding 2. Different projects had different ratios of PRs with no inconsistency in code

style. Many projects tended to have at most 50% PRs keeping a consistent style after

changing code.

To get deeper insights into why the ratio of PRs with no inconsistency in code style
varied in different projects, we further checked whether the policy of a project on code style
or the experience of the PR authors would affect the ratio of PRs with no inconsistency in
code style in the project.

Specifically, for the policy of a project on code style, we mainly concerned whether a
project ever declared any code style requirements in its documentation or configured any
code style checking tools within its codebase. To figure this out, for each project, we manu-
ally checked its readme/contribution files, wiki, official website (if exists) and configuration
files. We found that 90 out of 117 projects had various requirements on code style. Among
the top 20 projects that had the largest ratios of PRs with no inconsistency in code style,
17 projects had their own policy on code style. We did not, however, observe any obvious
trends in the remaining 97 projects.

Then, we conducted Spearman correlation analysis to explore the correlation between
PR authors’ experience and the ratios of PRs with no inconsistency in code style in different
projects. Spearman correlation is widely used to check how well the relationship between
two variables can be described by an arbitrary monotonic function. It also does not make
any assumptions about the distributions of the data (Hauke and Kossowski 2011).

To conduct Spearman correlation analysis, for each PR, we first calculated its author’s
experience at the moment this PR was submitted. Four proxy metrics were used to measure
each PR author’s experience, i.e., the number of changed lines of all commits he/she con-
tributed to the codebase (cmitChgLineCnt), the number of closed PRs (cldPRCnt), merged
PRs (mergedPRCnt), and issues (issueCnt) he/she submitted to a project. Then, we took
the average values of cmitChgLineCnt, cldPRCnt, mergedPRCnt, and issueCnt as the over-
all developer experience of the project. Last, we conducted Spearman correlation analysis
between the ranked overall developer experience and the ratios of PRs with no inconsistency
in code style.

21http://github.com/magefree/mage
22http://github.com/CUTR-at-USF/OpenTripPlanner-for-Android

http://github.com/magefree/mage
http://github.com/CUTR-at-USF/OpenTripPlanner-for-Android

Empirical Software Engineering

We found that the Spearman correlation coefficient was -0.237 for the average cmitChg-
LineCnt (with p-value=0.0101). This meant that there was a small negative correlation
between the average cmitChgLineCnt and the ratio of PRs with no inconsistency in code
style in a project at the significance level of p-value<0.05. The Spearman correlation coeffi-
cients for the average cldPRCnt, mergedPRCnt, and issueCnt were 0.035, -0.021, and -0.008
respectively, with corresponding p-values being 0.7075, 0.8227, and 0.933. Those p-values
indicated that we were not able to reach any conclusion about whether there existed a mono-
tonic relationship between these three metrics and the ratio of PRs with no inconsistency in
code style in a project.

Finding 3. Top 20 projects with largest ratios of PRs with no inconsistency in code style

generally had explicit requirements on code style. Meanwhile, the average changed lines

of commits submitted by individual developers had a small negative correlation with the

ratio of PRs with no inconsistency in code style in a project.

4.3 RQ2. Which Code Style Criteria Tend to ShowMuch Inconsistency Among PRs?

Goal We have observed that PRs were not always different from the original source code in
each code style criterion. This inspired us to further investigate which code style criterion
revealed higher differences. RQ2 could help developers understand the divergence of code
style in practice.

First, we explored which code style criterion never showed inconsistency. We calculated
the inconsistency of each code criterion according to Section 3.3. Then we collected all code
criteria, which never showed inconsistency in all PRs on one project.

Similarly, we used Checkstyle to get the violation results in each code criterion for all
50,092 PRs in 117 projects. Figure 2 shows the code style criteria, which never show
inconsistency on one project. The vertical axis represents code criteria, which have no incon-
sistency in all PRs in each project; the horizontal axis is the ratio of projects over all 117
projects.

As shown in Fig. 2, nine code style criteria, i.e., from noEmptyAtDes to sepWrap,
showed no inconsistency in over half of the projects. This fact indicated that many devel-
opers tended to agree with each other on these nine criteria. In particular, the code criterion
noEmptyAtDes (i.e., a description is needed after @ tag) showed no inconsistency in all
projects. The other two criteria that showed no inconsistency over most projects were
noLineWrap (i.e., import and package statements cannot be line-wrapped; that is, such state-
ments should be in one line) and catchParaName (i.e., the parameter name of the catch code
should be written in lowerCamelCase or in one-character lowercase). From Fig. 2, we also
found that nine criteria, i.e., from whilespaceAround to cmtIndent, never showed consis-
tency over all PRs of specific project. In other words, each project had at least one PR that
violated these criteria.

Finding 4. Developers kept no inconsistency on the criteria “noEmptyAtDes”,

“noLineWrap”, and “catchParaName” in most projects.

We continued to investigate how these code style criteria revealed differences in PRs.
Specifically, we counted the number of PRs with code style inconsistency on each code
style criterion, and then ranked these criteria based on their ratios of inconsistent PRs over
all the 50,092 PRs. Figure 3 visualizes the results, where the vertical axis represents code

Empirical Software Engineering

cmtIndent
emptyLineSep

indentation
javadocMethod

leftCurly
maxLineLen

opWrap
parameterName

whitespaceAround
localVarName

noTab
rightCurly

needBraces
noStarImport
summaryDoc
modifierOrder
memberName

javadocParagraph
emptyBlock

methodName
noMultiVar

oneStmtPerLine
tagIndent

genericWhitespace
needDefault

atOrder
annotationLoc

fallThrough
sepWrap

typeName
oneTopClass

singleLineJavadoc
packageName

upperEll
catchParaName

noLineWrap
noEmptyAtDes

0 25 50 75 100

percent

c
o

d
e

 s
ty

le
 c

r
it
e

r
ia

Fig. 2 Percentage of projects where code style criteria show no inconsistency in any PR. For instance, the bar
of the code style metric “noLineWrap” indicates that 94.01% (110 out of 117) projects have no inconsistent
PRs, each of which tends to not violate this code style criterion

noEmptyAtDes
noLineWrap

catchParaName
packageName

upperEll
oneTopClass

typeName
annotationLoc

fallThrough
atOrder

singleLineJavadoc
sepWrap

needDefault
oneStmtPerLine

genericWhitespace
tagIndent

noMultiVar
methodName

emptyBlock
memberName
modifierOrder

javadocParagraph
parameterName

leftCurly
localVarName

opWrap
needBraces

summaryDoc
emptyLineSep

noStarImport
rightCurly
cmtIndent

noTab
javadocMethod

indentation
whitespaceAround

maxLineLen

0 10 20 30

percent

c
o

d
e

 s
ty

le
 c

r
it
e

r
ia

Fig. 3 Code style criteria with the number of inconsistent PRs

Empirical Software Engineering

style criteria and the horizontal axis displays the ratio of inconsistent PRs over all the 50,092
PRs. As shown in Fig. 3, six criteria (i.e., maxLineLen to cmtIndent) showed inconsistency
over 10% PRs, among which maxLineLen showed the largest inconsistency (with almost
30% inconsistent PRs). This indicated that developers tended to behave differently in the
ways of using spaces or indents, making comments, and writing code lines with a suitable
length. Besides, we could observe that some criteria (such as noLineWrap, catchParaName,
etc.) which always showed no inconsistency in specific projects (Finding 4), on the whole,
also had the least inconsistency over all the 50,092 PRs.

Finding 5. Six code style criteria, i.e., “maxLineLen”, “whitespaceAround”, “indenta-

tion”, “javadocMethod”, “noTab”, and “cmtIndent”, showed most inconsistency among

all PRs. This means developers tended to differ with others in using spaces or indents,

making comments, and writing code lines with a suitable length.

4.4 RQ3. HowDoes Code Style Affect the Merging of PRs?

Goal Developers want to see their contributions accepted. However, many PRs are rejected
without being merged into a project. As mentioned in Section 2.2, the code style is consid-
ered as a key factor that affects the acceptance of a PR. In this section, we quantitatively
investigated the correlation between the code style of PRs and the decision of merging PRs.

Among 50,092 closed PRs, 38,169 PRs were explicitly displayed as merged in GitHub,
with 11,923 PRs as unmerged. However, as mentioned by Gousios et al. (2014), some PRs
are displayed as unmerged in GitHub even when they are actually merged. They proposed
four heuristic rules to find merged PRs that are shown as unmerged in GitHub. In this
study, we also applied these heuristic rules to 11,923 unmerged PRs. Specifically, besides
commits within PRs, we also downloaded the codebase of each project and crawled all
comments made on PRs (these data were necessary for applying the heuristic rules). After
that, we programmed to obtain PRs that met these heuristic rules. As a result, we got a list
of 3,213 merged PR candidates. Then we manually checked each candidate, and found that
2,921 unmerged PRs were actually merged. This meant that our dataset included 41,090
(38169+2921) merged PRs and 9,002 unmerged PRs.

As explained in Section 4.1.2, we decided to build generalized mixed-effects mod-
els (GLMM) to analyze the effect of code style inconsistency on the merging of PRs. In
GLMM, the response variable was the merging status of a closed PR. The code style incon-
sistency and eight confounding factors introduced in Section 4.1 were taken as fixed factors;
while project ID was set as a random factor. We used the method introduced in Section 3.3
to calculate the code style inconsistency for each PR. The fixed factors were log transformed
(i.e., using log(x)) and then centered by using the scale function in R. This could not only
decrease multicollinearity among explanatory variables and between random intercepts and
slopes, but also make all explanatory variables relatively comparable (Cohen et al. 2013;
Jaeger 2011).

Furthermore, considering the inherent collinearity of explanatory variables (i.e., two vari-
ables are correlated) would potentially threaten their statistical and inferential interpretation
(Jiarpakdee et al. 2018), we further checked the correlation between explanatory variables
before model building. Fig. 4 presents the detailed Pearson correlation results. From the
figure, we found that, some variables (e.g., the code style inconsistency (pr csDiff) and
pr chgFileNum) were indeed (highly) correlated. This indicated a necessity to mitigate the

Empirical Software Engineering

Fig. 4 Pearson correlation between explanatory variables. The bottom part of the diagonal displays the
bivariate scatter plots and a fitted line. The top part of the diagonal shows the value of the correlation plus
the significance level as stars (‘***’ p<0.001, ‘**’ p<0.01, ‘*’ p<0.05). The horizontal and vertical
axises represent a pair of two explanatory variables whose values were log transformed and centered before
correlation calculation

collinearity among variables during model building so as to properly evaluate individual
effects within the model. One easy way to avoid collinearity is to directly drop corre-
lated variables (Jiarpakdee et al. 2018). However, dropping variables would not only reduce
model explanatory power (the unique contributions of the dropped variables are ignored)
but also bring the problem of choosing which variables to drop. We instead adopted another
widely-used strategy, i.e., residualization, to mitigate the collinearity problem (Graham
2003; Cohen-Goldberg 2012; Lemhöfer et al. 2008).

The idea of residualization is to regress a variable against another correlated variable,
and replace the variable with the residuals from the regression (the residuals for the variable
represents the part that could not be explained by its correlated variable) (Graham 2003).
Since pr csDiff is the factor of interest in this study, we chose to residualize confounding

Empirical Software Engineering

factors against pr csDiff if they were found to be correlated with pr csDiff. Specifically, we
did residualization on any confounding factor whose Pearson correlation coefficient with
pr csDiff is larger than 0.1. We chose the threshold of 0.1 mainly because (1) low level of
collinearity would also potentially bias the analysis (Graham 2003), and (2) 0.1 is thought
to represent a small association according to Cohen’s guide (Cohen 1977). Based on this
threshold, we residualized two confounding factors against pr csDiff, i.e., pr chgFileNum
and pr avgCmitSize whose Pearson correlation coefficients with pr csDiff were 0.74 and
0.68 respectively.

Note that we only considered the correlation between confounding factors and pr csDiff
during residualizations. If two confounding factors were found to be correlated (with coef-
ficient>0.1), we did not perform corresponding residualizations. We made this decision
mainly because ignoring the correlation between confounding factors (1) would not affect
our analysis of the effect of code style inconsistency on PR integration (Jaeger 2011), (2)
would not affect the fitness of the regression model (Cohen et al. 2013), and (3) would
simplify our model and make our model relatively more understandable (Graham 2003).

To calculate the Cohen’s f 2 that measured the effect size of pr csDiff on PR integration,
we first built a full model with both pr csDiff and 8 confounding factors (among which
pr chgFileNum and pr avgCmitSize were residualized against pr csDiff). Then we built
another model that excluded pr csDiff. Tables 6 and 7 show the results of the regression
models on the merging of PRs with and without code style inconsistency.

From Table 6, we found that the fixed factors (i.e., the code style inconsistency and
eight confounding factors) could explain 17% of the variance (R2

m=17%) while the value
for combined fixed-and-random factors (i.e., fixed factors and the random project factor)
was 31% (R2

c = 31%), indicating that project-to-project variability contributed to some
variability that were explained.

In Table 6, we could observe that the factor code style inconsistency (i.e., pr csDiff) had
a significant (p-value<0.001), negative (the coefficient<0) effect on the merging of PRs.
Besides, combined with the results of Table 7, we could further find that the model (in Table
6) with pr csDiff accounted for 2.1% (i.e., 0.312 - 0.291) more variance than that of the
model without pr csDiff (in Table 7). Based on the R2

c results, we could compute the effect
size of code style inconsistency on the merging of PRs as (0.312 − 0.291)/(1 − 0.312) =
3.11%. This effect size was small according to Cohen’s criteria (with a minimal value 2%
for a small effect; 15% or greater for a medium effect; and 35% or greater for a large effect)
(Cohen 1977).

Finding 6. The code style inconsistency of PRs had a small negative effect on the decision

of merging PRs. This meant that a PR with larger code style inconsistency was more

likely to be rejected.

We have found that the overall code style inconsistency of PRs would negatively affect
the decision of merging PRs (Finding 6). Our next step was to further investigate the effect
of individual code style criterion on the merging of PRs. This could help practitioners be
more careful about certain code style criteria (that would affect PRs acceptance) to more
easily get a PR acceptance.

In our study, each code style criterion was a binary variable that had only two values, i.e.,
0 and 1. 0 means that a PR kept consistent with the codebase in a certain code style criterion
while 1 means that a PR was inconsistent with the codebase in the criterion (the calcula-
tion of the values of each criterion could be found in Section 3.3). To properly evaluate the
effect of individual code style criterion, like in Table 6, for each criterion, we also built a

Empirical Software Engineering

Table 6 GLMM regression model with code style inconsistency and 8 confounding factors on the decision
of merging PRs

Variable Coeffs (Errors) z value Pr(>|z|)

(Intercept) 1.976 (0.081) 24.53 < 2e-16 ***

pr csDiff −0.276 (0.013) −20.58 < 2e-16 ***

pr chgFileNum −0.061 (0.022) −2.79 0.005 **

pr avgCmitSize −0.139 (0.021) −6.77 1.32e-11 ***

proj fork −0.075 (0.025) −3.04 0.002 **

proj age −0.059 (0.024) −2.42 0.016 *

proj insider 0.038 (0.034) 1.10 0.272

proj openPR −0.321 (0.025) −12.70 < 2e-16 ***

dev issue −0.068 (0.021) −3.19 0.001 **

dev mergedPR 0.874 (0.020) 44.46 < 2e-16 ***

‘***’ p<0.001 ‘**’ p<0.01 ‘*’ p<0.05

Akaike’s Information Criterion (AIC): 37951.9 Log Likelihood: -18964.9

R2
m = 0.168. R2

c = 0.312

full GLMMmodel which took both eight confounding factors and the criterion as fixed fac-
tors and project id as the random factor. During model building, the continuous confounding
factors were first log transformed and centered and then were residualized against the crite-
rion if their Pearson coefficients with the criterion were larger than 0.1; the binary criterion
was directly entered into the model. After we built the full model, we built another GLMM
model that excluded the criterion from the full model. Both models took the merging status
of a PR as their response variable. At last, for each criterion, we computed its effect size

Table 7 GLMM regression model with only 8 confounding factors on the decision of merging PRs

Variable Coeffs (Errors) z value Pr(>|z|)

(Intercept) 1.954 (0.077) 25.32 < 2e-16 ***

pr chgFileCnt −0.078 (0.022) −3.49 0.000 ***

pr avgCmitSize −0.140 (0.020) −6.78 1.16e-11 ***

proj fork −0.063 (0.024) −2.57 0.010 *

proj age −0.045 (0.024) −1.85 0.065 .

proj insider 0.043 (0.033) 1.26 0.209

proj openPR −0.305 (0.025) −12.18 < 2e-16 ***

dev issue −0.071 (0.021) −3.38 0.0007 ***

dev mergedPR 0.883 (0.019) 45.20 < 2e-16 ***

‘***’ p<0.001 ‘**’ p<0.01 ‘*’ p<0.05

Akaike’s Information Criterion (AIC): 38372.9 Log Likelihood: -19176.5

R2
m = 0.155. R2

c = 0.291

Empirical Software Engineering

(i.e., Cohen’s f 2) based on the results of two GLMM models built above for the criterion.
Table 8 shows the effect size of the inconsistency of each code style criterion on the merging
of PRs.

Table 8 The effect size (i.e., Cohen’s f 2) of individual code style criterion on the decision of merging PRs

Variable Effect direction Effect size (Level) Significance

annotationLoc Negative 0.00 (negligible)

atOrder Negative 0.11 (negligible) ***

catchParaName Negative 0.02 (negligible)

cmtIndent Negative 1.67 (negligible) ***

emptyBlock Negative 0.25 (negligible) ***

emptyLineSep Negative 0.75 (negligible) ***

fallThrough Negative 0.09 (negligible) ***

genericWhitespace Negative 0.24 (negligible) ***

indentation Negative 1.21 (negligible) ***

javadocMethod Negative 1.03 (negligible) ***

javadocParagraph Negative 0.44 (negligible) ***

leftCurly Negative 0.35 (negligible) ***

localVarName Negative 0.62 (negligible) ***

maxLineLen Negative 2.01 (small) ***

memberName Negative 0.20 (negligible) ***

methodName Negative 0.04 (negligible) ***

modifierOrder Negative 0.31 (negligible) ***

needBraces Negative 0.64 (negligible) ***

needDefault Negative 0.07 (negligible) ***

noLineWrap Positive 0.00 (negligible)

noMultiVar Negative 0.08 (negligible) ***

noStarImport Negative 0.56 (negligible) ***

noTab Negative 2.53 (small) ***

oneStmtPerLine Negative 0.42 (negligible) ***

oneTopClass Negative 0.00 (negligible)

opWrap Negative 0.64 (negligible) ***

packageName Negative 0.00 (negligible)

parameterName Negative 0.59 (negligible) ***

rightCurly Negative 0.68 (negligible) ***

sepWrap Negative 0.27 (negligible) ***

singleLineJavadoc Negative 0.06 (negligible) ***

summaryDoc Negative 0.76 (negligible) ***

tagIndent Negative 0.32 (negligible) ***

typeName Negative 0.03 (negligible) *

upperEll Negative 0.01 (negligible)

whitespaceAround Negative 1.47 (negligible) ***

‘***’ p<0.001 ‘**’ p<0.01 ‘*’ p<0.05

Minimum Value for Effect Size: Small: 2%, Medium: 15%, Large: 35%

Effect Direction represents whether an effect is positive or negative. The values of Effect Size
are displayed in a percent format (e.g., 2.01 in the table means 2.01%)

Empirical Software Engineering

From the table, we found that 31 out of 37 code style criteria had a significant (marked
with one or multiple asterisks) negative correlation with the merging of PRs. Among these
31 criteria, two criteria, i.e., noTab and maxLineLen, were found to have a larger negative
correlation with the decision of merging PRs than the other criteria: the effect sizes of noTab
and maxLineLen were small while the effect sizes of the remaining criteria were negligible
according to Cohen’s criteria (Cohen 1977). This indicates that developers may need to pay
attention to the usage of tabs and the length limit on code lines of a target project if they
want to have their contributions more easily got accepted. For the criteria that were not
statistically significant (6 out of 37), unfortunately, not much conclusion can be drawn.

Finding 7. Among 31 out of 37 code style criteria that significantly negatively affected

the merging of PRs, two criteria namely “noTab” and “maxLineLen” had a relatively

larger effect on the decision of merging PRs compared to the other criteria. The results

were inconclusive for the remaining 6 code style criteria.

4.5 RQ4. HowDoes Code Style Affect the Closing Time of PRs?

Goal Developers also care about the processing time of the PRs. In this section, we leverage
the time cost of closing PRs to evaluate the progress of handling submitted PRs. A short
time cost of closing PR implies that the maintainer quickly responds to the contribution by
the developer. Different from the binary decision of the merging status in Section 4.4, the
time cost of closing PR is a numeric value, which can further characterize the correlation
between the code style and the PR integration.

We collected the time cost of closing PRs for all 50,092 closed PRs in 117 projects. The
time cost of closing a PR was calculated as the time difference between the timestamp of
closing the PR and the timestamp of submitting the PR in days. Then we used the R package
lme4 to build a mixed-effects model, to measure how code style inconsistency would affect
the time cost to close PRs. Within the model, the time cost of closing PRs was taken as
the response variable. The code style inconsistency (i.e., pr csDiff) together with eight con-
founding factors were taken as fixed factors. The project id was set as a random factor. Like
in RQ3, we log transformed and centered the fixed factors and the response variable during
model building. We further residualized two confounding factors (i.e., pr chgFileNum and
pr avgCmitSize) whose Pearson correlation coefficients with pr csDiff is larger than 0.1.
After we built the model described above, we built another model that excluded pr csDiff
from the previously built model. Inspection of residual plots showed that our dataset for
LMM did not reveal obvious deviations from normality. The effect size of code style
inconsistency was then computed based the results of the two models.

Tables 9 and 10 show the final results. From Table 9, we found that the fixed factors
alone explained 13% (R2

m=13%) variance of the closing time of PRs; while the combined
fixed-and-random factors could explain 23% (R2

c=23%) variance of the closing time of PRs.
This indicates that the time in processing PRs indeed varied from project to project. We also
found that the code style inconsistency (i.e., pr csDiff) had a significant (p-value<0.001),
positive effect (the coefficient>0) on the time cost of closing PRs. Meanwhile, we observed
that the inclusion of pr csDiff could make the model explain 3.8% more variance (the
percentage of explained variance rose from 19% in Table 10 to 22.8% in Table 9). Corre-
spondingly, the effect size of pr csDiff was (0.228 − 0.190)/(1 − 0.228) = 4.82%, which
indicated a small effect according to Cohen’s criteria (the range of 2% - 15% corresponds

Empirical Software Engineering

Table 9 Linear mixed-effects model with code style inconsistency and 8 confounding factors on the closing
time of PRs

Variable Coeffs (Errors) z value Pr(>|z|)

(Intercept) 0.040 (0.029) 1.407 0.162

pr csDiff 0.188 (0.004) 46.469 < 2e-16 ***

pr chgFileCnt 0.064 (0.007) 9.461 < 2e-16 ***

pr avgCmitSize 0.072 (0.006) 11.446 < 2e-16 ***

proj fork 0.024 (0.008) 3.055 0.002 **

proj age 0.094 (0.008) 12.198 < 2e-16 ***

proj insider −0.024 (0.012) −2.039 0.041 *

proj openPR 0.198 (0.008) 26.246 < 2e-16 ***

dev issue −0.018 (0.006) −2.820 0.005 **

dev mergedPR −0.219 (0.006) −35.733 < 2e-16 ***

‘***’ p<0.001 ‘**’ p<0.01 ‘*’ p<0.05

R2
m = 0.134. R2

c = 0.228

to a small effect) (Cohen 1977). This means that the larger the code style inconsistency of a
PR is, the more time it is likely to take to close the PR. It would be necessary for developers
to keep a consistent code style with the codebase if they want to see their PRs got processed
in a quicker way.

Finding 8. The code style inconsistency of PRs had a small positive effect on the time

cost of closing PRs. This means a PR with larger code style inconsistency tended to need

more time to be closed.

Similar to RQ3, we also built linear mixed-effects models to explore how the incon-
sistency of each code style criterion would affect the time cost of closing PRs. Similarly,
for each code style criterion, we built two linear mixed-effects models with including and

Table 10 Linear mixed-effects model with only 8 confounding factors on the closing time of PRs

Variable Coeffs (Errors) z value Pr(>|z|)

(Intercept) 0.038 (0.028) 1.337 0.184

pr chgFileCnt 0.067 (0.007) 9.692 <2e-16 ***

pr avgCmitSize 0.071 (0.006) 11.125 <2e-16 ***

proj fork 0.017 (0.008) 2.081 0.037 *

proj age 0.087 (0.008) 11.051 <2e-16 ***

proj insider −0.028 (0.012) −2.341 0.019 *

proj openPR 0.190 (0.008) 24.686 <2e-16 ***

dev issue −0.013 (0.006) −2.083 0.037 *

dev mergedPR −0.233 (0.006) −37.292 <2e-16 ***

‘***’ p<0.001 ‘**’ p<0.01 ‘*’ p<0.05

R2
m = 0.099. R2

c = 0.190

Empirical Software Engineering

excluding the criterion respectively. During model building, 8 confounding factors and the
to-be-evaluated code style criterion (if included) were taken as fixed factors, and project id
was set as the random factor. Meanwhile, 8 confounding factors and the response variable
(i.e., the time cost of closing PRs) were log transformed and centered during model building.
The to-be-evaluated criterion which was already a binary variable was directly entered into
the model. Like in RQ3, we further residualized any confounding factor against the to-be-
evaluated criterion if there existed a correlation between them (i.e., the Pearson correlation
coefficient > 0.1). The residualized confounding factors then worked as explanatory vari-
ables in both two models. After building two models for each criterion, we then computed
the effect-size (i.e., the Cohen’s f 2) of each criterion based on the variances explained by
these two models. Table 11 shows the effect size of each code style criterion.

From the table, we found that the coefficients of 34 (out of 37) code style criteria
were statistically significant (marked with one or multiple asterisks). Further according to
Cohen’s criteria (Cohen 1977), javadocMethod and maxLineLen had a small positive effect
on the closing time of PRs, while the effects of the remaining 32 criteria were negligible.
For the criteria that were not statistically significant, unfortunately, we were not able to
reach any conclusions from them.

Finding 9. Two code style criteria namely “javadocMethod” and “maxLineLen” had a

relatively larger positive effect on the closing time of PRs than the other criteria with

significant effects.

5 Discussion

In this section, we first discuss the implications of our findings in Section 5.1. Then we list
the main threats to the validity of our work in Section 5.2.

5.1 Implications

We briefly present some implications of our findings on developers’ activities and future
research.

Developers should always keep consistent with the current code style Through RQ3
and RQ4, we have found that code style inconsistency of PRs would affect PR integration,
including both the merging of PRs and the time cost of closing PRs. Prior to our work,
Gousios et al. (2015) also reported that code style was greatly considered by PR integrators;
with the help of natural language models, Hellendoorn et al. (2015) found that accepted
PRs were indeed more similar to the project than rejected ones (more details in Section
6.2). In this regard, our result reinforced and provided more quantitative support for their
work. These findings indicate that developers should try their best to keep the same code
style with the existing code while contributing. In this way, they are more likely to get their
contributions accepted in a quicker way. For example, they may had better familiarize them-
selves with the policy of a project on code style before contributing and if possible run some
Checkstyle-like tools or specific tools configured by the project to eliminate inconsistent
code. They also need to pay special attention to the way they use spaces/indents, make com-
ments, and write suitable-length code lines since these style criteria are more likely to affect
PR integration.

Empirical Software Engineering

Table 11 The effect size (i.e., Cohen’s f 2) of individual code style criterion on the closing time of PRs

Variable Effect direction Effect size (Level) Significance

annotationLoc Positive 0.00 (negligible) *

atOrder Positive 0.20 (negligible) ***

catchParaName Positive 0.00 (negligible)

cmtIndent Positive 1.19 (negligible) ***

emptyBlock Positive 0.32 (negligible) ***

emptyLineSep Positive 1.08 (negligible) ***

fallThrough Positive 0.05 (negligible) ***

genericWhitespace Positive 0.25 (negligible) ***

indentation Positive 1.78 (negligible) ***

javadocMethod Positive 2.35 (small) ***

javadocParagraph Positive 1.00 (negligible) ***

leftCurly Positive 0.81 (negligible) ***

localVarName Positive 1.13 (negligible) ***

maxLineLen Positive 3.49 (small) ***

memberName Positive 0.51 (negligible) ***

methodName Positive 0.35 (negligible) ***

modifierOrder Positive 0.39 (negligible) ***

needBraces Positive 0.73 (negligible) ***

needDefault Positive 0.26 (negligible) ***

noLineWrap Negative 0.00 (negligible)

noMultiVar Positive 0.22 (negligible) ***

noStarImport Positive 0.68 (negligible) ***

noTab Positive 1.22 (negligible) ***

oneStmtPerLine Positive 0.24 (negligible) ***

oneTopClass Positive 0.07 (negligible) **

opWrap Positive 1.11 (negligible) ***

packageName Positive 0.02 (negligible) **

parameterName Positive 1.11 (negligible) ***

rightCurly Positive 1.29 (negligible) ***

sepWrap Positive 0.22 (negligible) ***

singleLineJavadoc Positive 0.11 (negligible) ***

summaryDoc Positive 1.61 (negligible) ***

tagIndent Positive 0.30 (negligible) ***

typeName Positive 0.10 (negligible) ***

upperEll Positive 0.00 (negligible)

whitespaceAround Positive 1.49 (negligible) ***

‘***’ p<0.001 ‘**’ p<0.01 ‘*’ p<0.05

Minimum Value for Effect Size: Small: 2%, Medium: 15%, Large: 35%

Effect Direction represents whether an effect is positive or negative. The values of Effect Size
are displayed in a percent format (e.g., 2.35 in the table means 2.35%)

Empirical Software Engineering

Maintainers may need to take actionable strategies to help contributors better iden-
tify the code style of projects and format their inconsistent code Despite the code style
is concerned a lot by project maintainers (Gousios et al. 2015), the RQ1 results, how-
ever, revealed that there still existed a number of PRs that violated the current code style
of projects. As project maintainers, they may also need to make more efforts to help
their (potential) contributors keep a consistent code style. For example, they can explic-
itly and detailedly declare their code style requirements in some noticeable places (e.g.,
readme/contributing files) in their GitHub websites. Besides, it would be valuable for
them to integrate some code style checking tools (such as Checkstyle or Eclipse built-in
Formatter) into their daily-routine development to help automatically detect and further
format inconsistent code whenever contributors submit their PRs or add new commits
to PRs.

More efforts are needed to identify the usage patterns for some code style criteria that
are cared much by developers In RQ2, we observed that some code style criteria tended
to show more inconsistency. Specifically, we found that developers differed most with oth-
ers on the way of using whitespace, indenting code, writing proper Javadoc comments, and
writing less-lengthy code. This, to some extent, coincides with an existing study that investi-
gated the problems found during code review: 75% problems figured out by reviewers were
non-functional problems, among which, many problems were related to comments, inden-
tation, space usage, and long line (Mäntylä and Lassenius 2009). For those criteria, it would
be very helpful if some approaches can be proposed to automatically obtain their usage pat-
terns within the codebase. Ideas from existing studies (Allamanis et al. 2014; Hellendoorn
et al. 2015) that built N-gram language models to infer the stylistic aspects/conventions of
code might help in this direction. Additionally, the pervasiveness of problems related to
these criteria in code review and the ability of Checkstyle to check the violations of these
criteria indicates that it would be very helpful for practitioners to embed Checkstyle-like
tools into their code review process (as reported in Sadowski et al. (2018), Checkstyle has
been deployed as part of the general developer workflow in Google).

Further investigation into the effect of code style inconsistency on software mainte-
nance is needed In this paper, we highlighted the effect of code style inconsistency on PR
integration. However, we have not looked into the potential effect of code style inconsis-
tency on software maintenance. For example, is there any correlation between code style
inconsistency and code quality? For another instance, how much effort did developers put
into resolving problems related to inconsistent code style? It would be interesting to conduct
further investigations into these problems. Such investigations can not only help us obtain a
better understanding about the code style, but also can help us find more potential concerns
by developers in maintaining a consistent code style.

Some replication studies on projects developed in other languages are encouraged In
this study, we mainly focus on exploring the code style inconsistency problem among Java
projects. We still have little knowledge about whether our conclusions are applicable to
projects developed in other languages (such as python, javascript, etc.). We believe that it
would be valuable to replicate our study in other languages. This would not only help us
gain more insights into the pervasiveness of code style related problems in a big picture, but
also may provide some hints on how we should focus our efforts to solve these problems in
the future.

Empirical Software Engineering

5.2 Threats to Validity

Internal Validity In this study, we only used original and modified files involved within
a PR to show the code style of PRs. However, there exist many other ways to extract code
to calculate the code style. One potential way is to compare the code style between a new
PR and the whole codebase. However, the codebase is always much larger and may con-
tain different kinds of code styles. This leads to a complex result in calculation, which may
involve other factors that affect the analysis. Another potential way is to compare the code
style between a new PR and a maintainer. However, determining the code style of a main-
tainer is difficult since we cannot identify the code style of a maintainer, even knowing his
merged PRs.

Besides, as mentioned in Section 3.3, we calculated the code style inconsistency based on
binary values, which represented whether original ormodified files violated a certain code
style criterion. We note that a better way of characterizing the code style is to use numeric
values, e.g., from 0 to 1. In our work, we focused on the difference between the code style
of original and modified files involved within a PR. Thus, we used a simple way, i.e., the
binary values for the code style inconsistency.

The binary values we measured code style inconsistency may cause some inconsistency
in certain code style criteria to be counted as no inconsistency. For example, if a project
uses 140 character line length, and a new PR uses 200 character line length, in this case,
since both of them would differ from the criterion in Table 2 (100 character line length), our
approach would take them as consistent in the criterion despite they are actually inconsis-
tent. Such cases may pose a potential threat to our analysis. However, since many projects
did not mention their concrete requirements on specific code style criteria, we decided to
use a global code style (that was developed by retrieving the common subset (in Table 2) of
Google and Oracle Java code styles) for all experimental projects. The popularity of Google
and Oracle Java code styles makes us believe that such a global code style could still shed
some light on the issue of how code style inconsistency would affect PR integration. We
would try to measure and eliminate this threat in our follow-up studies.

External Validity In this paper, we only considered Java projects on GitHub. We cannot
guarantee that our findings can be generalized to projects in another language on GitHub.
Besides, we are not sure whether the results can also be applicable to other OSS platforms,
such as SourceForge23 and BitBucket24. In addition, as we only conducted experiments on
OSS projects, the conclusions may not hold on industrial projects. Whereas, considering
the great popularity of GitHub platform, we believe that our quantitative study can, to some
extent, help developers understand the effect of code style on PR integration. In future, we
plan to conduct experiments on more projects to explore the generalization problem.

6 RelatedWork

6.1 Code Style Definition

Defining an appropriate code style is a challenging topic in research community and indus-
try. Early research work mainly focused on defining a “good” code style for the language

23http://sourceforge.net
24http://bitbucket.org/

http://sourceforge.net
http://bitbucket.org/

Empirical Software Engineering

of Pascal, C, and C++ (Marca 1981; Rees 1982; Berry and Meekings 1985; Bridger and
Pisano 2001). Oman and Cook (1990) proposed a taxonomy for programming style to help
people hold a coherent view on the basis and application of programming styles. McConnell
(1993) presented many useful tips and explanations about the style of programming. For
the Java language, which we mainly focused on in this paper, researchers also defined some
basic elements of the code style. Vermeulen (2000) provided many code style guidelines.
Two kinds of Java code styles are widely used in software development in practice: one is
the code style by Oracle, proposed by the original inventors of Java (Oracle 1999); the other
is by (Google 2013). These two kinds of Java code style have many terms in common, but
contain some differences. For example, the Google code style prefers to use two spaces to
align code while the Oracle code style suggests four spaces instead.

In this paper, we manually collected existing code styles to model the differences of code
style between the change in a PR and the previous code before merging the PR. We focused
on the inconsistency between the code style of PR and its existing code, not the definition
of a “good” code style. That is, defining a good code style with using two spaces (such as in
Google) or four spaces (such as in Oracle) would not affect the findings in our experiments.

6.2 Code Style Inconsistency

In a qualitative study, Gousios et al. (2015) reported that code style would greatly affect the
acceptance of contributions. To quantitatively evaluate the effect, Hellendoorn et al. (2015)
built natural language models to capture the stylistic properties of code and used mean
entropy to measure the style similarity between PRs and the project code. They found that
accepted PRs were more similar with the project than rejected PRs. This study is closest to
our work.

Different from the work of Hellendoorn et al., we measured code style inconsistency
based on 37 concrete code style criteria rather than on the abstract entropy. Despite less
generic than their model, our model is, however, more explainable in that developers can
understand in what aspects they did not conform to the project style and can easily take
corresponding actions to format the code with inconsistent code style based on our model
results. Besides the merging of PRs, we also studied how code style inconsistency would
affect the closing time of PRs. This extends our knowledge on how code style inconsistency
would affect the processing of PRs. What is more, we further explored the inconsistency of
individual code style criterion and their potential effect on PR integration. This further helps
to inform practitioners which code style criteria they should be more careful in order to get
a PR acceptance in a quicker way. At last, after we got an overview of to what extent PRs
kept a consistent code style with targeting projects, we further explored how the code style
policy of a project and PR authors’ experience (measured in four kinds of contributions)
was correlated with the ratio of PRs with no inconsistency in code style in the project. Our
work not only helped us obtain a more complete view of the effect of code style on PRs
processing but also provided some actionable insights that developers could refer to to better
contribute to a project.

Some research studies on code review found that reviewers often checked whether the
reviewed code violated the existing project style, code guidelines, or team standards (Rigby
and Storey 2011; Bacchelli and Bird 2013). Butler et al. (2009) found out that there existed
a significant association between identifier names and code quality. Miara et al. (1983) fig-
ured that program indentation would affect its comprehensibility. (Boogerd and Moonen
2009) declared that code standard violations may introduce faults. Smit et al. (2011) iden-
tified several coding conventions which affected the code maintainability most. Allamanis

Empirical Software Engineering

et al. (2014) proposed a framework, i.e., NATURALIZE, to infer naming and formatting
conventions from code. Their tools could help developers better maintain a consistent code
style within projects. Balachandran (2013) developed a review bot, which integrated Check-
style and FindBugs25 to automatically check the code style violations and potential bugs. In
this paper, we identified the code style inconsistency to show its effect on PR integration.
Our work is a kind of exploratory analysis of PRs based on the code style.

6.3 Factors of PR Integration

Many researchers have investigated which factors influenced the integration of PR (Gousios
et al. 2015; Yu et al. 2015; Soares et al. 2015). Some focused on exploring factors that
would affect the acceptance of PRs (Gousios et al. 2015; Tsay et al. 2014a); while some oth-
ers focused on what would influence the time cost of closing PRs (Yu et al. 2015; Gousios
et al. 2014). Gousios et al. (2015) conducted a survey among project integrators and con-
cluded both technical and social factors, such as code quality and developer reputation,
which would affect the acceptance of PRs. Tsay et al. (2014a) quantitatively measured the
effect of different social and technical factors on the acceptance of contributions in GitHub.
They also investigated how people evaluated a PR through discussions (Tsay et al. 2014b).
(Vasilescu et al. 2015) found that continuous integration could make more PRs merged.
Rahman and Roy (2014) found that factors, such as the maturity of a project and the num-
ber of involved developers, can affect the merging of PRs. Padhye et al. (2014) showed that
PRs of bug fixes tended to be more likely to be merged than that of feature enhancements.
Zhang et al. (2018) explored the impact of competing PRs on PR integration. Different
from above studies, we mainly focused on quantitatively evaluating the effect of code style
inconsistency on the decision of merging PRs. Our work complements existing studies on
the merging of PRs.

(Yu et al. 2015) found that factors, such as the commit size and the number of com-
ments, can effectively indicate the latency of PRs. Zhang et al. (2014) found that PRs using
@-mention tended to need more time to be handled. Gousios et al. (2014) found that the
track record of a developer had a strong correlation with the time cost to close his/her PRs.
This was also confirmed by our study. To help people better cope with large PRs, some
researchers proposed methods to rank PRs and recommend competent developers to process
PRs (van der Veen et al. 2015; Yu et al. 2014; de Lima Júnior et al. 2015). In our work, we
considered an orthogonal research problem, namely, the effect of code style inconsistency
on the closing time of PRs. We found that the code style inconsistency would also delay the
processing of PRs.

7 Conclusions

In this paper, we conducted an exploratory study on the effect of code style on PR integration
in GitHub with 117 projects. We found that there indeed existed PRs, which held different
code styles with the existing code in the codebase; several code style criteria generally
revealed high divergence while several other criteria always indicated no inconsistency. The
code style inconsistency between PRs and the existing code would affect the process of
merging PRs into the codebases; this inconsistency would also affect the time cost to close
a PR.

25http://findbugs.sourceforge.net

http://findbugs.sourceforge.net

Empirical Software Engineering

In the future, we plan to investigate the correlation between the code style and the
code quality. We also plan to conduct experiments on more projects to improve the
generalizability of our findings.

Acknowledgments The authors would like to greatly thank our lab members, Yufeng Zhao, Yiming Chen,
and Mengting Zhou, for crawling GitHub project data for experiments. This work is partly supported by
the National Natural Science Foundation of China (Grant No.61690201, 61772014, 61802171, 61872273,
61572375), and the China Scholarship Council Scholarship. Any opinions, findings, and conclusions in this
paper are those of the authors only and do not necessarily reflect the views of our sponsors.

References

Allamanis M, Barr ET, Bird C, Sutton CA (2014) Learning natural coding conventions. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 281–293

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 35th International Conference on Software Engineering, pp 712–721

Balachandran V (2013) Reducing human effort and improving quality in peer code reviews using automatic
static analysis and reviewer recommendation. In: Proceedings of the 35th International Conference on
Software Engineering, pp 931–940

Bartoń K (2013) Mumin: Multi-model inference. r package version 1.9. 13 The Comprehensive R Archive
Network (CRAN), Vienna, Austria

Bates DM (2010) lme4: Mixed-effects modeling with r
Berry RE, Meekings BAE (1985) A style analysis of C programs. Commun ACM 28(1):80–88
Boogerd C, Moonen L (2009) Evaluating the relation between coding standard violations and faultswithin

and across software versions. In: Proceedings of the 6th International Working Conference on Mining
Software Repositories, pp 41–50

Bridger A, Pisano J (2001) C++ coding standards
Butler S, Wermelinger M, Yu Y, Sharp H (2009) Relating identifier naming flaws and code quality: An

empirical study. In: Proceedings of the 16th Working Conference on Reverse Engineering, pp 31–35
Cohen J (1977) Statistical power analysis for the behavioral sciences (revised ed.)
Cohen J, Cohen P, West SG, Aiken LS (2013) Applied multiple regression/correlation analysis for the

behavioral sciences. Routledge, Evanston
Cohen-Goldberg AM (2012) Phonological competition within the word: Evidence from the phoneme

similarity effect in spoken production. J Mem Lang 67(1):184–198
de Lima Júnior ML, Soares DM, Plastino A, Murta L (2015) Developers assignment for analyzing pull

requests. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp 1567–1572
Google (2013) Google Java code style. http://google.github.io/styleguide/javaguide.html
Gousios G, Pinzger M, van Deursen A (2014) An exploratory study of the pull-based software development

model. In: Proceedings of the 36th International Conference on Software Engineering, pp 345–355
Gousios G, Zaidman A, Storey MD, van Deursen A (2015) Work practices and challenges in pull-

based development: The integrator’s perspective. In: Proceedings of the 37th IEEE/ACM International
Conference on Software Engineering, pp 358–368

Gousios G, Storey MD, Bacchelli A (2016) Work practices and challenges in pull-based development: the
contributor’s perspective. In: Proceedings of the 38th International Conference on Software Engineering,
pp 285–296

Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecol 84(11):2809–2815
Hauke J, Kossowski T (2011) Comparison of values of pearson’s and spearman’s correlation coefficients on

the same sets of data. Quaest Geogr 30(2):87–93
Hellendoorn V, Devanbu PT, Bacchelli A (2015) Will they like this? evaluating code contributions with

language models. In: Proceedings of the 12th IEEE/ACM Working Conference on Mining Software
Repositories, pp 157–167

Jaeger FT (2011) Fitting, Evaluating, and Reporting Mixed Models
Jiarpakdee J, Tantithamthavorn C, Treude C (2018) Autospearman: Automatically mitigating correlated soft-

ware metrics for interpreting defect models. In: Proceedings of the 34th International Conference on
Software Maintenance and Evolution, pp 92–103

Johnson PC (2014) Extension of nakagawa & schielzeth’s r2glmm to random slopes models. Methods Ecol
Evol 5(9):944–946

http://google.github.io/styleguide/javaguide.html

Empirical Software Engineering

Kabacoff R (2015) R in action: data analysis and graphics with R. Manning Publications Co.
Kalliamvakou E, Gousios G, Blincoe K, Singer L, Germán DM, Damian D (2014) The promises and perils of

mining github. In: Proceedings of the 11th Working Conference on Mining Software Repositories, pp 92–101
Kalliamvakou E, Damian DE, Blincoe K, Singer L, Germán DM (2015) Open source-style collaborative

development practices in commercial projects using github. In: Proceedings of the 37th IEEE/ACM
International Conference on Software Engineering, pp 574–585

Lemhöfer K, Dijkstra T, Schriefers H, Baayen RH, Grainger J, Zwitserlood P (2008) Native language influ-
ences on word recognition in a second language: A megastudy. J Exper Psychol Learn Memory Cogn
34(1):12

Mäntylä MV, Lassenius C (2009) What types of defects are really discovered in code reviews? IEEE Trans
Softw Eng 35(3):430–448

Marca D (1981) Some pascal style guidelines. ACM Sigplan Not 16(4):70–80
McConnell S (1993) Code complete: a practical handbook of software construction. Microsoft Press
Miara RJ, Musselman JA, Navarro JA, Shneiderman B (1983) Program indentation and comprehensibility.

Commun ACM 26(11):861–867
Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining r2 from generalized linear

mixed-effects models. Methods Ecol Evol 4(2):133–142
Oman PW, Cook CR (1990) A taxonomy for programming style. In: Proceedings of the ACM 18th Annual

Computer Science Conference on Cooperation, pp 244–250
Oracle (1999) Oracle java code style. http://www.oracle.com/technetwork/java/codeconvtoc-136057.html
Padhye R, Mani S, Sinha VS (2014) A study of external community contribution to open-source projects on

github. In: Proceedings of the 11th Working Conference on Mining Software Repositories, pp 332–335
RahmanMM, Roy CK (2014) An insight into the pull requests of github. In: Proceedings of the 11thWorking

Conference on Mining Software Repositories, pp 364–367
Rees MJ (1982) Automatic assessment aids for pascal programs. SIGPLAN Not 17(10):33–42
Rigby PC, Storey MD (2011) Understanding broadcast based peer review on open source software projects.

In: Proceedings of the 33rd International Conference on Software Engineering, pp 541–550
Sadowski C, Aftandilian E, Eagle A, Miller-Cushon L, Jaspan C (2018) Lessons from building static analysis

tools at google. Commun ACM 61(4):58–66
Selya AS, Rose JS, Dierker LC, Hedeker D, Mermelstein RJ (2012) A practical guide to calculating cohen’s

f2, a measure of local effect size, from proc mixed. Front Psychol 3:111
Smit M, Gergel B, Hoover HJ, Stroulia E (2011) Code convention adherence in evolving software. In:

Proceedings of the IEEE 27th International Conference on Software Maintenance, pp 504–507
Soares DM, de Lima Júnior ML, Murta L, Plastino A (2015) Acceptance factors of pull requests in open-source

projects. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, pp 1541–1546
Tsay J, Dabbish L, Herbsleb JD (2014a) Influence of social and technical factors for evaluating contribution

in github. In: Proceedings of the 36th International Conference on Software Engineering, pp 356–366
Tsay J, Dabbish L, Herbsleb JD (2014b) Let’s talk about it: evaluating contributions through discussion

in github. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp 144–154

Vasilescu B, Yu Y, Wang H, Devanbu PT, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in github. In: Proceedings of the 10th Joint Meeting on Foundations of Software
Engineering, pp 805–816

van der Veen E, Gousios G, Zaidman A (2015) Automatically prioritizing pull requests. In: Proceedings of
the 12th IEEE/ACM Working Conference on Mining Software Repositories, pp 357–361

Vermeulen A (2000) The Elements of Java (TM) Style. Cambridge University Press, Cambridge
Yu Y, Wang H, Yin G, Ling CX (2014) Reviewer recommender of pull-requests in github. In: Proceedings

of the 30th IEEE International Conference on Software Maintenance and Evolution, pp 609–612
Yu Y,Wang H, Filkov V, Devanbu PT, Vasilescu B (2015)Wait for it: Determinants of pull request evaluation

latency on github. In: Proceedings of the 12th IEEE/ACM Working Conference on Mining Software
Repositories, pp 367–371

Zhang Y, Yin G, Yu Y, Wang H (2014) Investigating social media in github’s pull-requests: a case study on
ruby on rails. In: Proceedings of the 1st International Workshop on Crowd-based Software Development
Methods and Technologies, pp 37–41

Zhang X, Chen Y, Gu Y, Zou W, Xie X, Jia X, Xuan J (2018) How do multiple pull requests change the
same code: A study of competing pull requests in github. In: Proceedings of the 34th IEEE International
Conference on Software Maintenance and Evolution, pp 228–239

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Empirical Software Engineering

Weiqin Zou received the bachelor degree in software engineering
and the master degree in computer science from Dalian Univer-
sity of Technology, China, in 2010 and 2013, respectively. She is
working toward a PhD degree at the Software Institute, Nanjing Uni-
versity, China, advised by Prof. Baowen Xu and Prof. Zhenyu Chen.
Her research interests include empirical study and mining software
repositories.

JifengXuan is a professor at the School of Computer Science,Wuhan
University, China. He received the BSc degree and the PhD degree
from Dalian University of Technology, China. He was previously a
postdoctoral researcher at the INRIA Lille Nord Europe, France. His
research interests include software testing and debugging, software
data analysis, and search based software engineering. He is a member
of the ACM, IEEE, and CCF.

Xiaoyuan Xie received B.Sc. and M.Phil. degrees in Computer
Science from Southeast University, China in 2005 and 2007, respec-
tively, and received PhD degree in Computer Science from Swinburne
University of Technology, Australia in 2012. She is currently a pro-
fessor in School of Computer Science, Wuhan University, China. Her
research interests include software analysis, testing, debugging, and
search based software engineering.

Empirical Software Engineering

Zhenyu Chen is a Professor of Software Institute in Nanjing Univer-
sity. His research interests are mainly the area of intelligent software
engineering. He is the Founder of mooctest.net. He served as the edi-
tor board of the IEEE Transactions on Reliability Journal Associate
Editor, the Guest Editor of JSS and SP&E Journal, the PC co-chair of
QRS 2016, TSA 2016, QSIC 2013, AST 2013. He has published more
than 100 papers in the leading academic conferences and journals
such as TOSEM, TSE, ICSE, FSE, ISSTA, ICST, etc. He owns more
than 40 patents (22 granted), and some of his patents have been trans-
ferred to well-known software companies such as Baidu, Alibaba and
Huawei.

Baowen Xu received the bachelor, master, and PhD degrees in
computer science from Wuhan University, Huazhong University of
Science and Technology, and Beihang University in 1982, 1985 and
2002, respectively. He is currently a Professor in the Department
of Computer Science and Technology at Nanjing University. His
major research interests are programming languages, software test-
ing, software maintenance, and software metrics. He has published
extensively in premiere software engineering journals and confer-
ences such as TOSEM, TSE, JSS, TR, ICSE, FSE, ICSME, ICST, etc.
He is a member of the IEEE.

Affiliations

Weiqin Zou1 · Jifeng Xuan2 ·Xiaoyuan Xie2 ·Zhenyu Chen1 ·Baowen Xu1

Weiqin Zou
wqzou@smail.nju.edu.cn

Jifeng Xuan
jxuan@whu.edu.cn

Xiaoyuan Xie
xxie@whu.edu.cn

Baowen Xu
bwxu@nju.edu.cn

1 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2 School of Computer Science, Wuhan University, Wuhan, China

www.mooctest.net
http://orcid.org/0000-0003-0739-0008
mailto: wqzou@smail.nju.edu.cn
mailto: jxuan@whu.edu.cn
mailto: xxie@whu.edu.cn
mailto: bwxu@nju.edu.cn

	How does Code Style Inconsistency Affect
	Abstract
	Introduction
	RQ1. Is there any difference between the code style of submitted PRs and that of the existing source code?
	RQ2. Which code style criteria tend to show much inconsistency among PRs?
	RQ3. How does code style affect the merging of PRs?
	RQ4. How does code style affect the closing time of PRs?

	Background and Motivation
	Background
	Pull-based development
	Pull Request (PR)

	Motivation

	Methodologies
	Target Projects
	Code Style Criteria
	Code Style Inconsistency in PRs

	Experimental Results
	Experiment Setup
	Data Preparation
	Design of RQs
	RQ1. Is there any difference between the code style of submitted PRs and that of the existing source code?
	RQ2. Which code style criteria tend to show much inconsistency among PRs?
	RQ3. How does code style affect the merging of PRs?
	RQ4. How does code style affect the closing time of PRs?

	Confounding Factors
	pr_chgFileNum
	pr_avgCmitSize
	proj_fork
	proj_age
	proj_insider
	proj_openPR
	dev_issue
	dev_mergedPR

	RQ1. Is there any Difference Between the Code Style of Submitted PRs and that of the Existing Source Code?
	Goal

	RQ2. Which Code Style Criteria Tend to Show Much Inconsistency Among PRs?
	Goal

	RQ3. How Does Code Style Affect the Merging of PRs?
	Goal

	RQ4. How Does Code Style Affect the Closing Time of PRs?
	Goal

	Discussion
	Implications
	Developers should always keep consistent with the current code style
	Maintainers may need to take actionable strategies to help contributors better identify the code style of projects and format their inconsistent code
	More efforts are needed to identify the usage patterns for some code style criteria that are cared much by developers
	Further investigation into the effect of code style inconsistency on software maintenance is needed
	Some replication studies on projects developed in other languages are encouraged

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Code Style Definition
	Code Style Inconsistency
	Factors of PR Integration

	Conclusions
	References
	Affiliations

