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Abstract—Bug fixing is one of the most important activities
in software development and maintenance. A software project
often employs an issue tracking system such as Bugzilla to store
and manage their bugs. In the issue tracking system, many bugs
are invalid but take unnecessary efforts to identify them. In this
paper, we mainly focus on bug fixing rate, i.e., the proportion of
the fixed bugs in the reported closed bugs. In particular, we study
the characteristics of bug fixing rate and investigate the impact
of a reporter’s different contribution behaviors to the bug fixing
rate. We perform an empirical study on all reported bugs of two
large open source software communities Eclipse and Mozilla. We
find (1) the bug fixing rates of both projects are not high; (2)
there exhibits a negative correlation between a reporter’s bug
fixing rate and the average time cost to close the bugs he/she
reports; (3) the amount of bugs a reporter ever fixed has a strong
positive impact on his/her bug fixing rate; (4) reporters’ bug
fixing rates have no big difference, whether their contribution
behaviors concentrate on a few products or across many products;
(5) reporters’ bug fixing rates tend to increase as time goes on,
i.e., developers become more experienced at reporting bugs.

Keywords—Bug Fixing Rate, Empirical Study, Statistical Anal-
ysis, Bug Reports

I. INTRODUCTION

Bug fixing is an essential activity to ensure software
quality. Software projects often use issue tracking systems to
store and manage bug reports, especially for large projects.
Bugzilla1 is a popular issue tracking system used by many
software projects such as Eclipse2 and Mozilla3. A typical
bug report contains a number of important fields, such as
the summary, description, reporter, fixer, severity, and priority
fields. These fields play an important role in bug fixing.

There have been a number of studies on bug report
management and bug report quality management [1]–[5], such
as bug triage [1], [6], duplicate bug detection [7], [8], bug
localization [2], [9], severity and priority prediction [10], and
bug fixing time prediction [11]. For example, Anvik et al.
propose a machine learning approach to triage a bug report
to a suitable fixer [1]. Bettenburg et al. make use of social
interactions to better predict whether a piece of code is buggy
or not [12]. Zhou et al. propose an information-retrieval based
method to better locate where the bug is [2]. Weiss et al.
studied how long it will take to fix a bug [11]. Wang et
al. propose a method using natural language and execution
information to detect duplicate bugs [8]. Marcelo et al. [5]

1http://bugzilla.org
2https://bugs.eclipse.org/bugs
3https://bugzilla.mozilla.org

build a social network with reporters’ interactions to predict
whether a bug is valid or not. They find that the reporter’s
social role is a strong indicator of a bug’s validity.

Developers need to handle a large number of bug reports in
the issue tracking systems. However, many bugs are reported
and closed but not fixed, i.e., non-fixed bugs. Developers have
to spend unnecessary time to identify these non-fixed bugs,
which would cause a waste of precious developers resources
and results in many valid bugs not to be fixed in time. We
collect all bugs reported before August 2014 in two large
open source software communities Eclipse (440,024 bugs) and
Mozilla (847,741 bugs). By performing a statistical analysis,
we find that non-fixed bugs take a great proportion in both
projects, for specific, 34.3% in Eclipse and 55.8% in Mozilla.
It is of great significance to gain some insights into these non-
fixed bugs.

In this paper, we mainly focus on bug fixing rate, i.e., the
ratio of fixed bugs to the reported bugs. We try to gain some
knowledge about bug fixing rate from two aspects. From the
aspect of community, we try to get a brief view of the bug
fixing rate in the whole project. From the aspect of reporters,
we try to find the factors correlated with reporters’ bug fixing
rates. We also study the evolution of reporters’ bug fixing rates.
All bugs of two popular software projects, i.e., Eclipse (bugs
reported before August 8, 2014 are collected) and Mozilla
(bugs reported before August 1, 2014 are collected), are used to
conduct our experiments. We use longitudinal analysis to study
the bug fixing rate. We try to answer the following research
questions:

RQ1: What is the overall situation of a project’s bug fixing
rate?

There are many non-fixed bugs in both projects, especially for
Mozilla. And both projects’ fixing rates tend to increase along
with the evolution of projects.

RQ2: Will the amount of bugs a reporter ever reported,
fixed or commented impact his bug fixing rate?

Yes, the fixing contribution is a strong indicator for a reporter’s
bug fixing rate. The reporting contribution has weak correlation
with the bug fixing rate.

RQ3: Is it likely that the higher a reporter’s bug fixing
rate is, the less time it takes to close the bugs he reports?

Yes, there is a negative correlation between the time needed
to close a reporter’s bugs and his bug fixing rate.
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RQ4: Will a reporter’s degree of concentration on products
impact his bug fixing rate?

No, there is no strong relationship between a reporter’s report-
ing, commenting or fixing concentration on products and his
bug fixing rate.

RQ5: How will reporters’ bug fixing rates change along
with the software evolution?

Reporters in Eclipse and Mozilla tend to be more experienced
at reporting bugs if they stably contributes to a project.

The main contributions of this paper are:

1) To our best knowledge, it is the first time bug fixing
rate is proposed and studied. We study bug fixing rate
from two aspects, the aspect of community and the
aspect of reporters.

2) We perform a large-scale empirical study on bug
fixing rate in two open source communities Eclipse
and Mozilla. We investigate the correlations between
a reporter’s bug fixing rate with multiple factors,
such as the contribution behaviors, the degree of
concentration on products.

In the remainder of this paper, we first describe preliminary
materials in Section II. The description of our experimental
data and case study setup are separately presented in Section III
and Section IV. Section V presents the results. Section VI gives
threats to validity of our conclusions. Section VII describes the
related work and Section VIII presents our conclusions.

II. PRELIMINARIES

A. Fixed Bugs and Non-fixed Bugs

During the development of software projects, issue tracking
systems such as Bugzilla are often employed to record and
track bugs. A software bug is stored as a bug report in an
issue tracking system. Fig. 1 presents a bug report in Bugzilla
of Eclipse. When a bug is newly reported (the Reported field
records the reporter and the bug’s reported time) and confirmed
by developers, its status is NEW. After the triager assigns it
to a suitable fixer, its status becomes ASSIGNED. When the
fixer resolves this bug, its status is changed to RESOLVED,
CLOSED, or VERIFIED with a resolution item attached.
There are five resolution labels for closed bugs, i.e., FIXED,
INVALID, WONTFIX, DUPLICATE and WORKSFORME.
The FIXED resolution means the bug is a real bug and has
been fixed. INVALID means the problem described is not a
bug. WONTFIX means the problem described is a bug but
will be not fixed for now. DUPLICATE means the problem
is a duplicate of an existing bug. WORKSFORME means the
bug cannot be reproduced. If more information is provided
later, a bug can be reopened. Participants can comment a bug
and each comment memorizes its commentor and commented
time. All historical operations on a bug will be recorded in
the history field. In this paper, we refer the bugs closed with
FIXED resolution as fixed bugs and other closed bugs as non-
fixed bugs.

B. Community’s Bug Fixing Rate

According to whether to compute bug fixing rate by year,
we have two ways to calculating the community’s bug fixing

Fig. 1: A bug report of Eclipse with bugID 200042

rate:

1) Fixing rate on the whole: after counting all fixed bugs and
all closed bugs of the whole project, the community’s bug
fixing rate is defined as the ratio of the fixed bugs to the closed
bugs.

2) Fixing rate by year: first count fixed bugs and closed bugs
of the whole project by year. For each year, we define the
community’s bug fixing rate as the ratio of the fixed bugs to
the closed bugs in that year.

We give an example to help explain these two calculation
methods. Suppose a project evolved from 2011 to 2012. 10
bugs are reported in 2011, of which 8 bugs are closed. Among
these 8 closed bugs, 6 are fixed bugs. 20 bugs are reported in
2012, of which 15 bugs are closed. Among these 15 closed
bugs, 10 bugs are fixed bugs. Then the community’s bug fixing
rate on the whole is (6+10)/(8+15), while the community’s bug
fixing rates by year are 6/8 in 2011 and 10/15 in 2012.

C. Reporter’s Bug Fixing Rate

We calculate a reporter’s bug fixing rate by year. The
calculation method is as follows. If a reporter reported m bugs
in the year Y , of which n bugs are closed. Among the n closed
bugs, the amount of fixed bugs is k, then the reporter’s bug
fixing rate of year Y is k/n.

III. CASE STUDY DATA

We conduct our case studies on two popular software
projects, i.e., Eclipse and Mozilla. Both projects contain many
products. Eclipse has 249 products such as platform, core, etc.
Mozilla has 106 products such as firefox, thunderbird, etc. We
collect all the bugs of Eclipse up to August 8, 2014 and all
the bugs of Mozilla up to August 1, 2014. Table I presents the
statistics of the collected data.

The next step is to extract the contributors and the cor-
responding contribution time for each bug report. It is easy
to get the reporter and commenters for a bug as well as the
contribution time since they are recorded in the corresponding
fields in a bug report. We use the history field with the help
of heuristics rules4 proposed by Anvik et al. [1] to determine a

4Heuristics For Labeling Bug Reports,
http://www.cs.ubc.ca/labs/spl/projects/bugTriage/assignment/heuristics.html
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TABLE I: Statistics of the collected data.

Project Eclipse Mozilla
time 2001.10-2014.08 1994.09-2014.08
num.products 249 106
num.reporters 41256 137488
num.bugs 440024 847741
num.fixed bugs 241881 323035
num.non-fixed bugs 126523 407772
num.comments 1461430 7427459

bug’s fixer. We also use the history items to determine a bug’s
fixed time. For Mozilla, we first use the approved time-stamp
of the fixer’s last code patch as a bug’s fixed time. If it does
not exist, we use the time when the bug is marked as FIXED.
If neither of the information exists in the history items, we use
the last modification time of the bug. For Eclipse, we use the
time when the bug is marked as FIXED as the fixed time for
all fixed bugs. We removed the bugs whose fixers still cannot
be determined with the help of the heuristics.

To avoid the bias influenced by inactive reporters whose
data may mislead us, we filter out the records of inactive
reporters who report less than 10 bugs in a year. We also
remove all the bugs which have not been closed, since we
cannot determine their final resolutions.

IV. CASE STUDY SETUP

In this section, we first present the research questions about
the bug fixing rate. Then we present the longitudinal analysis
method we use and the corresponding evaluation criterion.

A. Research Questions

The goal of our study is to better understand the bug fixing
rate, so that developers in practice can spend more time on
valid bugs and be more experienced at reporting bugs. In
particular, we would like to study the bug fixing rate from
two aspects. From the aspect of community, we investigate the
whole bug fixing rate of a project, separately in all the time
and by year. From the aspect of reporters, we investigate the
characteristics of a reporter’s bug fixing rate and explore how
much a reporter’s contribution behaviors affect his bug fixing
rate. We conduct our study using the following five research
questions:

RQ1: What is the overall situation of a project’s bug fixing
rate?

We use all fixed bugs and all closed bugs to calculate the whole
project’s bug fixing rate. We present the bug fixing rate in two
forms according to whether to count bugs by year.

RQ2: Will the amount of bugs a reporter ever reported,
fixed or commented impact his bug fixing rate?

We first filter out inactive reporters. Then, we calculate each
reporter’s bug fixing rate and the amount of bugs the reporter
reports, fixes or comments before. Last, we calculate the
Spearman correlation [13] between them. We find that the
amount of bugs one reporter ever fixed is much more correlated
with his fixing rate than the amount of bugs that he has reported
or commented before.

RQ3: Is it likely that the higher a reporter’s bug fixing
rate is, the less time it takes to close the bugs he reports?

We calculate each reporter’s bug fixing rate and the average
time cost to close his reported bugs by year. Then we compute
the Spearman correlation coefficient between these two vari-
ables. We find that there actually exists a negative correlation
between them.

RQ4: Will a reporter’s degree of concentration on products
impact his bug fixing rate?

We first calculate each reporter’s product entropy of the bugs
he reported, fixed and commented before, then calculate the
Spearman correlation between the fixing rate and these three
kinds of product entropies. We find that a reporter’s bug fixing
rate has no big difference, no matter whether a reporter’s
contributions focus on a few products or across many products.

RQ5: How will reporters’ bug fixing rates change along
with the software evolution?

We first analyze the bug fixing rate evolution of all the
reporters who work constantly for every year of the recent 10
years. Then we choose top 4 reporters in Eclipse and Mozilla
separately, and plot each reporter’s bug fixing rate over the
whole project. From the results, we find that reporters’ bug
fixing rates tend to increase with the evolution of software
projects.

B. Longitudinal Analysis

This work intends to answer the aforementioned research
questions. Since both Eclipse and Mozilla have been evolving
for many years, some contributors may be just active in some
years. Furthermore, note that we define the bug fixing rate
as the ratio of the fixed bugs to all the closed bugs. To
make our experiments more rational and sound, we adopt the
longitudinal analysis method to study the bug fixing rate, i.e.,
we calculate bug fixing rates and reporters’ contributions by
year.

More specifically, we first collect all bugs one reporter
ever reported, fixed and commented by year. Based on the
collected data, we then calculate every reporter’s contributions,
the degree of concentration on products, average time cost to
close his bugs, and his bug fixing rate by year. Last we measure
how much correlated a reporter’s contribution behaviors are
with his bug fixing rate. As to the evolution of reporters’ bug
fixing rate, we first calculate each reporter’s bug fixing rate
by year, then filter out inactive reporters, and finally plot the
evolution track for each reporter.

C. Evaluation Criteria

We use Spearman correlation coefficient to measure how
much correlated two variables are. The Spearman correlation
coefficient ranges from -1 to 1. -1 and 1 separately mean a
perfect negative and positive monotonic correlation. 0 means
the variables are independent of each other. Table II describes
the meanings of various correlation coefficient values and the
corresponding correlation levels [14].

V. CASE STUDY

In this section, we answer the research questions posed
before.
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TABLE II: Spearman’s correlation and correlation level

correlation coefficient correlation level
0.0 - 0.1 None
0.1 - 0.3 Small
0.3 - 0.5 Moderate
0.5 - 0.7 High
0.7 - 0.9 Very High
0.9 - 1.0 Perfect

RQ1: What is the overall situation of a project’s bug fixing
rate?

Motivation: Knowing the bug fixing rate of the whole project
can help developers better understand the project from a higher
view. The whole bug fixing rate can assist developers measure
how many bugs totally are fixed and can help them better make
decisions to some extent.

Approach: We calculate two kinds of community’s bug fixing
rates, i.e., fixing rate on the whole and fixing rate by year. The
detailed calculation method is described in Section II.

Results - fixing rate on the whole: Table III presents the
results. We can find that the bug fixing rate of the whole project
is not that high, and is much lower for Mozilla. This means
that there exist many non-fixed bugs in these two projects.

TABLE III: Whole bug fixing rates on Eclipse and Mozilla

Project num. closed bugs num. fixed bugs bug fixing rate
Eclipse 368404 241881 0.66
Mozilla 730807 323035 0.44

Results - fixing rate by year: Table IV and V present the
results. The percentage of non-fixed bugs ranges from 23% to
51% in Eclipse, and from 28% to 77% in Mozilla. More bugs
tend to be invalid on Mozilla than that on Eclipse. Besides,
we can find that both projects’ fixing rates tend to increase as
time goes on.

TABLE IV: Bug fixing rate by year in Eclipse

year No. closed bugs No. fixed bugs bug fixing rate
2001 5995 2954 0.49
2002 21447 11371 0.53
2003 19684 9987 0.51
2004 30655 15952 0.52
2005 36933 21713 0.59
2006 42055 26273 0.62
2007 38400 26320 0.69
2008 37820 27053 0.71
2009 29926 21669 0.72
2010 27690 20164 0.73
2011 26950 19833 0.74
2012 22004 16434 0.75
2013 19120 14638 0.77
2014 9725 7520 0.77

In summary, there are many non-fixed bugs in both projects,
especially for Mozilla. And both projects’ fixing rates tend
to increase along with the evolution of projects.

RQ2: Will the amount of bugs a reporter ever reported,
fixed or commented impact his bug fixing rate?

Motivation: In an issue tracking system such as Bugzilla,
contributors not only can report bugs, but also fix bugs and
comment on any bugs. Such contribution behaviors differ from

TABLE V: Bug fixing rate by year in Mozilla

year No. closed bugs No. fixed bugs bug fixing rate
1994 2 1 0.50
1995 1 0 0.00
1996 5 2 0.40
1997 32 10 0.31
1998 2010 1112 0.55
1999 20176 10492 0.52
2000 39118 14950 0.38
2001 50587 16131 0.32
2002 61965 14561 0.23
2003 39929 9146 0.23
2004 44035 10498 0.24
2005 42163 11774 0.28
2006 38261 14321 0.37
2007 37659 15945 0.42
2008 50134 21604 0.43
2009 53347 26794 0.50
2010 44257 23513 0.53
2011 65123 37683 0.58
2012 31748 19741 0.62
2013 65206 42138 0.65
2014 45049 32619 0.72

people to people. Knowing how much the three contributions
affect a reporter’s bug fixing rate not only can help people
better identify valid bugs, but also give advice on how to
achieve better bug fixing rate.

Approach: Our experiment includes two parts. The first part is
to calculate a reporter’s bug fixing rate and his three kinds of
contributions, i.e., the amount of bugs the reporter reported,
fixed and commented. For each reporter, we count all the
closed bugs which he reports in one specific year as his
reporting contribution. For example, if a reporter reports n
bugs in a certain year, among which m bugs are closed. Then
his reporting contribution for that year is m. In a similar way,
if a reporter fixes n bugs in a certain year, then his fixing
contribution for that year is n. Since a reporter can submit
multiple comments on a single bug, we use the number of
comments rather than the number of bugs he ever comments on
as his commenting contribution. Then if a reporter commented
j times on bugs in a certain year, the reporter’s commenting
contribution for that year is j.

The second part is to calculate the correlation between the
bug fixing rate and the contributions. We compute Spearman
correlation coefficient between each kind of contributions and
the fixing rate. The contribution values are normalized before
calculation.

Results: The detailed statistics of the correlations are shown in
Table VI and VII. In the two tables, the column year means the
year the bug is reported. The rptCnt FR means the correlation
between a reporter’s reporting contribution and his fixing
rate. Similarly, fixCnt FR and cmtCnt FR are correlation
between a reporter’s fixing and commenting contributions and
his fixing rate. For every kind of contribution, the Spearman
correlation coefficient, the corresponding correlation level, and
the significance of the correlation are presented.

From the statistics, we observe that most of the Spearman’s
correlation coefficients are positive, indicating that there is a
positive relationship between contributions and bug fixing rate.
In other words, the more contributions a reporter makes, the
more likely the bugs he reports will be fixed. The correlation
is much more obvious in Mozilla than in Eclipse.
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TABLE VI: Correlation between reporters’ contributions and bug fixing rate in Eclipse

rptCnt FR fixCnt FR cmtCnt FR
year corr corr level p-value corr corr level p-value corr corr level p-value

2001 -0.076 None 0.557 0.238 Moderate 0.063 -0.039 None 0.761

2002 0.289 Small 1.37e−05 0.332 Moderate 4.54e−07 0.294 Small 9.00e−06

2003 0.404 Moderate 3.76e−11 0.528 Strong 3.07e−19 0.399 Moderate 7.09e−11

2004 0.313 Moderate 2.91e−10 0.508 Strong 8.56e−27 0.289 Small 6.40e−09

2005 0.303 Moderate 2.88e−12 0.496 Moderate 7.79e−33 0.271 Small 5.03e−10

2006 0.224 Small 8.54e−09 0.495 Moderate 3.40e−41 0.196 Small 5.20e−07

2007 0.121 Small 0.003 0.388 Moderate 3.51e−23 0.144 Small 0.000

2008 0.208 Small 3.58e−07 0.397 Moderate 1.31e−23 0.238 Small 5.35e−09

2009 0.138 Small 0.003 0.367 Moderate 1.25e−16 0.135 Small 0.003

2010 0.201 Small 1.08e−05 0.329 Moderate 2.57e−13 0.192 Small 2.79e−05

2011 0.147 Small 0.002 0.329 Moderate 1.78e−12 0.175 Small 0.000

2012 0.016 None 0.755 0.226 Small 8.68e−06 -0.002 None 0.968

2013 0.115 Small 0.038 0.337 Moderate 3.70e−10 0.090 None 0.101

2014 0.190 Small 0.007 0.364 Moderate 9.89e−08 0.074 None 0.298

TABLE VII: Correlation between reporters’ contributions and bug fixing rate on Mozilla

rptCnt FR fixCnt FR cmtCnt FR
year corr corr level p-value corr corr level p-value corr corr level p-value

1998 0.088 None 0.573 0.143 Small 0.361 -0.016 None 0.921

1999 0.247 Small 3.62e−05 0.606 Strong 9.02e−29 0.443 Moderate 1.41e−14

2000 0.308 Moderate 1.25e−14 0.594 Strong 1.20e−58 0.560 Strong 6.92e−51

2001 0.337 Moderate 5.59e−24 0.662 Strong 1.34e−108 0.623 Strong 1.01e−92

2002 0.257 Small 3.41e−16 0.669 Strong 5.68e−128 0.579 Strong 1.28e−88

2003 0.317 Moderate 9.00e−14 0.737 Very Strong 4.79e−91 0.654 Strong 1.74e−65

2004 0.248 Small 7.21e−09 0.736 Very Strong 3.96e−91 0.646 Strong 1.24e−63

2005 0.387 Moderate 3.14e−18 0.752 Very Strong 1.03e−86 0.612 Strong 1.16e−49

2006 0.369 Moderate 2.55e−15 0.719 Very Strong 9.39e−70 0.557 Strong 1.60e−36

2007 0.400 Moderate 4.37e−18 0.684 Strong 5.90e−61 0.537 Strong 9.61e−34

2008 0.307 Moderate 1.63e−13 0.678 Strong 5.76e−76 0.466 Moderate 3.41e−31

2009 0.314 Moderate 3.30e−14 0.626 Strong 6.12e−62 0.411 Moderate 4.28e−24

2010 0.272 Small 2.51e−10 0.572 Strong 8.98e−47 0.371 Moderate 1.58e−18

2011 0.275 Small 6.84e−14 0.629 Strong 2.44e−80 0.354 Moderate 1.49e−22

2012 0.205 Small 2.51e−06 0.572 Strong 1.07e−46 0.292 Small 1.03e−11

2013 0.139 Small 2.26e−05 0.518 Strong 3.65e−64 0.204 Small 4.75e−10

2014 0.098 None 0.007 0.534 Strong 1.52e−56 0.216 Small 2.37e−09

In Eclipse, the commenting and reporting contributions
mostly have small impact on a reporter’s bug fixing rate. But
the fixing contribution has a relatively stronger positive impact
on a reporter’s bug fixing rate. The correlation coefficients
mostly range from 0.3 to 0.5, indicating a moderate correlation
between fixing contribution and bug fixing rate.

In Mozilla, the reporting contribution has also little direct
impact on a reporter’s bug fixing rate. The commenting con-
tribution has a much stronger positive correlation with a re-
porter’s bug fixing rate. Especially for the years of 2000-2007,
all the correlation coefficients are more than 0.5. Compared to
the other two kinds of contribution, the fixing contribution has
a very high positive correlation with the bug fixing rate. The
correlation coefficients fall in the range of 0.5 to 0.8, which
indicate strong positive correlations. In other words, we can
conclude that the more bugs a reporter ever fixed, the higher
his bug fixing rate is. This is helpful while to estimate whether
a reporter’s newly reported bug needs to be fixed.

In summary, in both projects, the fixing contribution is
a strong indicator for a reporter’s bug fixing rate. The
reporting contribution has weak correlation with the bug
fixing rate. The commenting contribution is more referable in
Mozilla while considering a reporter’s bug fixing rate. These
findings are helpful when developers perform software tasks
such as bug triage.

RQ3: Is it likely that the higher a reporter’s bug fixing
rate is, the less time it takes to close the bugs he reports?
Motivation: Different reporters hold different bug fixing rates.
Some reporters may be more experienced at reporting bugs. If
the answer to RQ3 is positive, developers can focus more on
bugs reported by reporters with higher bug fixing rate. More
real bugs can be solved in time, which will naturally improve
software quality.

Approach: Our experiments include two parts. The first part
is to test whether the time cost to close a fixed bug differs
from that to close a non-fixed bug. We conduct a Wilcoxon
test [15] between fixed bugs and non-fixed bugs. The second
part is to investigate whether there exists a negative correlation
between the average time cost to close a reporter’s bugs and
his bug fixing rate. We calculate the two variables by year. We
filter out the inactive reporters who report less than 10 bugs
in a year. Then we use Spearman correlation to measure their
correlation.

Results: The results of Wilcoxon test on both projects show
that the differences in time cost to close a fixed and a non-
fixed bug are significant. The p-value for Eclipse is 4.65e−10

and 2.2e−16 for Mozilla. This means that it takes more time
to close a non-fixed bug than a fixed bug.

Table VIII and Table IX present our statistic results. On the
whole there exists a negative correlation between a reporter’s
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TABLE VIII: Correlation between reporter’s ave. time cost to
close a bug and his bug fixing rate in Eclipse

Eclipse
year corr p-value corr level

2001 -0.447 0.000 Moderate

2002 -0.376 8.14e−09 Moderate
2003 -0.173 0.006 Small
2004 0.076 0.132 None
2005 -0.127 0.004 Small

2006 -0.196 5.36e−07 Small

2007 -0.235 4.99e−09 Small

2008 -0.291 6.11e−13 Small

2009 -0.211 3.29e−06 Small

2010 -0.308 8.22e−12 Moderate

2011 -0.250 1.15e−07 Small

2012 -0.211 3.22e−05 Small
2013 -0.187 0.0006 Small
2014 -0.180 0.0103 Small

TABLE IX: Correlation between reporter’s ave. time cost to
close a bug and his fixing rate in Mozilla

Mozilla
year corr p-value corr level

1998 0.067 0.671 None
1999 0.158 0.008 Small

2000 0.249 6.22e−10 Small

2001 0.241 1.12e−12 Small

2002 0.263 5.86e−17 Small
2003 0.104 0.017 Small
2004 0.004 0.930 None

2005 -0.212 3.50e−06 Small

2006 -0.454 2.97e−23 Moderate

2007 -0.377 4.33e−16 Moderate

2008 -0.469 1.34e−31 Moderate

2009 -0.471 3.36e−32 Moderate

2010 -0.357 3.07e−17 Moderate

2011 -0.404 1.45e−29 Moderate

2012 -0.423 5.55e−24 Moderate

2013 -0.348 1.51e−27 Moderate
2014 -0.111 0.002 Small

fixing rate and the time cost to close a bug he reported. The
correlation is much stronger in Mozilla than in Eclipse. In
most cases especially in recent years, the correlation coefficient
in Mozilla ranges from -0.3 to -0.5, indicating a moderate
negative correlation. Though the correlation in Eclipse is not
that strong, it is still a small to moderate negative correlation.
From the above results, we can conclude that the lower a
reporter’s bug fixing rate is, the more time it needs to close a
bug reported by him.

In summary, there is a negative correlation between the time
needed to close a reporter’s bugs and his bug fixing rate. In
other words, the higher a reporter’s bug fixing rate is, the
lesser time it needs to close his reported bugs.

RQ4: Will a reporter’s degree of concentration on products
impact his bug fixing rate?

Motivation: Both Eclipse and Mozilla are composed of many
products. In an issue tracking system such as Bugzilla, par-
ticipants can contribute to many products or a few products.
Knowing how much different contribution behaviors affect a
reporter’s bug fixing rate can help reporters better contribute
to a project.

Approach: Based on the contribution data we get in RQ2,
we further calculate the entropy of products of bug reports

that a reporter reports, fixes or comments as his degree of
concentration on the products by year. The product entropy is
calculated as follows:

prodEn =
∑

i∈products
−pi ∗ log(pi) (1)

pi is the proportion of a given product’s bugs to the whole
closed bugs in one year. For example, consider that one
reporter has 10 bugs closed in a certain year. Among the 10
bugs, 2 bugs belong to product p1, 3 bugs belong to p2 and 5
bugs belong to p3. Then his product entropy of reported bugs
is: -(2/10*log(2/10)+3/10*log(3/10)+5/10*log(5/10))=1.486.

The product entropy of fixed bugs or commented bugs is
calculated in a similar way. The smaller the entropy is, the
higher degree of concentration on products the reporter has.
Then we perform Spearman correlation tests between the bug
fixing rate and the three kinds of product entropies.

Results: The results are shown in Table X and Table XI.
Column rptProdEn FR contains the correlation between a re-
porter’s reporting product entropy and his fixing rate. Columns
fixProdEn FR and cmtProdEn FR contain the correlation
between his fixing rate and his fixing and commenting product
entropies respectively.

In Eclipse, all three kinds of product entropies have nega-
tive correlations with the reporter’s fixing rate. But the correla-
tion is not that strong: the correlation coefficients for reporting
and commenting product entropies mostly range from -0.2
to -0.4, which indicate a moderate negative correlation. The
correlation for fixing product entropy is much weaker. The
values range only from -0.0 to -0.2, which indicate None
to Small correlation. These results indicate that reporters in
Eclipse that report and comment bugs on fewer products tend
to have at least slightly higher bug fixing rate. However, it does
not make a big difference whether a developer fixed bugs on
many products or not.

In Mozilla, all the correlation levels for three kinds of
products entropies are None to Small. These results indicate
that whether a reporter contributes on a few products or across
many products makes no big difference to his fixing rate.

In summary, in both projects, there is no strong relation-
ship between a reporter’s reporting, commenting or fixing
concentration on products and his bug fixing rate. In other
words, a reporter’s degree of concentration on products does
not have much impact on whether bugs he reported will be
fixed.

RQ5: How will reporters’ bug fixing rates change along
with the software evolution?

Motivation: During the evolution of software projects, some
participants contribute to the projects constantly. Knowing the
evolution characteristics of such reporters’ bug fixing rates can
not only deepen the understanding of the project, but also help
better solve relevant software tasks such as bug triage and
identifying valid bugs, etc.

Approach: To answer this question, we conduct two experi-
ments:

1) Observe the bug fixing rate trend on the whole. Here we only
consider the bug fixing rate of all reporters who reported bugs
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TABLE X: Correlation between reporting, fixing and commenting product entropy and fixing rate in Eclipse

rptProdEn FR fixProdEn FR cmtProdEn FR
year corr corr leve p-value corr corr leve p-value corr corr leve p-value

2001 0.181 Small 0.159 0.354 Moderate 0.051 0.167 Small 0.199
2002 -0.020 Small 0.763 -0.001 None 0.995 -0.030 None 0.654
2003 -0.151 Small 0.017 0.030 None 0.745 -0.161 Small 0.011

2004 -0.214 Small 2.21e−05 -0.005 None 0.944 -0.207 Small 4.05e−05

2005 -0.222 Small 4.30e−07 -0.048 None 0.430 -0.223 Small 3.94e−07

2006 -0.370 Moderate 2.08e−22 -0.082 None 0.112 -0.371 Moderate 1.76e−22

2007 -0.365 Moderate 1.78e−20 -0.154 Small 0.002 -0.368 Moderate 8.58e−21

2008 -0.403 Moderate 2.36e−24 -0.101 Small 0.047 -0.424 Moderate 6.20e−27

2009 -0.430 Moderate 6.82e−23 -0.196 Small 0.000 -0.423 Moderate 4.84e−22

2010 -0.360 Moderate 7.13e−16 -0.087 None 0.108 -0.352 Moderate 3.61e−15

2011 -0.369 Moderate 1.56e−15 -0.079 None 0.155 -0.370 Moderate 1.33e−15

2012 -0.315 Moderate 3.72e−10 -0.101 Small 0.085 -0.304 Moderate 1.58e−09

2013 -0.265 Small 1.07e−06 -0.068 None 0.279 -0.284 Small 1.59e−07

2014 -0.185 Small 0.008 -0.185 Small 0.017 -0.164 Small 0.020

TABLE XI: Correlation between reporting, fixing and commenting product entropy and fixing rate in Mozilla

rptProdEn FR fixProdEn FR cmtProdEn FR
year corr corr leve p-value corr corr leve p-value corr corr leve p-value

1998 -0.263 Small 0.088 0.128 Small 0.541 -0.222 Small 0.152
1999 -0.139 Small 0.021 0.137 Small 0.062 -0.114 Small 0.060

2000 -0.084 Small 0.041 0.272 Small 1.43e−07 -0.120 Small 0.003

2001 -0.004 Small 0.899 0.301 Small 8.52e−11 -0.147 Small 1.63e−05

2002 -0.025 Small 0.428 0.279 Small 1.94e−10 -0.102 Small 0.001

2003 -0.075 Small 0.085 0.273 Small 2.04e−06 -0.238 Small 3.28e−08

2004 -0.057 Small 0.191 0.260 Small 1.19e−05 -0.118 Small 0.007

2005 -0.114 Small 0.013 0.199 Small 0.000 -0.231 Small -4.20e−07

2006 -0.114 Small 0.017 0.165 Small 0.006 -0.272 Small -9.60e−09

2007 -0.019 Small 0.687 0.232 Small 3.38e−05 -0.081 None 0.093

2008 -0.108 Small 0.011 0.140 Small 0.004 -0.233 Small 2.79e−08

2009 -0.149 Small 0.000 -0.046 None 0.338 -0.209 Small 6.14e−07

2010 -0.176 Small 5.04e−05 0.059 None 0.220 -0.233 Small 7.16e−08

2011 -0.231 Small 3.69e−10 0.023 None 0.578 -0.262 Small 9.64e−13

2012 -0.233 Small 7.90e−08 -0.106 None 0.023 -0.243 Small 1.96e−08

2013 -0.087 Small 0.008 0.059 None -0.098 -0.094 None 0.004
2014 -0.130 Small 0.000 0.075 None 0.057 -0.112 Small 0.002

every year of the recent 10 years, i.e., 2004-2013. Note that
we filter out the data of 2014 since our collected reports are
only before August, 2014. There are 85 reporters selected in
Eclipse, and 220 reporters in Mozilla. We calculate the whole
bug fixing rate by year. Then we use the boxplot graph to
describe the whole bug fixing rate evolution trend of them.

2) Observe the bug fixing rate trend of the top reporters. We
choose top 4 reporters to perform our experiments. We only
consider those people reporting more than 100 bugs in every
year of 2004-2013. If there are not enough reporters meeting
the requirement, we then loose our limitation, i.e., a reporter
can report less than 100 bugs in a year. After choosing top 4
reporters for Eclipse and Mozilla, we then plot each reporter’s
bug fixing rate to observe their bug fixing rate evolution trend.

Results - bug fixing rate trend on the whole: Fig.2 and 3
show the results. The whole bug fixing rates of both projects
tend to increase as time goes on. This indicates that reporters
will become more experienced over time.

Results - bug fixing rate trend of top reporters: In Fig. 4
and 5, each reporter exhibits an obvious increasing trend of his
bug fixing rates. This means that a reporter will become more
experienced at reporting bugs when he stably contributes to a
certain project. In other words, the longer an active reporter
works in a project, the more likely it is that the bugs he reports
will be fixed.

Fig. 2: Fixing rate trend on the whole in Eclipse

In summary, reporters in both projects, especially the top
reporters tend to be more experienced at reporting bugs if
they stably contributes to a project.
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Fig. 3: Fixing rate trend on the whole in Mozilla

Fig. 4: Fixing rate trend of top 4 reporters on Eclipse

VI. THREATS TO VALIDITY

There are several threats that may potentially impact the va-
lidity of our work. First, the generalization of our conclusions
is limited. Since we only perform our experiments on just two
open-source projects, the conclusions may not be applicable
for other open-source projects and non-open-source projects.
We need more projects to validate our findings and this is also
our future work. Whereas, since both Eclipse and Mozilla are
large scale, typical and popular projects, the results can still
offer some advices to participants’ behaviors while contribut-
ing to a project. Second, while we investigate the correlation
of a reporter’s reporting/fixing/commenting contribution with
his bug fixing rate, we cannot yet explain the exact causal
relationships behind these phenomena. For example, we still do
not know why someone’s reported or commented bug amount
seems to have no direct correlation with his bug fixing rate,
while his fixed bug amount does have the correlation. Our
next plan is to try to find some rational supportive evidence to
help us gain more understanding of what we have concluded.

Fig. 5: Fixing rate trend of top 4 reporters on Mozilla

Third, when we analyze the correlation, we only use the
Spearman correlation coefficient to measure it. This may limit
our findings. More correlation metrics may be suitable to help
us gain more insights into the factors affecting the bug fixing
rate.

VII. RELATED WORK

The areas related to our work include bug report quality
management and bug report management.

A. Bug Report Quality Management

In recent years, researchers are taking more efforts on the
study of bug quality. In [16], Zimmermann et al. perform
a study on the quality of bug reports in bug repositories.
They find that there exist bugs with bad quality reported by
inexperienced reporters and conduct a survey on what makes a
good bug report. Bird et al. [17] find that many bug reports in
bug repositories are unable to be linked with the corresponding
source code. The bias would affect the effectiveness of bug
prediction models. Xia et al. [18] conduct an investigation
on bug field reassignment. They find that many fields get
reassigned and the bugs with more reassigned fields need more
time to be closed.

There have been some studies on reopened bug predic-
tion [19]–[21]. Shihab et al. [19] make an investigation on the
factors that impact the reopen probability of a bug. Zimmer-
mann et al. [20] conduct a study on the causes of reopened
bugs and build a model to predict which bugs get reopened.
Xia et al. [21] propose a ReopenPredictor to automatically
predict reopened bugs with high accuracy.

There are also several studies that predict the severity of
bug reports. Menzies and Marcus [22] propose Severis to
perform multi-class classification to predict the five severity
labels of bug reports in NASA. Lamkanfi et al. [23] extend
their work by predicting two severity labels, i.e., severe and not
severe. They also investigate the effectiveness of a number of
classification algorithms to predict the severity of bug reports
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[24]. Tian et at. [25] use information retrieval based nearest
neighbor classification to conduct the bug severity prediction.

B. Bug Report Management

Researchers in this area mainly focus on using bug reports
to help address traditional software maintenance tasks. These
tasks can be grouped into five categories, i.e., bug triage,
duplicate bug detection, bug prediction, bug localization and
bug categorization.

1) Bug Triage. Mockus et al. [26] study the impact of
triage on resolving bugs. To save triagers’ time, Murphy et
al. [1], [27] propose a semi-automatic method based on text
categorization to recommend proper developers to fix a bug.
There are also many works to enhance the triage accuracy.
Xuan et al. [6] use a semi-supervised method to augment
the number of labeled bugs to better triage a bug. They
also propose a data set reduction method to facilitate the
bug triage process [28]. Xia et al. propose DevRec which
combine developer-based and developer-based components to
recommend developers to resolve bugs [29], [30]. Encouraged
by the bug’s reassignment phenomenon, Jeong et al. [31]
employ a tossing graph to improve the accuracy of bug triage.
Kim et al. [32] propose a cost-ware triage algorithm to achieve
a good balance between triage accuracy and cost time, etc.

2) Duplicate Bug Detection. Runeson et al. [7] build a
duplicate bug detection model with natural language process-
ing to process unstructured text. Wang et al. [8] not only use
natural language information but also execution information to
enhance the accuracy of duplicate bug detection. Sureka et al.
[33] use character n-gram-based features to detect duplicate
bugs. Sun et al. [34] use discriminative models for informa-
tion retrieval to detect duplicate bug reports more accurately.
Nguyen et al. combine information retrieval technology and
topic modeling to perform duplicate bug detection [35] etc.

3) Bug Prediction. With future fault predictors and a
linear regression model, Ostrand et al. identify top 20% of
problematic files in a project [36]. Kim et al. propose a bug
cache algorithm to predict future faults based on previous
fault localities [37]. Many researchers propose to incorporate
developers’ behaviors to help better predict bugs. Meneely et
al., Bird et al., and Pinzger et al. use churn information and
dependency relationships to build DSNs to do defect prediction
[3], [38], [39], while [12], [40] use quantitative analysis to
build developer networks to predict whether a piece of code is
buggy or not. Shivaji et al. [41] use reduced features to perform
bug prediction. To avoid the bug prediction bias resulted by
non-corrective bug reports, Zhou et al. [42] propose a strategy
that combines the text mining and data mining techniques to
identify the corrective bugs, etc.

4) Bug Localization. To point out which piece of code
a bug locates in, Abreu et al. [43] propose a spectrum-
based fault localization method. Zeller et al. [44] use delta
debugging to help developer locate bugs. Artzi et al. [9] use
dynamic test and model checking to locate bugs. Zhou et al. [2]
propose an information retrieval based method to perform bug
localization. Wang et al. [45] use compositional vector space
models to improve bug localization. Zou et al. [46] make use of
correlations among crash reports to improve bug localization,
etc. Considering the language of bug reports and source code

are different, Xia et al. propose CrosLocator which is based
on language translation [47].

5) Bug Categorization. Garcia and Shihab study the block-
ing bugs in open source projects and propose the usage of
random forest to predict blocking bugs [48]. In a later work,
Xia et al. propose ELBlocker which is an ensemble learning
approach to further improve the performance of blocking bug
prediction [49]. Xia et al. propose a fuzzy set based feature
selection approach which selects important terms from the
natural language description of bug reports to categorize bugs
based on their fault triggering conditions [50]. Thung et al.
classify defects into IBM’s Orthogonal Defect Classification
(ODC)’s defect types by learning a discriminative model based
on textual features extracted from bug reports and code features
extracted from bug fixing changes [51]. Huang et al. propose
AutoODC which leverages a text classification technique to
categorize defects according to their impact [52]. Xia et
al. propose the usage of text mining techniques to identify
configuration bugs [53].

VIII. CONCLUSION

In this paper, we perform an in-depth investigation on
bug fixing rate in Eclipse and Mozilla. We study bug fixing
rate from two aspects. From the community aspect, we find
that there are many non-fixed bugs in both projects and the
whole fixing rates of both projects tend to increase along with
projects’ evolution.

From the reporter aspect, our experiments include two
parts. The first part is to study the characteristics of a reporter’s
bug fixing rate. We find that there is a negative correlation
between a reporter’s bug fixing rate and the average time
cost to close the bugs he reports. We also find that reporters
tend to be more experienced at reporting bugs if they stably
contribute to a project. The second part is to investigate how
much a reporter’s contribution behaviors (reporting, fixing and
commenting bugs) affect his bug fixing rate. From the results,
we find that the amount of bugs one reporter ever fixed has
a strong correlation with his bug fixing rate, i.e., the more
bugs a reporter ever fixed, the more likely it is that the bugs
he reports will be fixed. On the contrary, it seems that the
number of times that someone reports or comments bugs has
little direct or obvious relationship with his bug fixing rate.
We also find that there is no big difference to a reporter’s
bug fixing rate whether he contributes on a few products or
across many products. All these findings in this paper help us
acquire more understanding of bug reporters’ behaviors during
software development.
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