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Abstract—Bug triage is an important step in the process of bug 
fixing. The goal of bug triage is to assign a new-coming bug to 
the correct potential developer. The existing bug triage 
approaches are based on machine learning algorithms, which 
build classifiers from the training sets of bug reports. In 
practice, these approaches suffer from the large-scale and 
low-quality training sets. In this paper, we propose the 
training set reduction with both feature selection and instance 
selection techniques for bug triage. We combine feature 
selection with instance selection to improve the accuracy of 
bug triage. The feature selection algorithm 2 -testχ , instance 
selection algorithm Iterative Case Filter, and their 
combinations are studied in this paper. We evaluate the 
training set reduction on the bug data of Eclipse. For the 
training set, 70% words and 50% bug reports are removed 
after the training set reduction. The experimental results show 
that the new and small training sets can provide better 
accuracy than the original one. 

Keywords-bug triage; training set reduction; feature 
selection; instance selection; software quality 

I.  INTRODUCTION 
Bug fixing is a significant and time-consuming process 

in software maintenance [3]. For a large-scale software 
project, the number of daily bugs is so large that it is 
impossible to handle them without delaying [2]. The work of 
managing bugs increases the cost of software quality 
maintenance [17]. Many software projects use a bug 
tracking system to store and manage bugs submitted by 
users, including end users, testers, and developers [1]. The 
bug tracking system provides a platform, where users can 
communicate with each other during the bug fixing process. 
Bugzilla1 is such a bug tracking system, which is used by 
many large open source software projects. Based on the bug 
tracking system, the developers can easily search and 
maintain all the existing bugs.  

Bug triage, an important step for bug fixing, is to assign 
a new bug to a relevant developer for further handling [3]. A 
general method for bug triage is to assign bugs manually. In 
practice, due to the frequent changes of software 
development teams, it is difficult to identify the correct 
developer in manual triage [3]. Taking Eclipse 2  as an 
example, Anvik reports that an average of 37 bugs per day 
are submitted to the bug tracking system and 3 person-hours 
per day are required for the manual triage [2]; the empirical 
study by Jeong et al. shows that 44% of bugs have been 

                                                           
* Corresponding Author 
1 Bugzilla, http://www.bugzilla.org/. 
2 Eclipse, http://www.eclipse.org/. 

assigned to the wrong developer after the first assignment 
[4]. To solve these problems, some machine learning 
algorithms are employed to conduct automatic bug triage [1], 
[3], [4], [5], [6]. Most of the bug triage approaches are based 
on text categorization [3]. However, these approaches suffer 
from two problems. On one hand, due to the large number of 
bugs, it is necessary to collect large-scale training sets of 
bugs to obtain good results for bug triage [3]. For example, 
in our experiments, over 9000 bug reports and 30000 words 
are employed to train a classifier for Eclipse. It may cost 
much time to directly use the large-scale training set in the 
bug triage process. On the other hand, the quality of the 
original bug reports is not good enough. Low-quality bug 
reports may mislead the triage approach to assign bugs to 
wrong developers [6], [16].  

In this paper, we propose a training set reduction 
approach using the combination of feature selection and 
instance selection. Our training set reduction approach is a 
two-phase process, which applies feature selection 
(removing unnecessary words) before or after instance 
selection (removing unnecessary reports). We use the typical 
feature selection algorithm, 2-testχ  (CHI) [12] and 
instance selection algorithm, Iterative Case Filter (ICF) [14] 
to build a small and effective training set by removing the 
noisy and redundant words and bug reports. In the 
experiments, we evaluate our training set reduction on the 
Eclipse project. After the training set reduction, 70% words 
and 50% bug reports are removed. The results show that the 
experiments on the reduced training sets can obtain better 
accuracies than that on the original training set.  

This paper makes the following contributions. 
• We propose the training set reduction approach for 

bug triage by combining feature selection with 
instance selection. To our knowledge, this is the first 
work to improve the performance of bug triage by 
reducing the scale of the training set.  

• We provide a comparative study on the effect of 
different orders of combinations. The results show 
that the effectiveness of the training set reduction 
can be influenced by changing the order of two 
phases. 

The remainder paper is organized as follows. In Section 
II, we briefly introduce bug triage and give two motivating 
examples for training set reduction. Section III gives the 
details of our training set reduction. In Section IV, we 
present the experimental results and analysis. We give the 
threats to validity of our work in Section V. Section VI lists 
the related work. We briefly conclude this paper and present 
our future work in the final section. 

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.80

587

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.80

590

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.80

576

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 20,2020 at 10:43:11 UTC from IEEE Xplore.  Restrictions apply. 



 

II. BUG TRIAGE AND MOTIVATING EXAMPLES 
In a bug tracking system, a software bug is stored as a 

bug report, which is the textual form for describing the 
details of a bug [3]. When a user submits a bug to the bug 
tracking system, a bug report is filled to provide information 
to help identifying and reproducing the bug. For example, a 
bug report may contain the items for recording the summary, 
the detailed description, the buggy product, the 
sub-component, and the operating system. Among these 
items, the summary and the detailed description are always 
used in bug triage since they can provide adequate 
information of bugs [3].  

�ubrani� & Murphy have proposed the first work of bug 
triage, in which the bug assignment is innovatively mapped 
to the text categorization [1]. To improve the accuracy of 
bug triage, a recommendation list is employed to predict 
multiple relevant developers [3]. Fig. 1 shows the process of 
the text categorization approach for bug triage.  

 

 
In Fig. 1, the training set is viewed as a text matrix. Each 

row of the matrix indicates one bug report while each 
column of the matrix indicates one word. However, due to 
the large scale and the low quality, some bug reports may 
bring noise and redundancy into the data set. In the 
following part of this section, we will give two examples of 
bug reports to present the need for the training set reduction.   

We take the bug report with ID 205900 in Eclipse as an 
example to study the words of bug reports. This bug report 
describes a broken error of the discovery repository.   

 
Bug report 205900: ....[Plug-ins] all installed correctly and do not 

show any errors in Plugin configuration view. Whenever I try to add a 
[diagram name] diagram, the wizard can not be started due to a missing 
[class name] class...  

 
In this bug report, some words, e.g., installed, show, 

started, and missing, are commonly used for describing bugs. 
For a text categorization based approach, these common 
words are not helpful for predication. Thus, we want to 
remove these words to improve bug triage (actually, these 
four words are removed in the experiments in Section IV 
after the training set reduction). However, for the text 
categorization, these redundancy words cannot be removed 
directly. Thus, a relevant technology for bug triage needs to 
be developed.  

We take two bug reports with ID 200019 and ID 204653 
as examples to study the relationship between bug reports 
(the detailed descripitons are omitted). 

 
Bug report 200019: Argument popup not highlighting the correct 

argument...  
Bug report 204653: Argument highlighting incorrect...  
 
These two bug reports are duplicate (duplicate denotes 

that more than one bug reports describe one software fault). 
The textual forms of these two bug reports are similar. Thus, 
a bug report may be chosen as the representative one of 
these bug reports. Thus, we want to use some technology to 
remove one of these bug reports (actually, the bug report 
with ID 200019 is removed while the bug report with ID 
204653 is kept in the experiments in Section IV). In this 
paper, we focus on the technology to remove the extra words 
and bug reports for bug triage.  

III. TRAINING SET REDUCTION FOR BUG TRIAGE 
In this section, we present our training set reduction 

approach for bug triage. In our work, a feature selection 
algorithm and an instance selection algorithm are combined 
to reduce noisy or redundant information in the training set 
of bug triage.  

A. Training Set Reduction 
Motivated by the examples in Section II, we employ 

both feature selection and instance selection algorithms to 
remove the unnecessary features and instances. Drawn on 
the experience in text categorization, a feature in bug triage 
indicates a word while an instance indicates a bug report. 
Therefore, the goal of our work is to reduce the text matrix 
of the training set on two dimensions, i.e., the word 
dimension and the bug report dimension. 

To generate a reduced training set on two dimensions, 
we employ a two-phase combination to take advantage of 
both feature selection and instance selection (a phase is a 
process applying one algorithm). The reduced training set is 
applied to replace the original training set of bug triage. To 
distinguish the combinations, we investigate the order of the 
two phases. Given a feature selection algorithm FS  and an 
instance selection algorithm IS , we use FS IS→  to 
denote first applying FS  and then IS . On the other hand, 
IS FS→  denotes first applying IS  and then FS . 

Based on the definition of feature selection [12], the 
words with small objective values are removed to improve 
the prediction performance. Thus, the high-quality words are 
left to train the classifier. As an input parameter, a threshold 
of final number of words is used to terminate the process of 
feature selection. Different from a feature selection 
algorithm, the terminal condition of an instance selection 
algorithm is usually based on a heuristic rule, which can be 
set according to the applications [14]. In this paper, we set 
the final number of bug reports as the terminal condition.  

In Algorithm 1, we briefly show the training set 
reduction with the order FS IS→ . As described in the 
Algorithm 1, we first apply feature selection, and then apply 
instance selection. Before feature selection, we calculate 

Classifier

a new bug report

...

1st  developer K1

2nd developer K2

kth  developer Kk

Training Set

summary detailed description

bug report 1

word 1

developer A
bug report 2

bug report m

word 2 word n...
developer B

...

Figure 1.  The text categorization approach for bug triage. 
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objective values for all the words. After feature selection on 
the original data set, a new and small data set with the 
representative words is generated. Then we perform instance 
selection on the new data set. After the training set reduction, 
the final training set is generated. Note that in Step 2), some 
bug reports may be empty during feature selection (i.e., all 
the words of a bug report are removed). Such zero-word bug 
reports can be removed in the instance selection algorithm in 
Step 3). 

 
Algorithm 1. Training set reduction with FS IS→  

Input: training set � with n  words and m  bug reports, 
feature selection algorithm FS , final number of words Fn , 
instance selection algorithm IS , final number of bug reports Im ,
order of the combination FS IS→  

Output: reduced training set FI�  for bug triage 

1) Apply FS  to n  words of � and calculate objective values for all
the words; 

2) Select the top Fn  words of �  and generate a training set F� ; 
3) Apply IS  to m  bug reports of F�  ; 
4) Terminate IS  when the number of bug reports is equal or less than 

Im  and generate the final training set FI� . 
 

For the combinations of FS  and IS , we will present 
the results of FS IS→  and IS FS→ , respectively. All the 
combination results are shown in details in the experiment 
section. In the following parts of this section, we briefly 
introduce the feature selection algorithm CHI and the 
instance selection algorithm ICF used in our work. 

B. CHI Feature Selection Algorithm 
Feature selection is a standard technology to reduce the 

features of large-scale data sets in machine learning. Since 
many feature selection algorithms have been investigated for 
text categorization, we select a typical algorithm in our work, 
i.e., 2 -testχ  (CHI)3. Yang & Pedersen [12] have given a 
comparative study on five feature selection algorithms and 
have reported that CHI can outperform the other algorithms 
in the study.  

CHI is a typical feature selection algorithm, which 
measures the dependence between words and developers 
[12]. Among the bug triage approaches, the 
vocabulary-based expertise model by Matter et al. [5] also 
focuses on the relationship between words and developers. 
For each developer di in the developer set � , given a word 
w, let A be the co-occur times of w and di, B be the times of 
w occurring without di, C be the times of di occurring 
without w, and D be the times of neither w nor di occurring. 
In practice, the maximum value or the average value of each 
developer can be used to evaluate the given word. In this 
paper, we use the maximum value of the dependence as (2).  

   
2 ( )( ) ( ( , ))

( ) ( ) ( ) ( )
max maxi

i id d
m A D C BCHI w w d

A C B D A B C D
χ

∈ ∈
× × − ×= =

+ × + × + × +� � (2)

                                                           
3 CHI tool from NEU-NLP lab, http://www.nlplab.com/. 

C. ICF Instance Selection Algorithm 
Besides feature selection, instance selection is a 

technology to reduce the number of instances and to enhance 
the training set quality. According to [13], we select Iterative 
Case Filter (ICF) [14] as the instance selection algorithm in 
our work. 

ICF is an instance selection algorithm based on the 
k-Nearest Neighbor algorithm (kNN) [7]. The process of 
ICF consists of two steps, namely noise filtering and 
instance condensing. During the iteration of ICF, kNN is 
used to evaluate whether an instance is representative for the 
classes. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
In this section, we present the experiments of the 

training set reduction for bug triage. First, we show the data 
preparation for applying the training set reduction. Then, 
we give the experimental setup. Next, we show the 
accuracy rates of each single algorithm. Finally, we detailed 
present the results and the analysis for the experiments of 
Eclipse. 

All the experiments are conducted on Debian under the 
platform of a PC with Intel Core 2.8 GHz CPU and 4 GB 
memory. Besides using the open access tools, we 
implement the ICF algorithm and the Naive Bayes classifier 
in our work.  

A. Data Preparation  
To evaluate the experimental results of the training set 

reduction, we employ the bug data of Eclipse. We choose 
Eclipse since the training set is easy to obtain and the 
labeling heuristic of bug triage can work well on it [3].  

We select a set of continuous bug reports as a data set for 
the experiments. According to the classic study of bug triage 
[3], during the three months before and after a project 
release, the submission of bugs is very active. Thus, the data 
set in our experiments is chosen around the project release. 
We choose the bug reports with IDs from 200001 to 220000. 
To avoid the influence of the out-of-date bugs, we remove 
the duplicate bugs at the early stage and retain the ones 
around the project release.  

To build the data set in the experiments, we follow the 
existing work (e.g., [3], [6]) to select the fixed bugs and 
duplicate bugs. As a result, 12385 bug reports are left. To 
get a more effective training set, we remove the inactive 
developers, who have fixed less than 10 bugs since no 
sufficient information is offered to predict the bug-fixing 
capabilities of such developers. After the above steps, the 
final number of bug reports for Eclipse is 11313. Table I 
shows the detailed information of the final data set. 

Before training a classifier for the bug reports, each bug 
report should be labeled to identify the correct developer [1]. 
We label the correct developer according to the labeling 
heuristic [3]. For a new-coming bug report, the summary 
and the detailed description are the most representative items, 
which are used for manual bug triage [1]. Thus, for each bug 
report, we use the summary and the detailed description (the 
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first long description in Bugzilla) to obtain the words.  
Then we use the BoW toolkit’s [15] built-in text 
categorization techniques (calculating the term frequency 
and removing the stopwords) to convert each bug report into 
a word vector based on the vector space model [3]. We do 
not use the stemming technique since an emperical study has 
indicated that the stemming technique is not helpful to bug 
triage [1]. 

TABLE I.  THE DATA SET OF THE OPEN SOURCE PROJECT ECLIPSE 

Item Value
Number of instances 11313 
Number of features 35724 
Number of developers 267 
Minimum number of bugs fixed per developer 10 
Maximum number of bugs fixed per developer 284 
 

B. Experimental Setup 
To compare the results of our experiments, we employ 

the Naive Bayes classifier as the bug triage approach [1], [3], 
[4], [6]. The kernel idea of Naive Bayes is to calculate the 
posterior probability for each new-coming bug report from 
the prior probability and the likelihood of the existing bug 
reports [1]. In our experiments, the Naive Bayes approach 
without the training set reduction is employed as a baseline 
(called “Origin” in the experiments). 

To train a classifier for bug triage, we split the data set 
into a training set and a test set. The 5-fold cross-validation 
is used to calculate the average of the results to avoid 
over-fitting problem [7]. To improve the quality of bug 
triage, we follow the existing work ([3], [4], [5], [6]) to use 
a recommendation list. A list with the size k  can provide 
k  developers as the prediction result for each new-coming 
bug report.  

As the evaluation criteria, we employ the accuracy rate, 
the precision rate, and the recall rate to report the 
experimental results. We give the definition of the 
evaluation criteria as follows ( k  denotes the size of the 
recommendation list).  

 

 
The accuracy rate is the most significant evaluation 

criterion for bug triage since it measures the quality of 
prediction [3], [4], [5], [6]. The other two criteria, the 
precision rate and the recall rate, are used to measure the 
relevance and correctness of bug triage [3], [5].  

C. Results of Feature Selection and Instance Selection 
Before given the results of the training set reduction, we 

show the results of each single algorithm in this part. 
Fig. 2 presents the accuracy rates of the CHI and ICF on 

Eclipse. For CHI, we select 10%, 30%, and 50% as the ratio 
of the final number of words, respectively. Such parameter 
setup is based on the experience of the text feature selection 
study [12]. For ICF, we set the ratio of the final number of 
bug reports as 30%, 50%, and 70%, respectively. The ratio 
value set up is based on the study of text instance selection 
[13]. Due to the algorithm mechanism of ICF, it is possible 
that different ratios can lead to the same results (i.e. the 
same instances are selected). In our experiments with ICF, 
we obtain the identical result for the ratio of 30%, 50%, and 
70%. Thus, we only draw one curve for ICF in Fig. 2.  
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Figure 2.  The accuracy rates of CHI and ICF on Eclipse 

 
From Fig. 2, it can be found that CHI works much 

better than the original experiment. When the 
recommendation list size is one, the improvement of the 
accuracy rate for Eclipse is up to 13%. Meanwhile, we can 
see that CHI achieves good performance if 30% or 50% is 
selected as the ratio of the final number of words. In 
contrast with the results of feature selection, the accuracy 
rate of instance selection is not better than the original 
result.  

Although the accuracy rate of instance selection is not 
ideal for bug triage, we find that the number of instances is 
significantly reduced by the instance selection algorithm. 
For bug triage, if we can improve the accuracy rate of 
instance selection, ICF is useful for reducing the training 
sets. 

D. Results of Training Set Reduction 
Based on the results of feature selection and instance 

selection, we can see that both feature selection and 
instance selection can reduce the scale of training set (for 
words or for bug reports) and feature selection can improve 
the accuracy rates. These results provide the basis for our 
combined training set reduction. In other words, we use the 

# correct relevant developers
# all bug reports in test setkAccuracy =  (3)

# correct relevant developers
# relevant developrerskPrecision

k
=

×
 (4)

#  correct relevant developers
# correct developerskRecall =  (5)
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accuracy improvement obtained by feature selection to 
cover the loss of instance selection. 

To terminate the process of the training set reduction, 
each algorithm needs an input parameter of the final 
number of the words or bug reports, a general method to 
determine these parameter values is parameter tuning [12], 
[14]. Due to the time cost of parameter tuning, we only 
artificially allocate the parameter values in our experiments. 
For each algorithm, we choose the middle value of the final 
numbers of features or instances, i.e., we set 30% as the 
ratio of the final number of words and 50% as the ratio of 
the final number of bug reports. We present the results of 
the accuracy rates of the training set reduction on Eclipse in 
Table II. In the table, the recommendation list size is from 1 
to 10. We show the results of the original experiment, the 
two single algorithms, and the two combinations. 

TABLE II.  ACCURACY RATES OF TRAINING SET ON ECLIPSE 

List size Origin CHI ICF CHI�ICF ICF�CHI
1 25.83 30.91 21.18 25.22 27.23 
2 35.71 43.21 31.85 38.18 40.15 
3 41.76 50.80 38.09 46.73 48.57 
4 45.02 55.16 42.17 51.61 53.45 
5 47.68 58.66 45.29 55.82 57.29 
6 50.15 61.58 47.96 58.93 60.09 
7 52.58 63.54 50.22 60.75 62.00 
8 54.58 65.22 52.31 62.88 63.92 
9 56.53 67.35 53.91 64.85 65.64 

10 57.92 68.66 55.23 65.90 66.95 
 
 
From the combination results, we can find that both 

CHI�ICF and ICF�CHI can provide better accuracies 
than the original experiment. Note that the single algorithm 
CHI can obtain some better accuracies than the 
combinations, e.g., on Eclipse with the recommendation list 
size one, the accuracy rate of ICF�CHI is 27.23% while 
that of CHI is 30.91%. However, the goal of our work is to 
reduce the scale of training set. Since ICF�CHI removes 
50% bug reports more than CHI, the training set reduction 
of ICF�CHI is more effective. From Table II, we also can 
find out that CHI�ICF outperforms ICF�CHI, one reason 
for this fact is that some features may be removed with the 
instances during instance selection while very few instances 
are removed during feature selection [14]. 

Besides the accuracy rate, we employ the precision and 
recall rates to evaluate the performance of the training set 
reduction. We present the results in Fig. 3. It can be found 
that ICF�CHI provides the best precision and recall rates. 
CHI�ICF and CHI can generate better results than the other 
two approaches. Thus, to achieve the high precision and 
recall rates, ICF�CHI is an ideal decision for the training 
set reduction.  

V. THREATS TO VALIDITY 
There are two threats of validity for our work. First, the 

conclusions from the experimental results cannot be directly 
transferred to other projects. In this paper, our experiments 

are based on parts of the bug data from the Eclipse and it is 
hard to model the differences from Eclipse to other projects. 
As a result, the experimental results on some other projects 
may be different from ours. Since most steps of our 
experiments are automatic, our experiments of the training 
set reduction can be adapted to other projects. To solve this 
problem, an empirical study on more projects may provide a 
detailed comparison. 

Second, the precision rate in our work is very low. The 
reason for this fact is that the calculation rule is an 
adaptation from the precision of the recommendation system 
[5]. We only have one relevant developer for each 
new-coming bug report while many recommendation 
systems provide multiple classes for each instance. 
Therefore, the value of the precision rate is low in our 
experiments.  

 
 

0

5

10

15

20

25

10 20 30 40 50 60
Recall (%)

P
re

ci
si

on
 (%

)

CHI

ICF

CHI ICF

ICF CHI

Origin
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VI. RELATED WORK 
As to our knowledge, there is no study on feature 

selection and instance selection for the bug triage problem. 
The existing bug triage approaches are based on the text 
categorization. The first work of bug triage, proposed in 
2004, is a supervised text categorization approach using 
Naive Bayes [1]. Anvik et al. [2], [3] extend this work with 
some other supervised learning algorithms (e.g., support 
vector machine), a recommendation list, and a complex 
labeling heuristic. To assist bug triage with the developer 
networks, Jeong et al. [4] propose a tossing graph approach 
to improve the accuracy of recommendation; Bhattacharya 
& Neamtiu [17] extend the tossing graph approach with the 
multi-feature technology and a fine-grained incremental 
learning; Matter et al. [5] use the vocabulary based expertise 
model to improve bug triage. To solve the problem of low 
quality of bug reports, Xuan et al. [6] propose a 
semi-supervised learning approach with a weighted 
recommendation list for bug triage.  
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When facing the new-coming bugs, removing the 
duplicate ones is a labor-intensive task for large-scale 
projects. Runeson et al. [9] propose an information retrieval 
approach to detect the duplicate bugs; Wang et al. [10] 
extend this approach with execution information. In contrast 
to removing duplicate bugs, Bettenburg et al. [8] consider 
adding the duplicate information to improve bug triage.   

The most relevant work of this paper is the feature 
selection technology for bug prediction proposed by Shivaji 
et al. [11]. In this work, they employ the information gain 
algorithm to improve the quality of bug prediction. In this 
paper, we focus on the bug triage problem. Besides feature 
selection, we study the results of instance selection and 
combine feature selection with instance selection to reduce 
the scale of the training set. The goal of our work is to 
remove the noisy and redundant bug reports. To our 
knowledge, this is the first work of both feature selection 
and instance selection in software engineering.  

VII. CONCLUSION AND FUTURE WORK 
This paper is the first work of combining feature 

selection with instance selection to reduce the training set 
for the bug triage problem. The motivation of this work is to 
reduce the large scale of the training set and to remove the 
noisy and redundant bug reports for bug triage. Based on our 
setup, 70% of words and 50% of bug reports are removed. 
The experimental results show that the combinations of CHI 
and ICF can achieve better accuracy rates than that without 
the training set reduction. The results also indicate that the 
combination, ICF�CHI, is a good choice for the training set 
reduction.  

In the future work, we plan to propose a unified 
approach to merge the tasks of feature selection and instance 
selection. In this paper, we focus on the combinations of the 
existing algorithms for the training set reduction. Since each 
algorithm in the combination is limited by the other one, it is 
necessary to develop a unified approach to integrate feature 
selection and instance selection.  

Another future work is to apply the training set reduction 
of bug triage to other tasks to improve the software quality. 
Since machine learning becomes one of the powerful tools 
in software engineering, the training set reduction can be 
useful for the work based on machine learning.  
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