

Towards Training Set Reduction for Bug Triage

Weiqin Zou Yan Hu*
School of Software

Dalian University of Technology
Dalian, China

zou@mail.dlut.edu.cn huyan@dlut.edu.cn

Jifeng Xuan
School of Mathematical Sciences
 Dalian University of Technology

Dalian, China
xuan@mail.dlut.edu.cn

He Jiang*
School of Software

Dalian University of Technology
Dalian, China

jianghe@dlut.edu.cn

Abstract—Bug triage is an important step in the process of bug
fixing. The goal of bug triage is to assign a new-coming bug to
the correct potential developer. The existing bug triage
approaches are based on machine learning algorithms, which
build classifiers from the training sets of bug reports. In
practice, these approaches suffer from the large-scale and
low-quality training sets. In this paper, we propose the
training set reduction with both feature selection and instance
selection techniques for bug triage. We combine feature
selection with instance selection to improve the accuracy of
bug triage. The feature selection algorithm 2 -testχ , instance
selection algorithm Iterative Case Filter, and their
combinations are studied in this paper. We evaluate the
training set reduction on the bug data of Eclipse. For the
training set, 70% words and 50% bug reports are removed
after the training set reduction. The experimental results show
that the new and small training sets can provide better
accuracy than the original one.

Keywords-bug triage; training set reduction; feature
selection; instance selection; software quality

I. INTRODUCTION
Bug fixing is a significant and time-consuming process

in software maintenance [3]. For a large-scale software
project, the number of daily bugs is so large that it is
impossible to handle them without delaying [2]. The work of
managing bugs increases the cost of software quality
maintenance [17]. Many software projects use a bug
tracking system to store and manage bugs submitted by
users, including end users, testers, and developers [1]. The
bug tracking system provides a platform, where users can
communicate with each other during the bug fixing process.
Bugzilla1 is such a bug tracking system, which is used by
many large open source software projects. Based on the bug
tracking system, the developers can easily search and
maintain all the existing bugs.

Bug triage, an important step for bug fixing, is to assign
a new bug to a relevant developer for further handling [3]. A
general method for bug triage is to assign bugs manually. In
practice, due to the frequent changes of software
development teams, it is difficult to identify the correct
developer in manual triage [3]. Taking Eclipse 2 as an
example, Anvik reports that an average of 37 bugs per day
are submitted to the bug tracking system and 3 person-hours
per day are required for the manual triage [2]; the empirical
study by Jeong et al. shows that 44% of bugs have been

* Corresponding Author
1 Bugzilla, http://www.bugzilla.org/.
2 Eclipse, http://www.eclipse.org/.

assigned to the wrong developer after the first assignment
[4]. To solve these problems, some machine learning
algorithms are employed to conduct automatic bug triage [1],
[3], [4], [5], [6]. Most of the bug triage approaches are based
on text categorization [3]. However, these approaches suffer
from two problems. On one hand, due to the large number of
bugs, it is necessary to collect large-scale training sets of
bugs to obtain good results for bug triage [3]. For example,
in our experiments, over 9000 bug reports and 30000 words
are employed to train a classifier for Eclipse. It may cost
much time to directly use the large-scale training set in the
bug triage process. On the other hand, the quality of the
original bug reports is not good enough. Low-quality bug
reports may mislead the triage approach to assign bugs to
wrong developers [6], [16].

In this paper, we propose a training set reduction
approach using the combination of feature selection and
instance selection. Our training set reduction approach is a
two-phase process, which applies feature selection
(removing unnecessary words) before or after instance
selection (removing unnecessary reports). We use the typical
feature selection algorithm, 2-testχ (CHI) [12] and
instance selection algorithm, Iterative Case Filter (ICF) [14]
to build a small and effective training set by removing the
noisy and redundant words and bug reports. In the
experiments, we evaluate our training set reduction on the
Eclipse project. After the training set reduction, 70% words
and 50% bug reports are removed. The results show that the
experiments on the reduced training sets can obtain better
accuracies than that on the original training set.

This paper makes the following contributions.
• We propose the training set reduction approach for

bug triage by combining feature selection with
instance selection. To our knowledge, this is the first
work to improve the performance of bug triage by
reducing the scale of the training set.

• We provide a comparative study on the effect of
different orders of combinations. The results show
that the effectiveness of the training set reduction
can be influenced by changing the order of two
phases.

The remainder paper is organized as follows. In Section
II, we briefly introduce bug triage and give two motivating
examples for training set reduction. Section III gives the
details of our training set reduction. In Section IV, we
present the experimental results and analysis. We give the
threats to validity of our work in Section V. Section VI lists
the related work. We briefly conclude this paper and present
our future work in the final section.

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.80

587

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.80

590

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.80

576

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 20,2020 at 10:43:11 UTC from IEEE Xplore. Restrictions apply.

II. BUG TRIAGE AND MOTIVATING EXAMPLES
In a bug tracking system, a software bug is stored as a

bug report, which is the textual form for describing the
details of a bug [3]. When a user submits a bug to the bug
tracking system, a bug report is filled to provide information
to help identifying and reproducing the bug. For example, a
bug report may contain the items for recording the summary,
the detailed description, the buggy product, the
sub-component, and the operating system. Among these
items, the summary and the detailed description are always
used in bug triage since they can provide adequate
information of bugs [3].

�ubrani� & Murphy have proposed the first work of bug
triage, in which the bug assignment is innovatively mapped
to the text categorization [1]. To improve the accuracy of
bug triage, a recommendation list is employed to predict
multiple relevant developers [3]. Fig. 1 shows the process of
the text categorization approach for bug triage.

In Fig. 1, the training set is viewed as a text matrix. Each

row of the matrix indicates one bug report while each
column of the matrix indicates one word. However, due to
the large scale and the low quality, some bug reports may
bring noise and redundancy into the data set. In the
following part of this section, we will give two examples of
bug reports to present the need for the training set reduction.

We take the bug report with ID 205900 in Eclipse as an
example to study the words of bug reports. This bug report
describes a broken error of the discovery repository.

Bug report 205900:[Plug-ins] all installed correctly and do not

show any errors in Plugin configuration view. Whenever I try to add a
[diagram name] diagram, the wizard can not be started due to a missing
[class name] class...

In this bug report, some words, e.g., installed, show,

started, and missing, are commonly used for describing bugs.
For a text categorization based approach, these common
words are not helpful for predication. Thus, we want to
remove these words to improve bug triage (actually, these
four words are removed in the experiments in Section IV
after the training set reduction). However, for the text
categorization, these redundancy words cannot be removed
directly. Thus, a relevant technology for bug triage needs to
be developed.

We take two bug reports with ID 200019 and ID 204653
as examples to study the relationship between bug reports
(the detailed descripitons are omitted).

Bug report 200019: Argument popup not highlighting the correct

argument...
Bug report 204653: Argument highlighting incorrect...

These two bug reports are duplicate (duplicate denotes

that more than one bug reports describe one software fault).
The textual forms of these two bug reports are similar. Thus,
a bug report may be chosen as the representative one of
these bug reports. Thus, we want to use some technology to
remove one of these bug reports (actually, the bug report
with ID 200019 is removed while the bug report with ID
204653 is kept in the experiments in Section IV). In this
paper, we focus on the technology to remove the extra words
and bug reports for bug triage.

III. TRAINING SET REDUCTION FOR BUG TRIAGE
In this section, we present our training set reduction

approach for bug triage. In our work, a feature selection
algorithm and an instance selection algorithm are combined
to reduce noisy or redundant information in the training set
of bug triage.

A. Training Set Reduction
Motivated by the examples in Section II, we employ

both feature selection and instance selection algorithms to
remove the unnecessary features and instances. Drawn on
the experience in text categorization, a feature in bug triage
indicates a word while an instance indicates a bug report.
Therefore, the goal of our work is to reduce the text matrix
of the training set on two dimensions, i.e., the word
dimension and the bug report dimension.

To generate a reduced training set on two dimensions,
we employ a two-phase combination to take advantage of
both feature selection and instance selection (a phase is a
process applying one algorithm). The reduced training set is
applied to replace the original training set of bug triage. To
distinguish the combinations, we investigate the order of the
two phases. Given a feature selection algorithm FS and an
instance selection algorithm IS , we use FS IS→ to
denote first applying FS and then IS . On the other hand,
IS FS→ denotes first applying IS and then FS .

Based on the definition of feature selection [12], the
words with small objective values are removed to improve
the prediction performance. Thus, the high-quality words are
left to train the classifier. As an input parameter, a threshold
of final number of words is used to terminate the process of
feature selection. Different from a feature selection
algorithm, the terminal condition of an instance selection
algorithm is usually based on a heuristic rule, which can be
set according to the applications [14]. In this paper, we set
the final number of bug reports as the terminal condition.

In Algorithm 1, we briefly show the training set
reduction with the order FS IS→ . As described in the
Algorithm 1, we first apply feature selection, and then apply
instance selection. Before feature selection, we calculate

Classifier

a new bug report

...

1st developer K1

2nd developer K2

kth developer Kk

Training Set

summary detailed description

bug report 1

word 1

developer A
bug report 2

bug report m

word 2 word n...
developer B

...

Figure 1. The text categorization approach for bug triage.

588591577

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 20,2020 at 10:43:11 UTC from IEEE Xplore. Restrictions apply.

objective values for all the words. After feature selection on
the original data set, a new and small data set with the
representative words is generated. Then we perform instance
selection on the new data set. After the training set reduction,
the final training set is generated. Note that in Step 2), some
bug reports may be empty during feature selection (i.e., all
the words of a bug report are removed). Such zero-word bug
reports can be removed in the instance selection algorithm in
Step 3).

Algorithm 1. Training set reduction with FS IS→

Input: training set � with n words and m bug reports,
feature selection algorithm FS , final number of words Fn ,
instance selection algorithm IS , final number of bug reports Im ,
order of the combination FS IS→

Output: reduced training set FI� for bug triage

1) Apply FS to n words of � and calculate objective values for all
the words;

2) Select the top Fn words of � and generate a training set F� ;
3) Apply IS to m bug reports of F� ;
4) Terminate IS when the number of bug reports is equal or less than

Im and generate the final training set FI� .

For the combinations of FS and IS , we will present
the results of FS IS→ and IS FS→ , respectively. All the
combination results are shown in details in the experiment
section. In the following parts of this section, we briefly
introduce the feature selection algorithm CHI and the
instance selection algorithm ICF used in our work.

B. CHI Feature Selection Algorithm
Feature selection is a standard technology to reduce the

features of large-scale data sets in machine learning. Since
many feature selection algorithms have been investigated for
text categorization, we select a typical algorithm in our work,
i.e., 2 -testχ (CHI)3. Yang & Pedersen [12] have given a
comparative study on five feature selection algorithms and
have reported that CHI can outperform the other algorithms
in the study.

CHI is a typical feature selection algorithm, which
measures the dependence between words and developers
[12]. Among the bug triage approaches, the
vocabulary-based expertise model by Matter et al. [5] also
focuses on the relationship between words and developers.
For each developer di in the developer set � , given a word
w, let A be the co-occur times of w and di, B be the times of
w occurring without di, C be the times of di occurring
without w, and D be the times of neither w nor di occurring.
In practice, the maximum value or the average value of each
developer can be used to evaluate the given word. In this
paper, we use the maximum value of the dependence as (2).

2 ()() ((,))

() () () ()
max maxi

i id d
m A D C BCHI w w d

A C B D A B C D
χ

∈ ∈
× × − ×= =

+ × + × + × +� � (2)

3 CHI tool from NEU-NLP lab, http://www.nlplab.com/.

C. ICF Instance Selection Algorithm
Besides feature selection, instance selection is a

technology to reduce the number of instances and to enhance
the training set quality. According to [13], we select Iterative
Case Filter (ICF) [14] as the instance selection algorithm in
our work.

ICF is an instance selection algorithm based on the
k-Nearest Neighbor algorithm (kNN) [7]. The process of
ICF consists of two steps, namely noise filtering and
instance condensing. During the iteration of ICF, kNN is
used to evaluate whether an instance is representative for the
classes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we present the experiments of the

training set reduction for bug triage. First, we show the data
preparation for applying the training set reduction. Then,
we give the experimental setup. Next, we show the
accuracy rates of each single algorithm. Finally, we detailed
present the results and the analysis for the experiments of
Eclipse.

All the experiments are conducted on Debian under the
platform of a PC with Intel Core 2.8 GHz CPU and 4 GB
memory. Besides using the open access tools, we
implement the ICF algorithm and the Naive Bayes classifier
in our work.

A. Data Preparation
To evaluate the experimental results of the training set

reduction, we employ the bug data of Eclipse. We choose
Eclipse since the training set is easy to obtain and the
labeling heuristic of bug triage can work well on it [3].

We select a set of continuous bug reports as a data set for
the experiments. According to the classic study of bug triage
[3], during the three months before and after a project
release, the submission of bugs is very active. Thus, the data
set in our experiments is chosen around the project release.
We choose the bug reports with IDs from 200001 to 220000.
To avoid the influence of the out-of-date bugs, we remove
the duplicate bugs at the early stage and retain the ones
around the project release.

To build the data set in the experiments, we follow the
existing work (e.g., [3], [6]) to select the fixed bugs and
duplicate bugs. As a result, 12385 bug reports are left. To
get a more effective training set, we remove the inactive
developers, who have fixed less than 10 bugs since no
sufficient information is offered to predict the bug-fixing
capabilities of such developers. After the above steps, the
final number of bug reports for Eclipse is 11313. Table I
shows the detailed information of the final data set.

Before training a classifier for the bug reports, each bug
report should be labeled to identify the correct developer [1].
We label the correct developer according to the labeling
heuristic [3]. For a new-coming bug report, the summary
and the detailed description are the most representative items,
which are used for manual bug triage [1]. Thus, for each bug
report, we use the summary and the detailed description (the

589592578

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 20,2020 at 10:43:11 UTC from IEEE Xplore. Restrictions apply.

first long description in Bugzilla) to obtain the words.
Then we use the BoW toolkit’s [15] built-in text
categorization techniques (calculating the term frequency
and removing the stopwords) to convert each bug report into
a word vector based on the vector space model [3]. We do
not use the stemming technique since an emperical study has
indicated that the stemming technique is not helpful to bug
triage [1].

TABLE I. THE DATA SET OF THE OPEN SOURCE PROJECT ECLIPSE

Item Value
Number of instances 11313
Number of features 35724
Number of developers 267
Minimum number of bugs fixed per developer 10
Maximum number of bugs fixed per developer 284

B. Experimental Setup
To compare the results of our experiments, we employ

the Naive Bayes classifier as the bug triage approach [1], [3],
[4], [6]. The kernel idea of Naive Bayes is to calculate the
posterior probability for each new-coming bug report from
the prior probability and the likelihood of the existing bug
reports [1]. In our experiments, the Naive Bayes approach
without the training set reduction is employed as a baseline
(called “Origin” in the experiments).

To train a classifier for bug triage, we split the data set
into a training set and a test set. The 5-fold cross-validation
is used to calculate the average of the results to avoid
over-fitting problem [7]. To improve the quality of bug
triage, we follow the existing work ([3], [4], [5], [6]) to use
a recommendation list. A list with the size k can provide
k developers as the prediction result for each new-coming
bug report.

As the evaluation criteria, we employ the accuracy rate,
the precision rate, and the recall rate to report the
experimental results. We give the definition of the
evaluation criteria as follows (k denotes the size of the
recommendation list).

The accuracy rate is the most significant evaluation

criterion for bug triage since it measures the quality of
prediction [3], [4], [5], [6]. The other two criteria, the
precision rate and the recall rate, are used to measure the
relevance and correctness of bug triage [3], [5].

C. Results of Feature Selection and Instance Selection
Before given the results of the training set reduction, we

show the results of each single algorithm in this part.
Fig. 2 presents the accuracy rates of the CHI and ICF on

Eclipse. For CHI, we select 10%, 30%, and 50% as the ratio
of the final number of words, respectively. Such parameter
setup is based on the experience of the text feature selection
study [12]. For ICF, we set the ratio of the final number of
bug reports as 30%, 50%, and 70%, respectively. The ratio
value set up is based on the study of text instance selection
[13]. Due to the algorithm mechanism of ICF, it is possible
that different ratios can lead to the same results (i.e. the
same instances are selected). In our experiments with ICF,
we obtain the identical result for the ratio of 30%, 50%, and
70%. Thus, we only draw one curve for ICF in Fig. 2.

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Recommendation list size

Ac
cu

ra
cy

 (%
)

CHI-10%
CHI-30%
CHI-50%
ICF
Orign

Figure 2. The accuracy rates of CHI and ICF on Eclipse

From Fig. 2, it can be found that CHI works much

better than the original experiment. When the
recommendation list size is one, the improvement of the
accuracy rate for Eclipse is up to 13%. Meanwhile, we can
see that CHI achieves good performance if 30% or 50% is
selected as the ratio of the final number of words. In
contrast with the results of feature selection, the accuracy
rate of instance selection is not better than the original
result.

Although the accuracy rate of instance selection is not
ideal for bug triage, we find that the number of instances is
significantly reduced by the instance selection algorithm.
For bug triage, if we can improve the accuracy rate of
instance selection, ICF is useful for reducing the training
sets.

D. Results of Training Set Reduction
Based on the results of feature selection and instance

selection, we can see that both feature selection and
instance selection can reduce the scale of training set (for
words or for bug reports) and feature selection can improve
the accuracy rates. These results provide the basis for our
combined training set reduction. In other words, we use the

correct relevant developers
all bug reports in test setkAccuracy = (3)

correct relevant developers
relevant developrerskPrecision

k
=

×
 (4)

correct relevant developers
correct developerskRecall = (5)

590593579

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 20,2020 at 10:43:11 UTC from IEEE Xplore. Restrictions apply.

accuracy improvement obtained by feature selection to
cover the loss of instance selection.

To terminate the process of the training set reduction,
each algorithm needs an input parameter of the final
number of the words or bug reports, a general method to
determine these parameter values is parameter tuning [12],
[14]. Due to the time cost of parameter tuning, we only
artificially allocate the parameter values in our experiments.
For each algorithm, we choose the middle value of the final
numbers of features or instances, i.e., we set 30% as the
ratio of the final number of words and 50% as the ratio of
the final number of bug reports. We present the results of
the accuracy rates of the training set reduction on Eclipse in
Table II. In the table, the recommendation list size is from 1
to 10. We show the results of the original experiment, the
two single algorithms, and the two combinations.

TABLE II. ACCURACY RATES OF TRAINING SET ON ECLIPSE

List size Origin CHI ICF CHI�ICF ICF�CHI
1 25.83 30.91 21.18 25.22 27.23
2 35.71 43.21 31.85 38.18 40.15
3 41.76 50.80 38.09 46.73 48.57
4 45.02 55.16 42.17 51.61 53.45
5 47.68 58.66 45.29 55.82 57.29
6 50.15 61.58 47.96 58.93 60.09
7 52.58 63.54 50.22 60.75 62.00
8 54.58 65.22 52.31 62.88 63.92
9 56.53 67.35 53.91 64.85 65.64

10 57.92 68.66 55.23 65.90 66.95

From the combination results, we can find that both

CHI�ICF and ICF�CHI can provide better accuracies
than the original experiment. Note that the single algorithm
CHI can obtain some better accuracies than the
combinations, e.g., on Eclipse with the recommendation list
size one, the accuracy rate of ICF�CHI is 27.23% while
that of CHI is 30.91%. However, the goal of our work is to
reduce the scale of training set. Since ICF�CHI removes
50% bug reports more than CHI, the training set reduction
of ICF�CHI is more effective. From Table II, we also can
find out that CHI�ICF outperforms ICF�CHI, one reason
for this fact is that some features may be removed with the
instances during instance selection while very few instances
are removed during feature selection [14].

Besides the accuracy rate, we employ the precision and
recall rates to evaluate the performance of the training set
reduction. We present the results in Fig. 3. It can be found
that ICF�CHI provides the best precision and recall rates.
CHI�ICF and CHI can generate better results than the other
two approaches. Thus, to achieve the high precision and
recall rates, ICF�CHI is an ideal decision for the training
set reduction.

V. THREATS TO VALIDITY
There are two threats of validity for our work. First, the

conclusions from the experimental results cannot be directly
transferred to other projects. In this paper, our experiments

are based on parts of the bug data from the Eclipse and it is
hard to model the differences from Eclipse to other projects.
As a result, the experimental results on some other projects
may be different from ours. Since most steps of our
experiments are automatic, our experiments of the training
set reduction can be adapted to other projects. To solve this
problem, an empirical study on more projects may provide a
detailed comparison.

Second, the precision rate in our work is very low. The
reason for this fact is that the calculation rule is an
adaptation from the precision of the recommendation system
[5]. We only have one relevant developer for each
new-coming bug report while many recommendation
systems provide multiple classes for each instance.
Therefore, the value of the precision rate is low in our
experiments.

0

5

10

15

20

25

10 20 30 40 50 60
Recall (%)

P
re

ci
si

on
 (%

)

CHI

ICF

CHI ICF

ICF CHI

Origin

Figure 3. The precision and recall rates on the combinations of CHI
and ICF on the data sets of Eclipse. The points of each curve denote the
recommendation list size from one (left) to ten (right).

VI. RELATED WORK
As to our knowledge, there is no study on feature

selection and instance selection for the bug triage problem.
The existing bug triage approaches are based on the text
categorization. The first work of bug triage, proposed in
2004, is a supervised text categorization approach using
Naive Bayes [1]. Anvik et al. [2], [3] extend this work with
some other supervised learning algorithms (e.g., support
vector machine), a recommendation list, and a complex
labeling heuristic. To assist bug triage with the developer
networks, Jeong et al. [4] propose a tossing graph approach
to improve the accuracy of recommendation; Bhattacharya
& Neamtiu [17] extend the tossing graph approach with the
multi-feature technology and a fine-grained incremental
learning; Matter et al. [5] use the vocabulary based expertise
model to improve bug triage. To solve the problem of low
quality of bug reports, Xuan et al. [6] propose a
semi-supervised learning approach with a weighted
recommendation list for bug triage.

591594580

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 20,2020 at 10:43:11 UTC from IEEE Xplore. Restrictions apply.

When facing the new-coming bugs, removing the
duplicate ones is a labor-intensive task for large-scale
projects. Runeson et al. [9] propose an information retrieval
approach to detect the duplicate bugs; Wang et al. [10]
extend this approach with execution information. In contrast
to removing duplicate bugs, Bettenburg et al. [8] consider
adding the duplicate information to improve bug triage.

The most relevant work of this paper is the feature
selection technology for bug prediction proposed by Shivaji
et al. [11]. In this work, they employ the information gain
algorithm to improve the quality of bug prediction. In this
paper, we focus on the bug triage problem. Besides feature
selection, we study the results of instance selection and
combine feature selection with instance selection to reduce
the scale of the training set. The goal of our work is to
remove the noisy and redundant bug reports. To our
knowledge, this is the first work of both feature selection
and instance selection in software engineering.

VII. CONCLUSION AND FUTURE WORK
This paper is the first work of combining feature

selection with instance selection to reduce the training set
for the bug triage problem. The motivation of this work is to
reduce the large scale of the training set and to remove the
noisy and redundant bug reports for bug triage. Based on our
setup, 70% of words and 50% of bug reports are removed.
The experimental results show that the combinations of CHI
and ICF can achieve better accuracy rates than that without
the training set reduction. The results also indicate that the
combination, ICF�CHI, is a good choice for the training set
reduction.

In the future work, we plan to propose a unified
approach to merge the tasks of feature selection and instance
selection. In this paper, we focus on the combinations of the
existing algorithms for the training set reduction. Since each
algorithm in the combination is limited by the other one, it is
necessary to develop a unified approach to integrate feature
selection and instance selection.

Another future work is to apply the training set reduction
of bug triage to other tasks to improve the software quality.
Since machine learning becomes one of the powerful tools
in software engineering, the training set reduction can be
useful for the work based on machine learning.

ACKNOWLEDGMENT
Many thanks to Dr. John Anvik with Department of

Computer Science, University of Victoria for sharing the
labeling heuristic for bug triage. Thanks the NEU-NLP lab
for sharing the CHI tool to do feature selection. Thanks
Runqing Wang with Dalian University of Technology for
the implementation of a part of ICF algorithm. Thanks
Zhilei Ren with Dalian University of Technology for his
kind-hearted suggestions.

Our work is partially supported by the Natural Science
Foundation of China under Grant No. 60805024 and the

National Research Foundation for the Doctoral Program of
Higher Education of China under Grant No. 20070141020.

REFERENCES
[1] D. �ubrani� and G. C. Murphy, “Automatic bug triage using text

categorization,” Proc. Intl. Conf. Software Engineering &
Knowledge Engineering (SEKE 04), Jun. 2004, pp. 92-97.

[2] J. Anvik, “Automating bug report assignment,” Proc. Intl. Conf.
Software Engineering (ICSE 06), ACM, May 2006, pp. 937-940.

[3] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?,”
Proc. Intl. Conf. Software Engineering (ICSE 06), ACM, May 2006,
pp. 361-370.

[4] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
tossing graphs,” Proc. Joint Meeting European Software Engineering
Conf. & ACM SIGSOFT Symp. Foundations of Software
Engineering (ESEC-FSE 09), ACM, Aug. 2009, pp. 111-120.

[5] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” Proc. IEEE
Working Conf. Mining Software Repositories (MSR 09), IEEE, May
2009, pp. 131-140.

[6] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug triage
using semi-supervised text classification,” Proc. Intl. Conf. Software
Engineering & Knowledge Engineering (SEKE 10), Jul. 2010, pp.
209-214.

[7] T. Mitchell, Machine Learning, McCraw Hill, 1996.
[8] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Duplicate

bug reports considered harmful… really?,” Proc. IEEE Conf.
Software Maintenance (ICSM 08), IEEE, Sept. 2008, pp. 337-345.

[9] P. Runeson, M. Alexanderson, and O. Nyholm, “Detection of
duplicate defect reports using natural language processing,” Proc.
Intl. Conf. Software Engineering (ICSE 07), IEEE, May 2007, pp.
499-510.

[10] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” Proc. Intl. Conf. Software Engineering (ICSE 08),
IEEE, May 2008, pp. 461-470.

[11] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim, “Reducing
features to improve bug prediction,” Proc. IEEE/ACM. Intl. Conf.
Automated Software Engineering (ASE 09), IEEE, Nov. 2009,
pp.600-604.

[12] Y. Yang and J. Pedersen, “A comparative study on feature selection
in text categorization,” Proc. Intl. Conf. Machine Learning (ICML
97), International Machine Learning Society, Jul. 1997, pp. 412-420.

[13] M. Grochowski and N. Jankowski, “Comparison of instance selection
algorithms II, results and comments,” Proc. Intl. Conf. Artificial
Intelligence and Soft Computing (ICAISC 04), Springer, Jun. 2004,
pp. 580-585.

[14] H. Brighton and C. Mellish, “Advances in instance selection for
instance-based learning algorithms,” Data mining and knowledge
discovery, vol. 6, no. 2, Apr. 2002, pp. 153-172.

[15] A. K. McCallum, “Bow: a toolkit for statistical language modeling,
text retrieval, classification and clustering,”
http://www.cs.cmu.edu/~mccallum/bow, 1996.

[16] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.
Zimmermann, “What makes a good bug report?,” Proc. ACM
SIGSOFT Symp. Foundations of Software Engineering (FSE 08),
ACM, Nov. 2008, pp. 308-318.

[17] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental learning
and multi-feature tossing graphs to improve bug triaging,” Proc.
IEEE Intl. Conf. Software Maintenance (ICSM 10), IEEE, Sept. 2010,
pp. 1-10.

592595581

Authorized licensed use limited to: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS. Downloaded on May 20,2020 at 10:43:11 UTC from IEEE Xplore. Restrictions apply.

