
An Empirical Study on the Usage and Evolution of
Identifier Styles in Practice

Jingxuan Zhang*, Weiqin Zou, Zhiqiu Huang
College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

{jxzhang, weiqin, zqhuang}@nuaa.edu.cn

Abstract—Identifiers play an important role in helping de-
velopers comprehend and maintain source code. In practice,
developers usually employ two widely-used identifier styles,
i.e., snake case and camel case, to format identifiers to make
them understandable and informative. Despite researchers have
empirically investigated the impacts of identifier styles on code
comprehension activities, the usage and evolution of identifier
styles, however, have not been fully explored. How are individual
identifier styles formed in practice? How would identifier styles
change and evolve? What are the potential impacts of identifier
style-changes? Questions like these are important but have not
been fully answered yet. In this paper, we conducted an empirical
study on 9,792 GitHub projects to gain some insights into these
problems. Specifically, we first analyzed how different identifier
styles were formed in real software projects. Next, we explored
the change patterns of identifier styles along with the project
evolution. Finally, we investigated the potential impacts as well
as categories of identifier style-changes. Our empirical results
achieved some interesting findings. For example, we first reported
some identifier style-change patterns (e.g., snake case -> camel
case -> snake case), which could help developers resolve style-
change problems in practice. Our study also provided some hints
for researchers and developers when they use specific identifier
styles in programs. For example, when researchers explore the
impacts of identifier styles on code comprehension, they are
suggested to consider the imbalanced distribution phenomenon of
individual identifier styles. Besides, it is worthwhile for developers
to build an identifier style-change prediction and propagation tool
to reduce the style-change costs.

Index Terms—Source Code Analysis, Identifier Style, Empiri-
cal Study, GitHub

I. INTRODUCTION

Source code comprehension is a common and important
activity conducted by developers in their software develop-
ment process [1], [2]. In practice, developers often resort to
source code lexicon, which provides the primary meaning
of source code concepts, to understand a piece of code [3].
Among the various types of source code lexicon, identifiers
(which take up about 70% of code lexicon) play a fundamental
role in expressing the literal meaning of source code [4], [5].
Despite developers have considerable lexical and syntactic
freedom in defining identifiers, it is generally believed that
poor identifiers set up barriers to source code comprehension
and even increase fault-proneness for projects [6]. Hence,
developers are encouraged to define meaningful identifiers [7].

* Corresponding Author: Jingxuan Zhang.

To construct readable and informative identifiers, developers
usually combine multiple terms together, including dictionary
words, abbreviations, and acronyms [8], [9]. There are two
typical combination styles (aka. identifier styles in this paper)
for integrating multiple terms as identifiers, namely the snake
case style and the camel case style [10], [11]. The snake case
style is the practice of writing identifiers in which terms are
separated by one or several underscores (“ ”) and the initial
letter of each term starts with either case, e.g., table editor
or table Editor; while the camel case style is the practice
of defining identifiers in which the separation of terms are
only indicated with a single capitalized initial letter and the
first term starts with either case, e.g., urlParser or UrlParser.
Identifiers neither with the snake case style nor the camel case
style are put into the other style in this study, e.g., argvalue.

In the literature, researchers have investigated the impact of
the snake case and camel case identifier styles on source code
reading and comprehension [6], [10], [12]. However, there is
still limited empirical evidence about the practical usage of
identifier styles and the changes made to identifier styles dur-
ing the project evolution. How are individual identifier styles
formed in real software projects? Are there any evolution
patterns for identifier styles and what are the potential impacts
of identifier style-changes? Questions like these are important
but have not been fully answered by researchers yet [13].

To gain some insights into these problems, we conducted an
empirical study to explore the usage and evolution of identifier
styles. We first explored how different identifier styles were
formed, especially for those identifiers with the other style.
Then, we explored how identifier styles evolved by mining
identifier style-change patterns. Finally, we investigated the
potential impacts of identifier style-changes as well as their
categories. Our analyses were based on 9,792 Java projects
hosted in GitHub. For each project, we extracted identifiers
and obtained their corresponding styles. We also extracted
the code commit history for identifiers. Then, we applied
some mathematical statistical methods with some source code
analysis tools to these collected data to study the usage and
evolution of identifier styles in practice.

Through experiments, we achieved some interesting results.
Specifically, by exploring the construction of identifiers with
different styles, we find that identifiers with the snake case
style are largely (63.40%) constructed in the partly separated
snake case form; most (87.62%) of identifiers with the camel



case style are defined in the lower camel case style. By
analyzing those identifiers with the other style, we find that
most of them are dictionary words (45.40%), abbreviations
and acronyms (19.80%), and characters combined with digits
(14.40%).

As related to identifier style evolution, we observe that more
than 75% of identifiers’ styles change only once during the
project evolution, among which a large portion (59.03%) of
style-changes happened between the camel case and other
styles. For identifiers with multiple style-changes, the top
6 common style-change patterns only involve two changes
between arbitrary two styles. Interestingly, many identifiers
with the initial camel case (or snake case) style would finally
return to the original style after experiencing several times in
style changing (e.g., camel case -> snake case -> other ->
snake case -> camel case). In addition, even though style-
changed identifiers involve 6.52% of source files on average,
they tend to be exposed or used by other parts of the projects
with non-private access modifiers and have a wide range of
reference times. Besides, 52.34% of style-changes are complex
with more than one term modified, the style-changes are made
mainly to narrow down the semantic meanings of identifiers.

The major contributions of this paper are summarized as
follows:

• We perform in-depth analyses on the usage and evolution
of identifier styles on 9,792 Java projects in GitHub. The
source code and dataset to reproduce the results in this
paper are made publicly available1.

• We investigate several key questions related to identifier
styles, including how individual identifier styles are
formed, their evolution patterns, the potential impacts,
and style-change categories.

• Our experimental findings provide some hints and impli-
cations for developers and researchers when they resolve
identifier-style related problems.

II. RESEARCH QUESTIONS

In this paper, we aim to explore the usage and evolution of
identifier styles in practice. In order to achieve this goal, we
study the following Research Questions (RQs):

RQ1: How are identifiers with different styles
constructed?

Identifiers with the same style can be constructed in
different forms. Understanding the concrete constructions of
identifiers with different styles could help us better understand
developers’ practice in using specific identifier styles, which
could further work as the analyses basis for solving identifier-
related problems [14], [15].

RQ2: How does identifier style change along with the
project evolution?

The style of an identifier may change along with the project
evolution [16], [17]. Up to now, no one has reported and
summarized the evolution characteristics of identifier styles
in practice. Hence, in order to fill this gap, we investigate the

1https://github.com/APIDocEnrich/IdentifierStyleAnalyses

evolution characteristics and patterns of identifiers in this RQs.
Understanding the evolution characteristics of identifier styles
could help to reduce the costs and risks that are associated
with identifier style modifications [18], [19].

RQ3: What are the potential impacts of identifier style-
changes?

After identifying style-change patterns, we further inves-
tigate the potential impacts of these style-changes. Identifier
style-changes can be viewed as a type of identifier renaming,
which are associated with costs and risks [3]. Understanding
the potential impacts of identifier style-changes could help to
reduce possible manual efforts and relevant costs as well as
risks.

RQ4: What are the categories of identifier style-changes?
After figuring out the identifier style-change patterns and

their potential impacts, we proceed to explore the categories
and percentages of identifier style-changes from different
dimensions. Understanding the style-change categories could
help developers have an in-depth understanding on when and
how to perform style-changes and make better evaluations to
the impacts of style-changes for identifiers. In addition, we can
also find some clues to the potential reasons of why developers
change styles of identifiers from this RQ.

III. EXPERIMENTAL SETUP

In this section, we first describe target projects for exper-
iments and the basic data exploration. Then, we present the
design of four RQs.

A. Target Projects

Our experimental projects are from an existing dataset
provided by Allamanis and Sutton [20]. This dataset is often
used by researchers to explore developers’ coding practice
[21], [22]. It contains 14,785 Java projects (each has at
least one fork in GitHub), with many popular projects also
being included, such as ElasticSearch2 and Apache Maven3.
These projects are of different sizes and come from different
domains, such as framework, library, and database. Such a
variety in project scales and domains makes it suitable for our
analyses of identifier styles in this paper.

For each project, we downloaded its latest version (to 1st
February 2021) so that we could obtain the exact metric values
and sufficient historical data from each project to support our
analyses. Then, we employed the Java Parser tool4 to parse
each source file within a project. The Java Parser tool could
check the syntax correctness of a source file by transforming
it into an Abstract Syntax Tree (AST) [23]. In our study, if
a project contained source files that had syntax errors (i.e.,
syntax errors in the code itself) reported by the Java Parser
tool, it would be removed from the dataset. This strategy could
help us avoid potential problems caused by the biased project
data. With this strategy, 1,284 projects were removed from
the dataset. Besides, we also filtered out the projects with less

2https://github.com/elastic/elasticsearch
3https://github.com/apache/maven
4https://javaparser.org/



TABLE I
SUMMARY OF CHARACTERISTICS ON 9,792 GITHUB JAVA PROJECTS.

Characteristic Min Median Max Mean St. Dev.

Watcher 0 4 3,500 21.43 89.15
Star 0 8 50,900 150.81 1,180.74
Fork 1 5 26,700 69.90 543.44

Contributor 1 2 1,516 7.19 29.42
Commit 1 65 449,885 701.35 6,165.52

File 1 35 63,238 212.99 1,151.07
LOC 149 3,479 10,060,819 30,318.01 189,475.20

than 100 identifiers in total from the dataset. This could help
us remove some toy projects. Finally, 9,792 projects were left
as our final experimental projects. Table I shows the basic
statistics of these projects.

B. Preliminary Data Exploration

Before investigating RQs, we first perform some preliminary
data exploration to better answer these RQs.

We mainly focus on three identifier styles in this study,
namely snake case, camel case, and other. Specifically, if
an identifier contained at least one “ ”, it was treated as
with the snake case style. If the identifier contained a series
of lowercase letters mixed with uppercase letters (may also
contain digits) and at least one uppercase letter in the middle,
it was regarded as with the camel case style. Identifiers neither
belonged to the snake case nor camel case styles were treated
as with the other style.

According to our statistics, there are a total of more than
57.11 million identifiers (i.e., site of identifier definition) in
all 9,792 projects. Identifiers with the snake case style only
take up 6.38% over all identifiers; while the camel case style
is the most frequently used style in defining identifiers, with
49.45% of identifiers belonging to this style on the whole. In
addition, 44.17% of identifiers are with the other style.

We also explored the correlation between different identifier
styles and different identifier categories. In this study, we
categorized all identifiers into five categories, i.e., package
names, type names (including class names, interface names,
and enumeration names), method names, field names, and
variable names. Within each identifier category, we calculated
the ratios of three identifier styles in all the projects. In addi-
tion, we also computed the ratios of each identifier category
across all identifier styles to better uncover their potential
relationships.

Fig. 1 presents the distributions of the three styles of
identifiers over five identifier categories. We can see that most
(68.29%) of identifiers with the snake case style are field
names. A large part of identifiers with the camel case style
are method names (47.05%) and variable names (34.06%).
For identifiers with the other style, more than three quarters
(75.60%) are variable names.

Similarly, Fig. 2 shows the distributions of different
identifier categories over the three identifier styles. We can see
that more than 97% of package names are defined following
the other style. This indicates that the snake case and camel
case styles are generally not applied to package names in

Fig. 1. The distributions of three identifier styles over five kinds of identifiers.

Fig. 2. The distributions of five kinds of identifiers over three identifier styles.

practice. As for type names and method names, more than
82% and 79% of them are defined using the camel case style.
Field names are almost evenly distributed in all three identifier
styles, which means it may be hard to choose a proper style
for a field name in practice. As for variable names, about two
thirds (65.57%) of them are with the other style and the rest
(33.08%) are with the camel case style. This means developers
seldom employ the snake case style to define variable names.

C. Design of RQs

RQ1: How are identifiers with different styles
constructed?

As mentioned above, there are more than 57.11 million
identifiers in total in the experimental projects. It is impos-
sible for us to manually explore the construction of all the
identifiers. Hence, we sample some identifiers to investigate
this RQ. Specifically, we first sampled 500 identifiers for
each identifier style from the target projects. We employed
the stratified random sampling method (a sampling technique
widely used by researchers when trying to draw conclusions
from different data categories [24]) to obtain those to-be-
analyzed identifiers. In the stratified random sampling method,
we randomly sampled identifiers from each category of which
the percentage was equal to the proportion of this category
as a whole for a specific identifier style. Since the process of
stratifying reduced sampling errors and ensured a great level



of representation [24], the sampled identifiers could reflect the
diversity of the whole population. Next, two authors of this
study independently analyzed all the sampled identifiers and
manually checked the programming context to figure out how
these identifiers were constructed. In this step, the two authors
could check the results more than one time until they thought
that there was no need to change the evaluation results. Finally,
the two authors discussed their results together and solved any
disagreement to reach a consensus on how identifiers with
different styles were constructed. Kappa inter-rater agreement
was also computed to measure the consistency degree between
the two authors’ results [25].

RQ2: How does identifier style change along with the
project evolution?

Given a specific identifier, we tracked its style-change
history by using the Git log command “git log -L <start>,
<end> : <file>”, where we specified the location (line
number) of the identifier as both the start as well as end
parameters and the source file of the identifier as the file
parameter. This command could output all the commits with
detailed changes to the location where the identifier was de-
fined chronologically. By comparing the current version with
its historical versions, we could figure out whether the style
of this identifier had been changed. If there were any style-
changes for this identifier, we generated a style-change chain
for it based on the change history. Finally, after analyzing
all the style-changed identifiers, we calculated the frequencies
of style-change chains and regarded the most frequent style-
change chains as style-change patterns for identifiers.

The Git log operations on specific identifiers required con-
siderable processing time (usually one to several seconds for
an identifier), which was hard to be estimated, especially
for those identifiers which had tremendous historical com-
mits. Considering that there were a large number of projects
(almost 10 thousand) and much larger number of contained
identifiers (more than 57.11 million), rather than analyzing all
the projects, we randomly selected 1,000 projects to perform
relevant analyses in this RQ.

RQ3: What are the potential impacts of identifier style-
changes?

Specifically, we explored the potential impacts of identifier
style-changes based on the same 1,000 projects in RQ2
from three aspects. First, for each of the 1,000 projects, we
calculated the percentage of source files in which the styles
of identifiers had ever been changed. In such a way, we could
exactly know how many source files were directly affected.

Second, since different identifier categories had different
effect scopes, we further investigated the affected scopes of
identifiers whose styles have been changed with associated ac-
cess modifiers. In the Java programming language, the access
levels of types, methods, and fields were controlled by four
kinds of access modifiers, i.e., public, protected, private, or no
modifier (we call it default). Changing the style of a public
method had a higher cost than that of a private method, since
it might break backward compatibility and increase integration
costs [3]. To measure the affected scopes, we calculated the

ratios of the four types of access modifiers in three identifier
categories, i.e., types, methods, and fields.

Third, we counted the reference or usage time for each
style-changed identifier to evaluate how many modification
operations might to be conducted. After developers changed
the style for a specific identifier, they should propagate the
style-change to other code parts so that the project could still
be compilable and runnable. By calculating the reference time
for each style-changed identifier, we could know the number
of possible modification operations so as to assess the potential
impacts of those style-changed identifiers.

RQ4: What are the categories of identifier style-changes?
As a type of identifier renaming, identifier style-changes

can be classified into different categories from different di-
mensions. The detailed and specific style-change categories
had been extensively investigated by Arnaoudova et al. [3],
who proposed a systematic identifier renaming taxonomy. This
taxonomy contained four orthogonal dimensions, i.e., entity
kinds, forms of renaming, semantic changes, and grammar
changes, each of which contained several categories [3].
For example, in the forms of renaming dimension, identifier
style-changes could be divided into four categories, including
simple, complex, formatting only, and term reordering.

We investigated the categories and their percentages by
manually classifying identifier style-changes based on the pro-
posed taxonomy [3]. Similar to RQ1, we first used the stratified
random sampling method to sampled 500 identifiers whose
styles had been changed. As some sampled identifiers might
have multiple style-changes, for these identifiers, we split their
multiple style-changes into several single style-changes. Then,
two authors of this paper manually and independently analyzed
the styles of those sampled identifiers before and after each
single style-change. Each single style-change was placed into
different categories of four orthogonal dimensions. Next, the
two authors discussed the divergences to reach an agreement
about the final categories of identifier style-changes. At last,
we calculated the percentage of each category for all the
dimensions and reported the agreement degree between the
two authors [25].

IV. EXPERIMENTAL RESULTS

In this section, we present the empirical results of each RQ.
RQ1: How are identifiers with different styles

constructed?
Based on sampled identifiers, we find that developers gen-

erally employ “ ” to combine terms to define identifiers with
the snake case style in two forms. In the first form, each
constitutive term is separated by “ ”; we call this form as fully
separated snake case in this study. For example, the identifier
sample data type is in accordance with this form. The ratio
of identifiers with this form is 36.60%. In the second form,
only one or several key positions in identifiers are embedded
with “ ”; we call this form as partly separated snake case. For
example, the identifier exitbutton onclick is in line with this
form. Identifiers with the second form take up 63.40%. This



indicates that developers tend to use partly separated snake
case to define identifiers with the snake case style.

For the camel case style, there are generally two types,
i.e., the upper camel case and the lower camel case. In the
upper camel case, the first letters of all constitutive terms
are capitalized; while in the lower camel case, the first letter
is in lowercase, but the first letters of the subsequent terms
are in uppercase. During our analyses, we find that identifiers
with the lower camel case style take up 87.62% and the rest
are identifiers with the upper camel case style. This means
developers are willing to use the lower camel case style to
define identifiers with the camel case style.

We also investigate the distributions of the two types of the
camel case style in different identifier categories. We find that
about 50% of identifiers with the lower camel case style are
method names. This phenomenon is consistent with the Java
code conventions to some extent, which state that “method
names usually start with a lowercase letter with the first letter
of each internal word capitalized”. As for the upper camel
case style, 72.80% of identifiers with this style are type names
and field names. This result is also in line with the Java code
conventions, which state that “type names should be in mixed
case with the first letter capitalized”. These results indicate
that developers often follow the code conventions related to
the camel case style when they define identifiers. This may be
due to that some IDEs like Eclipse could remind developers
of these code conventions when they program.

In terms of the other style, we manually identify five forms
that developers follow to define identifiers with this style:

1) Some identifiers are dictionary words that are commonly
seen in programs, e.g., value and name. Identifiers with
this formation take up 45.40% in all sampled identifiers.

2) Some identifiers are abbreviations and acronyms. For
example, arg (usually standing for argument) and tmp
(usually standing for temporary) are common abbrevia-
tions and XML (usually standing for eXtensible Markup
Language) is a common acronym. Identifiers created by
this formation take up 19.80% in all sampled identifiers.

3) Some identifiers are composed of characters and digits
without other special characters, such as results1 and
key256. Identifiers made by this formation take up
14.40% in all sampled identifiers.

4) Some identifiers are constructed by all uppercase or
lowercase letters, e.g., lengthcount and ENTITYTYPE.
Identifiers created by this formation take up 13.20% in
all sampled identifiers.

5) Some identifiers are arbitrarily created by developers
possibly only because some characters are close to each
other in the keyboard. For example, az and sdf are two
arbitrarily constructed identifiers. Identifiers made by
this formation take up 9.80% in all sampled identifiers.

Note that the five formations mentioned above are not
completely orthogonal. An identifier with the other style may
belong to more than one formations. Besides the above five
formations, we also find eight identifiers that are misspelled
in the sampled identifiers. Among them, three identifiers are

Fig. 3. The distribution of style-change times for identifiers whose styles
have ever been changed.

spelled incorrectly because the sequence of some characters is
not in a correct order. For example, the identifier laoder origi-
nally should be loader. The other five identifiers are misspelled
since one or more characters are accidentally changed to other
characters adjacent to them in the keyboard. For example, the
identifier attribites is supposed to be attributes. The Kappa
inter-rate agreement value between the two authors is 0.535,
showing a moderate agreement [25].

Finding 1: Identifiers with the snake case style are largely
(63.40%) constructed in the partly separated snake case
form; most (87.62%) of identifiers with the camel case
style are defined in the lower camel case style; those
identifiers with the other style are mainly constructed in
forms of dictionary words (45.40%), abbreviations and
acronyms (19.80%), and characters combined with digits
(14.40%).

RQ2: How does identifier style change along with the
project evolution?

Identifiers as well as their styles are in constant evolution.
According to our statistics, there are totally 20,010 identifiers
whose styles have ever been changed during the project
evolution, and the percentage of style-changed identifiers with
respect to the total number of identifiers in the 1,000 projects
is 2.43%. Fig. 3 shows the distribution of style-change times
of all style-changed identifiers. From the figure, we can see
that the overall change-time trend follows the long-tailed
distribution: the percentage of identifiers whose styles changed
only once reaches as large as 76.52%; along with the change-
time increases, the corresponding percentages rapidly decline.
For example, identifiers whose styles have been changed 3
times and 4 times only take up 4.13% and 1.64% respectively.
Some identifiers (3.40%) seem to have their styles frequently
changed (5+ times), with the largest change-times being 9 in
our experimental projects. In addition, we observe that there
are 10.22% of identifiers whose styles have been changed back
to their initial (original) styles after some changes, e.g., camel
case -> snake case -> other -> snake case -> camel case.

After we obtain the distribution of style-change times, we



Fig. 4. The distribution of style-change patterns for identifiers whose styles
changed only once.

TABLE II
THE TOP 10 IDENTIFIER STYLE-CHANGE PATTERNS.

Rank Style-Change Patterns
1 Camel Case -> Other -> Camel Case
2 Other -> Camel Case -> Other
3 Snake Case -> Other -> Snake Case
4 Other -> Snake Case -> Other
5 Snake Case -> Camel Case -> Snake Case
6 Camel Case -> Snake Case -> Camel Case
7 Other -> Camel Case -> Snake Case -> Other -> Snake Case
8 Camel Case -> Other -> Snake Case -> Camel Case
9 Camel Case -> Other -> Camel Case -> Snake Case -> Other

10 Other -> Snake Case -> Camel Case -> Other

then study whether the style-changes in individual identifiers
would change the overall percentages of three identifier styles
in all projects. We find that on the whole, the camel case style
slightly increases by 1.75%, while the number of identifiers
with the snake case and other styles slightly decrease by
0.82% and 0.93% respectively. This means despite many
identifiers may have their styles changed, the overall distri-
bution of the three styles remains relatively steady.

In terms of identifiers whose styles changed only once,
Fig. 4 shows all possible one-time style-changes and their
corresponding percentages. In the legend of Fig. 4, the styles
before and after the arrow (i.e., ->) stand for the styles before
and after the change respectively. For example, camel case ->
snake case represents that the original style of an identifier is
camel case, then it changes to snake case during the project
evolution. From the figure, we can find that a large number of
style-changes (28.66%+30.37%=59.03%) happened between
the other and camel case styles. Relatively, the percentage of
style-changes between the snake case and camel case styles
is much lower (13.26%+13.21%=26.47%). In contrast, the
style-changes between the snake case and other styles take
up the smallest percentage, i.e., 14.50% in total. Given the
style-change statistics among three styles and the previous
observation that the number of identifiers with the camel
case style increases by 1.75%, we can conclude that such an
increase is mainly from the other style, i.e., identifiers with
the other style are changed to the camel case style.

After we studied the one-time style-changes, we continued
to explore style-change patterns of identifiers whose styles

changed several times (>= 2). For each of these identifiers,
we create a style change chain for it by parsing its style
change history. For example, “camel case -> snake case -
> camel case” is a style change chain, which means the
style of an identifier changed from camel case to snake case,
and then changed back to camel case again. After creating
change chains for all identifiers with multiple style changes,
we accumulate those chains and summarize some common
style-change patterns. Table II shows the top 10 common style-
change patterns we identified. From the table, we can observe
that, each of the top 6 style-change patterns only involves two
changes between two identifier styles. For example, the most
common style-change pattern (i.e., the top 1 in the table) of
identifiers with multiple style-changes is the one that generally
changes the style of an identifier from camel case to other,
and finally back to camel case again. The rest four style-
change patterns (i.e., the 7th to the 10th in the table) mainly
involve multiple changes among all three identifier styles. For
example, the 8th style-change pattern means the identifier style
changes from camel case to other, then to snake case, and
finally changes to camel case again.

Finding 2: 76.52% of identifiers’ styles changed only
once during the project evolution, among which 59.03%
of changes happened between the camel case and other
styles. For identifiers with multiple style-changes, the top
6 common style-change patterns only involve two changes
between arbitrary two styles.

RQ3: What are the potential impacts of identifier style-
changes?

By analyzing the sampled 1,000 projects, we find that the
average number of source files with identifier styles changed
is 12.68; the average percentage of these source files is 6.52%.
This indicates that the style-changed identifiers would have an
unignorable impact on a few of source files.

When focusing on types, methods, and fields, whose scopes
can be controlled by different access modifiers, we show their
distributions on the four types of access modifiers in Fig. 5. As
for style-changed types, we can see that 48.33% of them are
public, which can be referred in anywhere in other source files
of the same project. In addition, 21.67% and 7.50% of them
are default and protected respectively, which can be accessed
within limited scopes (e.g., within the same package). This
means that almost 80% of style-changed types can be referred
by other source files (with non-private access modifiers). In
terms of style-changed methods, we can find that 74.35% of
them are declared as public; and 11.39% and 2.48% are with
protected and default access modifiers respectively. This also
indicates that the potential affected scopes could be large for
style-changed methods. Unlike types and methods, the changes
to field styles have a relatively smaller impact, since 56.61%
of fields with style-changes are declared as private.

Fig. 6 shows the boxplot of the reference or usage times
of identifiers whose styles have been changed separated by



Fig. 5. The distribution of types, methods, fields over four access modifiers.

Fig. 6. The reference or usage times of identifiers whose styles have been
changed (The average values are shown with × in this figure).

different categories. We can find that the reference times of
all the identifier categories are distributed in relative large
ranges. Specifically, the reference times of 25% quartile to
75% quartile of packages range from 5 to 42, and the average
reference time is 29.33. It shows that once the style of a
package is changed, more than 29 source files should be
modified to adapt to the style-change on average. In terms
of types, the reference times of 25% quartile to 75% quartile
range from 2 to 10 with an average value of 8.52. It means
that on average more than 8 modification operations should be
conducted once the style of a type is changed. As for methods,
25% quartile and 75% quartile of reference times are 2 and
27 with an average value of 24.42. Fields show similar results
as methods. The average reference time of fields is 17.63,
showing that more than 17 modifications should be operated
on average if the style of a field is changed. Since variables
can only be used within their corresponding enclosed methods,
their reference times are relatively small, ranging from 2 to 16
in terms of 25% quartile and 75% quartile.

Finding 3: Style-changed identifiers directly involve
6.52% of source files on average. These identifiers tend
to be exposed to other code parts with non-private access
modifiers and have a wide range of reference times, which
means that substantial modification operations need to be
conducted when propagating the style-changes.

TABLE III
THE CATEGORIES AND RATIOS OF IDENTIFIER STYLE-CHANGES.

Dimension Category Percentage (%)

Entity Kinds

Package 0.20
Type 1.20

Method 28.40
Field 26.00

Variable 44.20

Forms of Renaming

Simple 28.72
Complex 52.34

Formatting Only 18.09
Term Reordering 0.85

Semantic Changes

Preserve Meaning 16.21
Change in Meaning 13.68

Narrow Meaning 27.16
Broaden Meaning 13.47

Add Meaning 6.74
Remove Meaning 3.58

None 19.16

Grammar Changes Part of Speech Change 4.04
None 95.96

RQ4: What are the categories of identifier style-changes?
We obtained 655 single style-changes for the sampled 500

identifiers after splitting multiple style-changes. Two authors
manually classify each single style-change into different cat-
egories in different dimensions, and the Kappa inter-rate
agreement value is 0.656, indicating a good agreement be-
tween two authors [25]. Table III shows the identifier style-
change categories and their percentages. From the entity kinds
dimension, we find that variables take up the largest percentage
(44.20%) in all style-changed identifiers. It means that variable
styles are more frequently to be changed during the project
evolution. The percentages of style-changed methods and
fields are similar (28.40% and 26.00%). While the ratios for
packages and types are only 0.20% and 1.20% respectively,
showing that their styles are seldom changed.

From the forms of renaming dimension, we observe that
more than a half (52.34%) of style-changes are complex,
with more than one terms changed. For example, selection
-> selectedItem changes the style from other to camel case
with two terms modified. In contrast, 28.72% of style-changes
are simple, with only one term changed, e.g., itemsExpected
-> items changes the style from camel case to other with
one term Expected deleted. In addition, 18.09% of style-
changes are formatting only, meaning that only letter cases
or term separators have been changed. For instance, Rout-
ingKey -> ROUTING KEY makes the style changed from
camel case to snake case by revising its format. Only 0.85%
of style-changes exchange the positions of the composing
terms, i.e., belong to the term reordering category. For exam-
ple, tool select rectangle -> selectRectangleTool changes the
style from snake case to camel case and reorders the positions
of the composing terms.

As an important dimension, the semantic changes dimen-
sion includes 7 categories. We observe that identifier style-
changes belonging to the narrow meaning category take up
the largest percentage (27.16%). Identifiers with this category
change their styles by changing the composing terms into their
hyponyms or adding specific terms, e.g., cache -> htmlCache



changes the style from other to camel case by adding a specific
term html to narrow down its meaning. The second largest
percentage comes from the none category, which implies
no semantic change and mainly comes from the formatting
only category in the forms of renaming dimension. 16.21%
of style-changes belong to the preserve meaning category,
which preserves the semantic meanings of identifiers by using
synonyms and abbreviation expansion. For example, ddmenu
-> dropDownMenu changes the style from other to camel case
by expanding dd to dropdown. Style-changes of the change
in meaning and broaden meaning categories take up 13.68%
and 13.47% respectively. Here, change in meaning means
changing the meaning of identifiers; while broaden meaning
means generalizing the meaning of identifiers. For example,
correlateUnique -> uncorrelate belonging to the change in
meaning category changes identifier style from camel case
to other and also changes its meaning to the opposite. In
contrast, much fewer style-changes belong to the add meaning
and remove meaning; these style-changes mainly aim to add
and remove semantic meanings respectively.

From the grammar changes dimension, we discover that
95.96% of style-changes belong to the category of none.
Only 4.04% of style-changes belong to the part of speech
change category. For example, connect -> waitForConnection
changes the identifier style from other to camel case, in which
the verb connect is changed to a noun connection.

Finding 4: The styles of variables are changed much more
frequently than the other identifier categories. 52.34%
of style-changes are complex with more than one term
modified. Many style-changes are made to either narrow
down, preserve the identifier meaning or just change the
formats of identifiers. 95.96% of style-changes will not
change the part of speech of the composing terms.

V. DISCUSSION

In this section, we discuss implications and threats.

A. Implications

Research studies on exploring the impacts of identifier
styles on code comprehension need to consider the im-
balanced distribution phenomenon of individual identifier
styles. According to our preliminary data statistics, the distri-
bution of the camel case and snake case styles is extremely
imbalanced (49.45% vs 6.38%) in 9,792 projects. To the best
of our knowledge, existing studies generally evenly sampled
identifiers with these two styles when studying their impacts
on code comprehension tasks. This is problematic as ignoring
the imbalanced style-distribution phenomenon may introduce
some biases into the arrived conclusions. Hence, we would
suggest researchers and practitioners who attempt to analyze
how identifier styles would exactly affect code comprehension
activities, to consider the imbalanced distribution problem
of identifier styles, e.g., assign different weights to different
identifier styles based on the statistics in this study.

Extra efforts need to be spared to eliminate arbitrarily
constructed identifiers with the other style. We find that a
large part (44.17%) of identifiers are with the other style (i.e.,
neither with camel case nor snake case). Furthermore, among
these identifiers, there are as large as 9.80% of identifiers
which are constructed arbitrarily without having any meaning
or intention (findings of RQ1). In addition, some of them
are also misspelled. These poor identifiers would prevent
developers from understanding code and may increase project
fault-proneness [6]. Hence, it would be beneficial to spare extra
efforts to particularly improve the quality of identifiers with
the other style, e.g., automatically remind or warn developers
if they arbitrarily construct identifiers with the other style
and further provide them with suggested meaningful and
informative identifiers.

It is worthwhile to build a style-change prediction model
and further explore the reasons behind style-changes.
In RQ2, we find that identifier styles would change along
with the project evolution. The changes towards identifier
styles usually come at costs, e.g., waste developers’ time
or introduce potential inconsistency problems [3]. Thus, it
would be valuable to build a model to precisely predict
possible style-changes and recommend the final styles for
identifiers. Additionally, despite we discover some interesting
style-change patterns, we have no clue about why identifier
styles change. In RQ4, we classify identifier style-changes into
different categories, which may be regarded as coarse-grained
reasons. However, we still need to explore the fine-grained
style-change reasons, which could reveal some interesting and
worth-to-solve research problems. Actually, we have tried to
manually analyze a number of commit messages with the hope
to find possible style-change reasons but we failed, due to
two reasons. First, identifier style-changes may be viewed as a
type of refactoring, but developers are found to not frequently
state refactoring activities in commit messages in practice
[26], [27]. Second, multiple unrelated changes are usually
packed in a single commit [28], again making style-change
reasons undocumented. In the future, we plan to conduct a
survey among developers to understand the concrete reasons
for various style-change patterns identified in our study.

New tools are needed to help developers propagate the
style-changes of identifiers. When investigating the impacts
of identifier style-changes in RQ3, we find that style-changed
identifiers have a wide range of reference times and their po-
tential impacts can be large. Nowadays, existing modern IDEs,
such as IntelliJ IDEA and Visual Studio, are embedded with
convenient style converter plugins, which can help developers
convert selected identifiers between different styles. However,
these plugins only focus on changing the styles of identifiers
themselves without propagating the style-changes. Manually
propagating the identifier style-changes is time-consuming and
error-prone, and forgetting to change any one of the references
to style-changed identifiers may introduce potential bugs [29].
Considering the large impacts of identifier style-changes, it is
worthwhile to construct a tool to help developers propagate
identifier style-changes.



B. Threats to Validity

Internal Validity: Threats to internal validity are related to
the internal factors that could affect the results. In RQ1 and
RQ4, two authors of this study explore the constructions of
identifiers and style-change categories by conducting manual
qualitative analyses. The manual analyses results may be
affected by personal subjectivity. To reduce the influence of
personal opinions to the results, we take some measures. For
example, each result is analyzed by two authors independently.
If there is a discrepancy for a specific result, they would dis-
cuss it to reach an agreement. In addition, the representativity
of the sampled identifiers in RQ1 and RQ4 could also be
a potential threat of this study. To reduce such a threat, we
employ the effective stratified random sampling method, which
would not lean towards a specific bias or prejudice [24].

External Validity: Threats to external validity concern the
generalizability of our empirical results. In this study, all
analyses are conducted on open-source Java projects hosted in
the GitHub community. The achieved conclusions may not be
applicable to the projects programmed by other programming
languages, to the closed-source projects, or in other open-
source-code-hosted platforms (such as BitBucket or Source-
Forge). For example, the imbalanced distribution phenomenon
of identifier styles may be because Java code conventions
promote the use of the camel case style. This phenomenon
may not occur in other programming languages. However,
considering that our experimental projects varied in domains
and are of different sizes, we believe that our study could still
shed some lights in the usage and evolution of identifier styles.

VI. RELATED WORK

In this section, we briefly introduce the closely related work.

A. The Impact of Identifiers on Software Development

As a major part of source code lexicon, identifiers could
influence software development [5], [8]. Binkley et al. inves-
tigated the impact of the camel case and snake case styles on
code readability [10]. By measuring the speed and accuracy
of manipulating programs, they found that developers using
the camel case style achieved higher accuracy of the program
manipulation than those using the snake case style. Following
this work, Sharif et al. employed an eye tracker to capture the
quantitative results from developers when they were involved
in the experiment [12]. They obtained different results as
Binkley et al. [10], i.e., there was no difference between
identifier styles with respect to the accuracy of manipulating
programs. In addition, Sharafi et al. investigated the impact
of both genders on the source code reading activities with
different identifier styles [30]. They observed that there was
no significant difference of the accuracy and the efforts of the
code reading between male and female subjects when they
were provided with different identifier styles.

Except for exploring the impact of identifier styles, re-
searchers also explored the influence of the other aspects of
identifiers. Binkley et al. investigated the balance between
longer identifier names and limited programmer memory [31].

They found that longer identifier names took more time to
process, comprehend, and manipulate. Butler et al. employed
12 identifier naming guidelines to evaluate the quality of
identifiers in 8 open source projects [32]. They found that
flawed identifiers and code quality issues were significant-
ly associated. Lawrie et al. found that full-word identifier
names can lead to better code comprehension than single-letter
identifiers and abbreviations as identifiers [33]. Scanniello et
al. studied the influence of full-word identifiers and abbrevi-
ations as identifiers on fault fixing, and found no difference
between the two types of identifiers [34].

None of these studies explore the practical usage and evolu-
tion of identifier styles. The results of this study complement
existing studies and could inspire the better usage of specific
identifier styles for developers.

B. Identifier Characteristics Analyses

Some studies try to figure out what characteristics make
a good identifier. Deissenbock and Pizka pointed out that
identifiers should be consistent and concise [35]. However,
automatically verifying the consistency and conciseness of
identifiers was non-trivial. To resolve this problem, Lin et al.
proposed a method to ensure the consistency and conciseness
of identifiers [36]. Furthermore, the degree of consistency
and conciseness of identifiers could be decreased along with
the evolution of the projects [37]. Allamanis et al. [38] and
Butler et al. [39] pointed out that when developers defined
identifiers, they needed to follow the corresponding code
conventions. Hence, identifiers also had the characteristic of
normativeness. Falleri et al. stated that identifiers should have
the characteristic of understandability [40]. They automatically
constructed a wordnet-like identifier network to improve the
performance of resolving typical research tasks.

Identifier styles can be also viewed as a guide or best-
practice that developers should follow when they define
identifiers. The findings of this study can help developers
improve the quality of identifiers as well as their programs.

VII. CONCLUSION AND FUTURE WORK

It has been a hot research topic to analyze source code
lexicon, especially identifiers. Even though researchers have
explored the influence of identifiers on code comprehension
activities, there are still some underlying open issues that have
not been fully investigated. In this study, we conduct a large-
scale empirical study on the usage and evolution of identifier
styles in practice and achieve some interesting findings. Based
on these findings, we summarize some implications that inspire
future research in resolving identifier style related problems.

In the future, we plan to extend our work in following
aspects. First, we plan to explore the usage and evolution of
identifier styles for other programming languages, e.g., C++.
Second, we plan to conduct a survey to investigate developer’s
preference to identifier styles and reasons of style-changes of
identifiers. Third, we plan to develop some automatic tools
(e.g., a warning tool for identifiers with the other style) to
help developers perform identifier-related activities.



ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No. 61902181 and
62002161, the China Postdoctoral Science Foundation under
Grant No. 2020M671489, and the CCF-Tencent Open Re-
search Fund under Grant No. RAGR20200106.

REFERENCES

[1] S. Kim and D. Kim, “Automatic identifier inconsistency detection using
code dictionary,” Empirical Software Engineering, vol. 21, no. 2, pp.
565–604, Apr. 2016.

[2] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, Oct. 2018.

[3] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,
and Y. G. Gueheneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Transactions on Software Engineering, vol. 40, no. 5,
pp. 502–532, 2014.

[4] J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” Empirical Software Engineering, vol. 24,
no. 6, pp. 1–27, 2018.

[5] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source
code to automatically split identifiers for software analysis,” In Proceed-
ings of the IEEE International Working Conference on Mining Software
Repositories (MSR 09), pp. 71–80, 2009.

[6] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif,
“The impact of identifier style on effort and comprehension,” Empirical
Software Engineering, vol. 18, no. 2, pp. 219–276, Apr. 2013.

[7] D. Lawrie and D. Binkley, “Expanding identifiers to normalize source
code vocabulary,” In Proceedings of the IEEE International Conference
on Software Maintenance (ICSM 11), pp. 113–122, 2011.

[8] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Improving the tokeni-
sation of identifier names,” In Proceedings of the European Conference
on Object-oriented Programming (ECOOP 11), pp. 130–154, 2011.

[9] A. D. Lucia, M. D. Penta, and R. Oliveto, “Improving source code
lexicon via traceability and information retrieval,” IEEE Transactions
on Software Engineering, vol. 37, no. 2, pp. 205–227, 2011.

[10] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase or
under score,” In Proceedings of the 17th IEEE International Conference
on Program Comprehension (ICPC 09), pp. 158–167, 2009.

[11] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,” In
Proceedings of the 14th European Conference on Software Maintenance
and Reengineering (CSMR 10), pp. 156–165, 2010.

[12] B. Sharif and J. I. Maletic, “An eye tracking study on camelcase and
under score identifier styles,” In Proceedings of the 18th International
Conference on Program Comprehension (ICPC 10), pp. 196–205, 2010.

[13] Y. Hayase, Y. Kashima, Y. Manabe, and K. Inoue, “Building domain
specific dictionaries of verb-object relation from source code,” In Pro-
ceedings of the 15th European Conference on Software Maintenance
and Reengineering (CSMR 11), pp. 93–100, 2011.

[14] Y. Cao, Y. Zou, Y. Luo, B. Xie, and J. Zhao, “Toward accurate link
between code and software documentation,” Science China Information
Sciences, vol. 61, no. 5, pp. 68–82, 2018.

[15] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” In Proceedings of the
39th International Conference on Software Engineering (ICSE 17), pp.
3–14, 2017.

[16] A. Corazza, S. D. Martino, and V. Maggio, “Linsen: An efficient
approach to split identifiers and expand abbreviations,” In Proceedings
of the IEEE International Conference on Software Maintenance (ICSM
13), pp. 233–242, 2013.

[17] D. Lawrie, D. Binkley, and C. Morrell, “Normalizing source code
vocabulary,” In Proceedings of the Working Conference on Reverse
Engineering (WCRE 10), pp. 3–12, 2010.

[18] Y. Jiang, H. Liu, J. Zhu, and L. Zhang, “Automatic and accurate expan-
sion of abbreviations in parameters,” IEEE Transactions on Software
Engineering, vol. 46, no. 7, pp. 732–747, 2020.

[19] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. L. Pollock,
and K. Vijay-Shanker, “Amap: Automatically mining abbreviation ex-
pansions in programs to enhance software maintenance tools,” In Pro-
ceedings of the International Working Conference on Mining Software
Repositories (MSR 08), pp. 79–88, 2008.

[20] M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” In Proceedings of the 10th
Working Conference on Mining Software Repositories (MSR 13), pp.
207–216, 2013.

[21] L. Yao, X. Mao, Z. Li, Z. Yang, and Y. Gang, “Internal quality assurance
for external contributions in github: An empirical investigation,” Journal
of Software: Evolution and Process, vol. 30, no. 4, p. e1918, 2017.

[22] J. Jiang, D. Lo, J. He, X. Xia, P. S. Kochhar, and L. Zhang, “Why and
how developers fork what from whom in github,” Empirical Software
Engineering, vol. 22, no. 1, pp. 547–578, Feb. 2017.

[23] N. Yoshida, T. Hattori, and K. Inoue, “Finding similar defects using
synonymous identifier retrieval,” In Proceedings of the 4th International
Workshop on Software Clones (IWSC 10), pp. 49–56, 2010.

[24] P. C. Rigby, Y. Zhu, S. M. Donadelli, and A. Mockus, “Quantifying and
mitigating turnover-induced knowledge loss: Case studies of chrome and
a project at avaya,” In Proceedings of 38th International Conference on
Software Engineering (ICSE 16), pp. 1006–1016, 2016.

[25] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.

[26] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 38, no. 1,
pp. 5–18, 2012.

[27] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose,”
IEEE Software, vol. 25, no. 5, pp. 38–44, 2008.

[28] K. Herzig and A. Zeller, “The impact of tangled code changes,” In Pro-
ceedings of 10th Working Conference on Mining Software Repositories
(MSR 13), pp. 121–130, 2013.

[29] G. Li, H. Liu, and A. S. Nyamawe, “A survey on renamings of software
entities,” ACM Computing Surveys, vol. 53, pp. 1–38, 2020.

[30] Z. Sharafi, Z. Soh, Y.-G. Gueheneuc, and G. Antoniol, “Women and men
- different but equal: On the impact of identifier style on source code
reading,” In Proceedings of the International Conference on Program
Comprehension (ICPC 12), pp. 27–36, 2012.

[31] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length
and limited programmer memory,” Science of Computer Programming,
vol. 74, no. 7, pp. 430–445, 2009.

[32] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” In Proceedings of
the 16th Working Conference on Reverse Engineering (WCRE 09), pp.
31–35, 2009.

[33] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” In Proceedings of the 14th Internal Conference on
Program Comprehension (ICPC 06), pp. 3–12, 2006.

[34] G. Scanniello, M. Risi, P. Tramontana, and S. Romano, “Fixing faults
in c and java source code: Abbreviated vs. full-word identifier names,”
ACM Transactions on Software Engineering and Methodology, vol. 26,
no. 2, pp. 6:1–6:43, Jul. 2017.

[35] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261–282, Sep. 2006.

[36] B. Lin, S. Scalabrino, A. Mocci, R. Oliveto, and M. Lanza, “Investigating
the use of code analysis and nlp to promote a consistent usage of
identifiers,” In Proceedings of the IEEE International Working Confer-
ence on Source Code Analysis and Manipulation, pp. 81–90, 2017.

[37] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshy-
vanyk, and R. Oliveto, “Automatically assessing code understandability:
How far are we?” In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pp. 417–427, 2017.

[38] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE 14),
pp. 281–293, 2014.

[39] S. Butler, “Mining java class identifier naming conventions,” In Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE 12), pp. 1641–1643, 2012.

[40] J. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and
M. Dao, “Automatic extraction of a wordnet-like identifier network
from software,” In Proceedings of the IEEE International Conference
on Program Comprehension (ICPC 10), pp. 4–13, 2010.


	Introduction
	Research Questions
	Experimental Setup
	Target Projects
	Preliminary Data Exploration
	Design of RQs

	Experimental Results
	Discussion
	Implications
	Threats to Validity

	Related Work
	The Impact of Identifiers on Software Development
	Identifier Characteristics Analyses

	Conclusion and Future Work
	References

